1
|
Salazar J, Hidalgo-Rosa Y, Burboa PC, Wu YN, Escalona N, Leiva A, Zarate X, Schott E. UiO-66(Zr) as drug delivery system for non-steroidal anti-inflammatory drugs. J Control Release 2024; 370:392-404. [PMID: 38663750 DOI: 10.1016/j.jconrel.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
The toxicity for the human body of non-steroidal anti-inflammatory drugs (NSAIDs) overdoses is a consequence of their low water solubility, high doses, and facile accessibility to the population. New drug delivery systems (DDS) are necessary to overcome the bioavailability and toxicity related to NSAIDs. In this context, UiO-66(Zr) metal-organic framework (MOF) shows high porosity, stability, and load capacity, thus being a promising DDS. However, the adsorption and release capability for different NSAIDs is scarcely described. In this work, the biocompatible UiO-66(Zr) MOF was used to study the adsorption and release conditions of ibuprofen, naproxen, and diclofenac using a theoretical and experimental approximation. DFT results showed that the MOF-drug interaction was due to an intermolecular hydrogen bond between protons of the groups in the defect sites, (μ3 - OH, and - OH2) and a lone pair of oxygen carboxyl functional group of the NSAIDs. Also, the experimental results suggest that the solvent where the drug is dissolved affects the adsorption process. The adsorption kinetics are similar between the drugs, but the maximum load capacity differs for each drug. The release kinetics assay showed a solvent dependence kinetics whose maximum liberation capacity is affected by the interaction between the drug and the material. Finally, the biological assays show that none of the systems studied are cytotoxic for HMVEC. Additionally, the wound healing assay suggests that the UiO-66(Zr) material has potential application on the wound healing process. However, further studies should be done.
Collapse
Affiliation(s)
- Javier Salazar
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Yoan Hidalgo-Rosa
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7500000, Chile
| | - Pia C Burboa
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Yi-Nan Wu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Rd., Shanghai 200092, China
| | - Néstor Escalona
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Macul, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
| | - Angel Leiva
- Departamento de Química Física, Facultad de Química y Farmacia, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| | - Ximena Zarate
- Instituto de Ciencias Aplicadas, Theoretical and Computational Chemistry Center, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8320000, Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y Farmacia, CIEN-UC, Centro de Energía UC, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; Millenium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile.
| |
Collapse
|
2
|
Zhang S, Chen Y, Liu S, Li Y, Zhao H, Chen Q, Hou X. Dissolution-precipitation method concatenated sodium alginate/MOF-derived magnetic multistage pore carbon magnetic solid phase extraction for determination of antioxidants and ultraviolet stabilizers in polylactic acid food contact plastics. Talanta 2024; 270:125487. [PMID: 38101034 DOI: 10.1016/j.talanta.2023.125487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023]
Abstract
Antioxidants and UV stabilizers have some endocrine disrupting effects and liver toxicity. Both types of additives are still widely used in food contact plastics to improve the durability of plastic products. However, efficient and rapid detection of antioxidants and UV stabilizers has been a challenge due to the complexity of the plastic matrix and the low content of antioxidants and UV stabilizers. In this study, a sodium alginate/MOF-derived magnetic multistage pore carbon material (MIL-101(Fe)/SA-CAs) was developed, having the merits of abundant multistage pore structure, large specific surface area, and good magnetic separation properties. Thus, this material was selected as the sorbent for magnetic solid-phase extraction combined with a dissolution-precipitation method for the extraction and purification of antioxidants and UV stabilizers from polylactic acid food contact plastics. The extraction parameters such as sorbent type, sorbent dosage, sample solution pH, ionic strength, sorption time, elution solution type, volume, and time were investigated. Under the optimized conditions, all the analytes determined by UPLC-MS/MS showed good linear range (r > 0.99), detection limit (0.023-3.105 ng g-1), accuracy (70.6-102.3 %), and reproducibility (RSD<9.8 %). Further, the developed method was applied to determine the antioxidants and UV stabilizers in polylactic acid lunch boxes and straws, showing excellent applicability. The results showed that the antioxidants and UV stabilizers were detected in some of the samples, with a maximum detection of antioxidant 1010 at 7297 ng g-1. This study provided a sensitive, efficient, and environmentally friendly method for antioxidants and UV stabilizers in polylactic acid food contact plastics. The ideas for the design of environmentally friendly metal-organic frameworks and biomass composite multifunctional materials would promise in the sample pretreatment field for the emerging contaminants.
Collapse
Affiliation(s)
- Sijia Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yuhan Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Shuanghe Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yingying Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Huanhuan Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, People's Republic of China.
| | - Xiaohong Hou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Su X, Li B, Chen S, Wang X, Song H, Shen B, Zheng Q, Yang M, Yue P. Pore engineering of micro/mesoporous nanomaterials for encapsulation, controlled release and variegated applications of essential oils. J Control Release 2024; 367:107-134. [PMID: 38199524 DOI: 10.1016/j.jconrel.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Essential oils have become increasingly popular in fields of medical, food and agriculture, owing to their strongly antimicrobial, anti-inflammation and antioxidant effects, greatly meeting demand from consumers for healthy and safe natural products. However, the easy volatility and/or chemical instability of active ingredients of essential oils (EAIs) can result in the loss of activity before realizing their functions, which have greatly hindered the widely applications of EAIs. As an emerging trend, micro/mesoporous nanomaterials (MNs) have drawn great attention for encapsulation and controlled release of EAIs, owing to their tunable pore structural characteristics. In this review, we briefly discuss the recent advances of MNs that widely used in the controlled release of EAIs, including zeolites, metal-organic frameworks (MOFs), mesoporous silica nanomaterials (MSNs), and provide a comprehensive summary focusing on the pore engineering strategies of MNs that affect their controlled-release or triggered-release for EAIs, including tailorable pore structure properties (e.g., pore size, pore surface area, pore volume, pore geometry, and framework compositions) and surface properties (surface modification and surface functionalization). Finally, the variegated applications and potential challenges are also given for MNs based delivery strategies for EAIs in the fields of healthcare, food and agriculture. These will provide considerable instructions for the rational design of MNs for controlled release of EAIs.
Collapse
Affiliation(s)
- Xiaoyu Su
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Biao Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Shuiyan Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xinmin Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane 4072, Australia
| | - Baode Shen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengfei Yue
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
4
|
Caamaño K, López-Carballo G, Heras-Mozos R, Glatz J, Hernández-Muñoz P, Gavara R, Giménez-Marqués M. ZIF-8 encapsulation improves the antifungal activity of benzaldehyde and methyl anthranilate in films. Dalton Trans 2023; 52:17993-17999. [PMID: 37982665 DOI: 10.1039/d3dt03229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
In this work, two ZIF-8-based biocomposites were obtained by entrapping the biomolecules benzaldehyde and methyl anthranilate via direct impregnation with fast encapsulation kinetics and high molecule payloads were achieved. The obtained biocomposites exhibit an enhanced antifungal activity against Penicilium expansum after integration in biopolymeric zein films in comparison with the action of free molecules, making these biomaterials promising candidates for food preservation and packaging applications.
Collapse
Affiliation(s)
- Katia Caamaño
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Gracia López-Carballo
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Raquel Heras-Mozos
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Jana Glatz
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - Pilar Hernández-Muñoz
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Rafael Gavara
- Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, c/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
5
|
Russell S, Bruns N. Encapsulation of Fragrances in Micro- and Nano-Capsules, Polymeric Micelles, and Polymersomes. Macromol Rapid Commun 2023; 44:e2300120. [PMID: 37150605 DOI: 10.1002/marc.202300120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Fragrances are ubiquitously and extensively used in everyday life and several industrial applications, including perfumes, textiles, laundry formulations, hygiene household products, and food products. However, the intrinsic volatility of these small organic molecules leaves them particularly susceptible to fast depletion from a product or from the surface they have been applied to. Encapsulation is a very effective method to limit the loss of fragrance during their use and to sustain their release. This review gives an overview of the different materials and techniques used for the encapsulation of fragrances, scents, and aromas, as well as the methods used to characterize the resulting encapsulation systems, with a particular focus on cyclodextrins, polymer microcapsules, inorganic microcapsules, block copolymer micelles, and polymersomes for fragrance encapsulation, sustained release, and controlled release.
Collapse
Affiliation(s)
- Sam Russell
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| | - Nico Bruns
- Department of Chemistry, Technical University of Darmstadt, Peter-Grünberg-Str. 4, 64287, Darmstadt, Germany
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, G1 1XL, Glasgow, United Kingdom
| |
Collapse
|
6
|
Saura-Sanmartin A, Andreu-Ardil L. Recent Advances in the Preparation of Delivery Systems for the Controlled Release of Scents. Int J Mol Sci 2023; 24:ijms24054685. [PMID: 36902122 PMCID: PMC10002519 DOI: 10.3390/ijms24054685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Scents are volatile compounds highly employed in a wide range of manufactured items, such as fine perfumery, household products, and functional foods. One of the main directions of the research in this area aims to enhance the longevity of scents by designing efficient delivery systems to control the release rate of these volatile molecules and also increase their stability. Several approaches to release scents in a controlled manner have been developed in recent years. Thus, different controlled release systems have been prepared, including polymers, metal-organic frameworks and mechanically interlocked systems, among others. This review is focused on the preparation of different scaffolds to accomplish a slow release of scents, by pointing out examples reported in the last five years. In addition to discuss selected examples, a critical perspective on the state of the art of this research field is provided, comparing the different types of scent delivery systems.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, 30100 Murcia, Spain
- Correspondence:
| | | |
Collapse
|
7
|
Fei X, Yang T, Liu S, Zhang B, Zhao H, Liu D, Wu X, Xu D. Effect of silane coupling
agent‐TiO
2
on the sustained release performance of quaternary ammonium salt of chitosan shell fragrance microcapsules. J Appl Polym Sci 2023. [DOI: 10.1002/app.53673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xuening Fei
- School of Science Tianjin Chengjian University Tianjin China
| | - Tingyu Yang
- School of Science Tianjin Chengjian University Tianjin China
| | - Sijia Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Baolian Zhang
- School of Materials Science and Engineering Tianjin Chengjian University Tianjin China
| | - Hongbin Zhao
- School of Science Tianjin Chengjian University Tianjin China
| | - Dan Liu
- School of Materials Science and Engineering Tiangong University Tianjin China
| | - Xinyi Wu
- School of Science Tianjin Chengjian University Tianjin China
| | - Danyang Xu
- School of Science Tianjin Chengjian University Tianjin China
| |
Collapse
|