1
|
Zheng X, Duan Z, Zhuang Y, Zhang S, Cui X, Qin D. Application of Solvent-Assisted Dual-Network Hydrogel in Water-Based Drilling Fluid for Lost Circulation Treatment in Fractured Formation. ACS OMEGA 2024; 9:1166-1173. [PMID: 38222518 PMCID: PMC10785652 DOI: 10.1021/acsomega.3c07384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 01/16/2024]
Abstract
During oil and gas well construction, lost circulation caused substantial nonoperation time and extra costs, and hydrogel, resilient and environmentally friendly, was one of the major types of material for lost circulation treatment. To migrate the weak bonding and hydrothermal degradation of conventional single network hydrogels, dual network (DN) hydrogel was prepared and immersed in solvents of polyethylene glycol (PEG), ethylene glycol, and glycerol. The swelling of DN gels at different temperatures was studied with water content and swelling rate tests, and the gel structural and morphology was characterized with attenuated total reflectance infrared spectroscopy (ATR-IR) and scanning electron microscopy test. Then, the compression test and fracture plugging performance test were conducted to study the strength of the gel. The results show that compared to those in ethylene glycol and glycerin, DN gel after immersion in PEG (DN-PEG) exhibits greater compression strength and better plugging performance even at high temperatures. The compression strength of DN-PEG was twice that of DN hydrogel before immersion, and its fracture plug breaking pressure can reach over 10.0 MPa. After undergoing hydrothermal treatment at 90 °C, the compression strength of the DN-PEG was nearly 20 times that of the DN hydrogel, and the fracture plug breaking pressure was still 2.81 MPa. According to ATR-IR spectroscopy, as the molecular weight of the solvent increases, more hydroxyl groups in the PEG have better ability to bind with hydrogen bonds, which greatly inhibits the swelling and polymer chain breakage, thereby reducing hydrothermal degradation in the strength of the dual-network hydrogel. Our work proposed an effective method to reduce the degradation of hydrogel in water at high temperature, and the prepared DN-PEG hydrogel was a promising material for lost circulation treatments in fractured formation.
Collapse
Affiliation(s)
- Xin Zheng
- Changzhou
University, Changzhou 213164, China
| | - Zhifeng Duan
- Oil
and Gas Technology Research Institute, PetroChina
Changqing Oilfield Branch, Xi’an 710018, China
| | - Yan Zhuang
- Changzhou
University, Changzhou 213164, China
| | | | - Xinying Cui
- China
Petroleum University (East China), Qingdao 266580, China
| | - Donghui Qin
- Changzhou
University, Changzhou 213164, China
| |
Collapse
|
2
|
Li J, Wen M, Liu S, Liu Q. Preparation and Characterization of a Biobased Temporary Plugging Material: Self-Healing and Degradable. ACS OMEGA 2023; 8:36207-36217. [PMID: 37810653 PMCID: PMC10552468 DOI: 10.1021/acsomega.3c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/24/2023] [Indexed: 10/10/2023]
Abstract
Due to the low success rate in high-temperature gas well drilling or workover operations, a new type of biobased temporary sealing material was synthesized using vanillin, succinic anhydride (SA), cellulose, and acetylacetone zinc hydrate (AZH) as catalysts. Infrared analysis proved the synthesis of vanillin-derived epoxy and the formation of a vitrimer with hydroxyl ester. The results of thermodynamic properties tests show that it has excellent thermal stability with a high glass transition temperature (Tg). The dynamic mechanical test results show that the characteristic relaxation time of the material at 120 °C is 3500 s and the self-healing rate can reach 61% within 20 min. The test results of mechanical properties show that under 10 MPa pressure, it has good elastic deformation performance, the rebound rate is more than 36%, and the crushing rate is less than 17%. The degradation performance results show that the decomposition increases to 80% under 120 °C and 1.2% NaOH. The comprehensive performance evaluation results show that the new temporary plugging material has good compatibility, and its plugging performance is better than those of a gel, composite material, and shape memory polymer. The maximum fracture plugging capacity is 5 × 4 mm, with a pressure up to 10 MPa.
Collapse
Affiliation(s)
- Jia Li
- Research
Institute of Natural Gas Technology, PetroChina
Southwest Oil & Gas Field Company, Chengdu, Sichuan 610213, People’s Republic
of China
| | - Ming Wen
- PetroChina
Southwest Oil & Gas Field Company, Chengdu, Sichuan 610051, People’s Republic
of China
| | - Shuang Liu
- Research
Institute of Natural Gas Technology, PetroChina
Southwest Oil & Gas Field Company, Chengdu, Sichuan 610213, People’s Republic
of China
| | - Qiang Liu
- PetroChina
Southwest Oil & Gas Field Company, Chengdu, Sichuan 610051, People’s Republic
of China
| |
Collapse
|
3
|
Bai Y, Liu Y, Yang K, Lang Y. Application and Research Prospect of Functional Polymer Gels in Oil and Gas Drilling and Development Engineering. Gels 2023; 9:gels9050413. [PMID: 37233004 DOI: 10.3390/gels9050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Polymer gel materials are formed by physically crosslinking and chemically crosslinking to form a gel network system with high mechanical properties and reversible performance. Due to their excellent mechanical properties and intelligence, polymer gel materials are widely used in biomedical, tissue engineering, artificial intelligence, firefighting and other fields. Given the current research status of polymer gels at home and abroad and the current application status of oilfield drilling, this paper reviews the mechanism of polymer gels formed by physically crosslinking and chemically crosslinking, summarizes the performance characteristics and the mechanism of action of polymer gels formed by non-covalent bonding, such as hydrophobic bonding, hydrogen bonding, electrostatic and Van der Waals interactions interactions, and covalent bonding such as imine bonding, acylhydrazone bonding and Diels-Alder reaction. The current status and outlook of the application of polymer gels in drilling fluids, fracturing fluids and enhanced oil recovery are also introduced. We expand the application fields of polymer gel materials and promote the development of polymer gel materials in a more intelligent direction.
Collapse
Affiliation(s)
- Yingrui Bai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuan Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Keqing Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Youming Lang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Liu K, Wang R, Rong K, Yin Z, Lu T, Yu Y, Li Y, Yang Z, Yang J, Zhao Z. Synthesis and Plugging Performance of Nano-Micron Polymeric Gel Microsphere Plugging Agents for Oil-Based Drilling Fluids. Gels 2023; 9:gels9040290. [PMID: 37102902 PMCID: PMC10137448 DOI: 10.3390/gels9040290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
As shale gas recovery progresses to deep layers, the wellbore instability during drilling in applications of oil-based drilling fluids (OBFs) becomes increasingly severe. This research developed a plugging agent of nano-micron polymeric microspheres based on inverse emulsion polymerization. Through the single-factor analysis with respect to the permeability plugging apparatus (PPA) fluid loss of drilling fluids, the optimal synthesis conditions of polymeric microspheres (AMN) were determined. Specifically, the optimal synthesis conditions are as follows: the monomer ratio of 2-acrylamido-2-methylpropanesulfonic acid (AMPS): Acrylamide (AM): N-vinylpyrrolidone (NVP) were 2:3:5; the total monomer concentration was 30%; the concentrations and HLB values of emulsifier (Span 80: Tween 60) were 10% and 5.1, respectively; the oil–water ratio of the reaction system was 1:1; the cross-linker concentration was 0.4%. The polymeric microsphere (AMN) produced via the optimal synthesis formula had the corresponding functional groups and good thermal stability. The size distribution of AMN ranged mainly from 0.5 to 10 μm. The introduction of AMND in OBFs can increase the viscosity and yield point of oil-based drilling fluids and slightly decrease the demulsification voltage but significantly reduce high temperature and high pressure (HTHP) fluid loss and permeability plugging apparatus (PPA) fluid loss. The OBFs with 3% polymeric microsphere dispersion (AMND) reduced the HTHP and PPA fluid loss by 42% and 50% at 130 °C, respectively. In addition, The AMND maintained good plugging performance at 180 °C. The AMN particles can block leakoff channels of artificial cores, effectively prevent the invasion of oil-based drilling fluids into formations and suppress pressure transfer. OBFs with 3% AMND enabled the corresponding equilibrium pressure to decrease by 69%, compared with that of the OBFs. The polymeric microspheres had a wide particle size distribution. Thus, they can well match leakage channels at various scales and form plugging layers via compression–deformation and packed accumulation, so as to prevent oil-based drilling fluid from invading formations and improve wellbore stability.
Collapse
Affiliation(s)
- Kecheng Liu
- Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
| | - Ren Wang
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
- National Engineering Research Center for Oil and Gas Drilling and Completion Technology, Beijing 102206, China
| | - Kesheng Rong
- Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
| | - Zebin Yin
- Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
| | - Tiemei Lu
- Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
| | - Yongsheng Yu
- Engineering Technology Research Institute, PetroChina Xinjiang Oilfield Company, Karamay 834000, China
| | - Yingying Li
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
- National Engineering Research Center for Oil and Gas Drilling and Completion Technology, Beijing 102206, China
| | - Zexing Yang
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
- National Engineering Research Center for Oil and Gas Drilling and Completion Technology, Beijing 102206, China
| | - Jie Yang
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
| | - Zhen Zhao
- CNPC Engineering Technology R&D Company Ltd., Beijing 102206, China
| |
Collapse
|
5
|
Liu Z, Wei P, Qi Y, Huang X, Xie Y. High stretchable and self-healing nanocellulose-poly(acrylic acid) composite hydrogels for sustainable CO2 shutoff. Carbohydr Polym 2023; 311:120759. [PMID: 37028878 DOI: 10.1016/j.carbpol.2023.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
The injection of CO2 into oil reservoirs to enhance oil recovery (EOR) has become a widely accepted and effective technical method, which, however, remains subject to the gas channeling caused by the reservoir fractures. Herein, this work developed a novel plugging gel combining excellent mechanical properties, fatigue resistance, elastic and self-healing properties for the CO2 shutoff purpose. This gel consisting of grafted nanocellulose and polymer network was synthesized via a free-radical polymerization, and reinforced by using Fe3+ to cross-link the two networks. The as-prepared PAA-TOCNF-Fe3+ gel has a stress of 1.03 MPa and a high strain of 1491 %, and self-heals to its original 98 % in stress and 96 % in strain after rupture, respectively. The introduce of TOCNF/Fe3+ improves the excellent energy dissipation and self-healing via the synergy effect of dynamical coordination bonds and hydrogen bonds. Further, the PAA-TOCNF-Fe3+ gel is both flexible and high-strength in plugging the multi-round CO2 injection, during which the CO2 breakthrough pressure is above 9.9 MPa/m, the plugging efficiency exceeds 96 %, and the self-healing rate is larger than 90 %. Given that above, this gel shows a great potential to plug the high-pressure CO2 flow, which could offer a new method for CO2-EOR and carbon storage.
Collapse
|
6
|
Tripathy D, Gadtya AS, Moharana S. Supramolecular Gel, Its classification, preparation, properties, and applications: A review. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Debajani Tripathy
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Ankita Subhrasmita Gadtya
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| |
Collapse
|