1
|
Kolesnikov ES, Gushchin IY, Zhilyaev PA, Onufriev AV. Why Na+ has higher propensity than K+ to condense DNA in a crowded environment. J Chem Phys 2023; 159:145103. [PMID: 37815107 DOI: 10.1063/5.0159341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Experimentally, in the presence of the crowding agent polyethylene glycol (PEG), sodium ions compact double-stranded DNA more readily than potassium ions. Here, we have used molecular dynamics simulations and the "ion binding shells model" of DNA condensation to provide an explanation for the observed variations in condensation of short DNA duplexes in solutions containing different monovalent cations and PEG; several predictions are made. According to the model we use, externally bound ions contribute the most to the ion-induced aggregation of DNA duplexes. The simulations reveal that for two adjacent DNA duplexes, the number of externally bound Na+ ions is larger than the number of K+ ions over a wide range of chloride concentrations in the presence of PEG, providing a qualitative explanation for the higher propensity of sodium ions to compact DNA under crowded conditions. The qualitative picture is confirmed by an estimate of the corresponding free energy of DNA aggregation that is at least 0.2kBT per base pair more favorable in solution with NaCl than with KCl at the same ion concentration. The estimated attraction free energy of DNA duplexes in the presence of Na+ depends noticeably on the DNA sequence; we predict that AT-rich DNA duplexes are more readily condensed than GC-rich ones in the presence of Na+. Counter-intuitively, the addition of a small amount of a crowding agent with high affinity for the specific condensing ion may lead to the weakening of the ion-mediated DNA-DNA attraction, shifting the equilibrium away from the DNA condensed phase.
Collapse
Affiliation(s)
- Egor S Kolesnikov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Ivan Yu Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Petr A Zhilyaev
- The Center for Materials Technologies, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russia
| | - Alexey V Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
- Department of Computer Science, Virginia Tech, 2160C Torgersen Hall, Blacksburg, Virginia 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
2
|
Vahid H, Scacchi A, Sammalkorpi M, Ala-Nissila T. Interactions between Rigid Polyelectrolytes Mediated by Ordering and Orientation of Multivalent Nonspherical Ions in Salt Solutions. PHYSICAL REVIEW LETTERS 2023; 130:158202. [PMID: 37115871 DOI: 10.1103/physrevlett.130.158202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/23/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Multivalent ions in solutions with polyelectrolytes (PEs) induce electrostatic correlations that can drastically change ion distributions around the PEs and their mutual interactions. Using coarse-grained molecular dynamics simulations, we show how in addition to valency, ion shape and concentration can be harnessed as tools to control rigid like-charged PE-PE interactions. We demonstrate a correlation between the orientational ordering of aspherical ions and how they mediate the effective PE-PE attraction induced by multivalency. The interaction type, strength, and range can thus be externally controlled in ionic solutions. Our results can be used as generic guidelines to tune the self-assembly of like-charged polyelectrolytes by variation of the characteristics of the ions.
Collapse
Affiliation(s)
- Hossein Vahid
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Academy of Finland Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland
| | - Tapio Ala-Nissila
- Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Quantum Technology Finland Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Finland
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|
3
|
TSUKAHARA S, INOSHITA S, FUJIWARA T. <i>In Situ</i> Fluorescence Microscope Measurements of the Phase Transfer Dynamics of Single DNA Molecular Ions with Dimethyldioctadecylammonium Chloride into Isooctane–1-Octanol Mixture. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2021. [DOI: 10.15261/serdj.28.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Satoshi TSUKAHARA
- Department of Chemistry, Graduate School of Science, Osaka University
| | - Shohei INOSHITA
- Department of Chemistry, Graduate School of Science, Hiroshima University
| | - Terufumi FUJIWARA
- Department of Chemistry, Graduate School of Science, Hiroshima University
| |
Collapse
|
4
|
Onufriev AV, Schiessel H. The nucleosome: from structure to function through physics. Curr Opin Struct Biol 2019; 56:119-130. [DOI: 10.1016/j.sbi.2018.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
|
5
|
Zinchenko A, Berezhnoy NV, Wang S, Rosencrans WM, Korolev N, van der Maarel JR, Nordenskiöld L. Single-molecule compaction of megabase-long chromatin molecules by multivalent cations. Nucleic Acids Res 2018; 46:635-649. [PMID: 29145649 PMCID: PMC5778610 DOI: 10.1093/nar/gkx1135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/21/2022] Open
Abstract
To gain insight into the conformational properties and compaction of megabase-long chromatin molecules, we reconstituted chromatin from T4 phage DNA (165 kb) and recombinant human histone octamers (HO). The unimolecular compaction, induced by divalent Mg2+ or tetravalent spermine4+ cations, studied by single-molecule fluorescence microscopy (FM) and dynamic light scattering (DLS) techniques, resulted in the formation of 250-400 nm chromatin condensates. The compaction on this scale of DNA size is comparable to that of chromatin topologically associated domains (TAD) in vivo. Variation of HO loading revealed a number of unique features related to the efficiency of chromatin compaction by multivalent cations, the mechanism of compaction, and the character of partly compact chromatin structures. The observations may be relevant for how DNA accessibility in chromatin is maintained. Compaction of saturated chromatin, in turn, is accompanied by an intra-chain segregation at the level of single chromatin molecules, suggesting an intriguing scenario of selective activation/deactivation of DNA as a result of chromatin fiber heterogeneity due to the nucleosome positioning. We suggest that this chromatin, reconstituted on megabase-long DNA because of its large size, is a useful model of eukaryotic chromatin.
Collapse
Affiliation(s)
- Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Nikolay V Berezhnoy
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Sai Wang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - William M Rosencrans
- Department of Physics and Astronomy, Colgate University, Hamilton, NY 13346, USA
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
6
|
Wang L, Wang Y, Hao J, Dong S. Magnetic Fullerene-DNA/Hyaluronic Acid Nanovehicles with Magnetism/Reduction Dual-Responsive Triggered Release. Biomacromolecules 2017; 18:1029-1038. [PMID: 28221040 DOI: 10.1021/acs.biomac.6b01939] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We created the dual-responsive nanovehicle that can effectively combine and abundantly utilize magnetic and glutathione (GSH)-reductive triggers to control the drug delivery and achieve more intelligent and powerful targeting. In the nanovehicles, paramagnetic fullerene (C60@CTAF) was prepared via one-step modification of fullerene with magnetic surfactant CTAF by hydrophobic interaction for the first time. The perfect conjugation of C60 and CTAF increased the solubility or dispersity of fullerenes and qualified CTAF with more powerful assembly capability with DNA. DNA molecule in the nanovehicles acted as an electrostatic scaffold to load anticancer drug Dox as well as the important building block for assembly with C60@CTAF into C60@CTAF/DNA. The further combination of deshielding and targeting functions in reduction-responsive disulfide modified HA-SS-COOH coating on C60@CTAF/DNA complexes could reduce the agglomeration and regulate the morphology of C60@CTAF/DNA complexes from irregular microstructures to more uniform ones. More importantly, the introduction of HA-SS-COOH provided a response to a simulating reductive extra-tumoral environment by efficient cleavage of disulfide linkages by GSH and site-specific drug delivery to HepG2 cells. Amazingly, the final nanovehicles presented an increased magnetic susceptibility compared with paramagnetic CTAF, and they "walked" under an applied magnetic field. Because of their facile fabrication, rapid responsiveness to extra tumoral environment, and external automatic controllability by external magnet, the drug delivery nanovehicles constructed by magnetic fullerene-DNA/hyaluronic acid might be of great interest for making new functional nucleic-acid-based drug carriers.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, P. R. China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, P. R. China
| |
Collapse
|
7
|
Tongu C, Kenmotsu T, Yoshikawa Y, Zinchenko A, Chen N, Yoshikawa K. Divalent cation shrinks DNA but inhibits its compaction with trivalent cation. J Chem Phys 2016; 144:205101. [DOI: 10.1063/1.4950749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Chika Tongu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0321, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0321, Japan
| | - Yuko Yoshikawa
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ning Chen
- Graduate School of Environmental Studies, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe 610-0321, Japan
| |
Collapse
|
8
|
Shaytan AK, Armeev GA, Goncearenco A, Zhurkin VB, Landsman D, Panchenko AR. Coupling between Histone Conformations and DNA Geometry in Nucleosomes on a Microsecond Timescale: Atomistic Insights into Nucleosome Functions. J Mol Biol 2015; 428:221-237. [PMID: 26699921 DOI: 10.1016/j.jmb.2015.12.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
An octamer of histone proteins wraps about 200bp of DNA into two superhelical turns to form nucleosomes found in chromatin. Although the static structure of the nucleosomal core particle has been solved, details of the dynamic interactions between histones and DNA remain elusive. We performed extensively long unconstrained, all-atom microsecond molecular dynamics simulations of nucleosomes including linker DNA segments and full-length histones in explicit solvent. For the first time, we were able to identify and characterize the rearrangements in nucleosomes on a microsecond timescale including the coupling between the conformation of the histone tails and the DNA geometry. We found that certain histone tail conformations promoted DNA bulging near its entry/exit sites, resulting in the formation of twist defects within the DNA. This led to a reorganization of histone-DNA interactions, suggestive of the formation of initial nucleosome sliding intermediates. We characterized the dynamics of the histone tails upon their condensation on the core and linker DNA and showed that tails may adopt conformationally constrained positions due to the insertion of "anchoring" lysines and arginines into the DNA minor grooves. Potentially, these phenomena affect the accessibility of post-translationally modified histone residues that serve as important sites for epigenetic marks (e.g., at H3K9, H3K27, H4K16), suggesting that interactions of the histone tails with the core and linker DNA modulate the processes of histone tail modifications and binding of the effector proteins. We discuss the implications of the observed results on the nucleosome function and compare our results to different experimental studies.
Collapse
Affiliation(s)
- Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Grigoriy A Armeev
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Goncearenco
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Victor B Zhurkin
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
9
|
Ashby J, Schachermeyer S, Duan Y, Jimenez LA, Zhong W. Probing and quantifying DNA–protein interactions with asymmetrical flow field-flow fractionation. J Chromatogr A 2014; 1358:217-24. [DOI: 10.1016/j.chroma.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/01/2014] [Indexed: 12/20/2022]
|
10
|
Tolokh IS, Pabit SA, Katz AM, Chen Y, Drozdetski A, Baker N, Pollack L, Onufriev AV. Why double-stranded RNA resists condensation. Nucleic Acids Res 2014; 42:10823-31. [PMID: 25123663 PMCID: PMC4176364 DOI: 10.1093/nar/gku756] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The addition of small amounts of multivalent cations to solutions containing double-stranded DNA leads to inter-DNA attraction and eventual condensation. Surprisingly, the condensation is suppressed in double-stranded RNA, which carries the same negative charge as DNA, but assumes a different double helical form. Here, we combine experiment and atomistic simulations to propose a mechanism that explains the variations in condensation of short (25 base-pairs) nucleic acid (NA) duplexes, from B-like form of homopolymeric DNA, to mixed sequence DNA, to DNA:RNA hybrid, to A-like RNA. Circular dichroism measurements suggest that duplex helical geometry is not the fundamental property that ultimately determines the observed differences in condensation. Instead, these differences are governed by the spatial variation of cobalt hexammine (CoHex) binding to NA. There are two major NA-CoHex binding modes--internal and external--distinguished by the proximity of bound CoHex to the helical axis. We find a significant difference, up to 5-fold, in the fraction of ions bound to the external surfaces of the different NA constructs studied. NA condensation propensity is determined by the fraction of CoHex ions in the external binding mode.
Collapse
Affiliation(s)
- Igor S Tolokh
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-3501, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-3501, USA
| | - Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-3501, USA
| | | | - Nathan Baker
- Applied Statistics and Computational Modeling Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853-3501, USA
| | - Alexey V Onufriev
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
A Coarse-Grained DNA Model Parameterized from Atomistic Simulations by Inverse Monte Carlo. Polymers (Basel) 2014. [DOI: 10.3390/polym6061655] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
12
|
Ten E, Ling C, Wang Y, Srivastava A, Dempere LA, Vermerris W. Lignin nanotubes as vehicles for gene delivery into human cells. Biomacromolecules 2013; 15:327-38. [PMID: 24308459 DOI: 10.1021/bm401555p] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lignin nanotubes (LNTs) synthesized from the aromatic plant cell wall polymer lignin in a sacrificial alumina membrane template have as useful features their flexibility, ease of functionalization due to the availability of many functional groups, label-free detection by autofluorescence, and customizable optical properties. In this report we show that the physicochemical properties of LNTs can be varied over a wide range to match requirements for specific applications by using lignin with different subunit composition, a function of plant species and genotype, and by choosing the lignin isolation method (thioglycolic acid, phosphoric acid, sulfuric acid (Klason), sodium hydroxide lignin), which influences the size and reactivity of the lignin fragments. Cytotoxicity studies with human HeLa cells showed that concentrations of up to 90 mg/mL are tolerated, which is a 10-fold higher concentration than observed for single- or multiwalled carbon nanotubes (CNTs). Confocal microscopy imaging revealed that all LNT formulations enter HeLa cells without auxiliary agents and that LNTs made from NaOH-lignin penetrate the cell nucleus. We further show that DNA can adsorb to LNTs. Consequently, exposure of HeLa cells to LNTs coated with DNA encoding the green fluorescent protein (GFP) leads to transfection and expression of GFP. The highest transfection efficiency was obtained with LNTs made from NaOH-lignin due to a combination of high DNA binding capacity and DNA delivery directly into the nucleus. These combined features of LNTs make LNTs attractive as smart delivery vehicles of DNA without the cytotoxicity associated with CNTs or the immunogenicity of viral vectors.
Collapse
Affiliation(s)
- Elena Ten
- Department of Microbiology and Cell Science, ‡Genetics Institute, §Department of Pediatrics, and #Powell Gene Therapy Center, University of Florida , Gainesville, Florida 32610, United States
| | | | | | | | | | | |
Collapse
|
13
|
Zhou T, Llizo A, Wang C, Xu G, Yang Y. Nanostructure-induced DNA condensation. NANOSCALE 2013; 5:8288-8306. [PMID: 23838744 DOI: 10.1039/c3nr01630g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.
Collapse
Affiliation(s)
- Ting Zhou
- National Center for Nanoscience and Technology (NCNST), Beijing 100190, PR China
| | | | | | | | | |
Collapse
|
14
|
Grueso E, Kuliszewska E, Prado-Gotor R, Perez-Tejeda P, Roldan E. Improving the understanding of DNA–propanediyl-1,3-bis(dodecyldimethylammonium) dibromide interaction using thermodynamic, structural and kinetic approaches. Phys Chem Chem Phys 2013; 15:20064-74. [DOI: 10.1039/c3cp53299b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiöld L. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 2012; 40:2808-21. [PMID: 22563605 PMCID: PMC3729243 DOI: 10.1093/nar/gks214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear ε-oligo(L-lysines), (denoted εKn, n = 3–10, 31; n is the number of lysines with the ligand charge Z = n+1) and branched α-substituted homologues of εK10: εYK10, εLK10 (Z = +11); εRK10, εYRK10 and εLYRK10 (Z = +21). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, CKCl). The dependence of EC50 (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC50 with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC50 dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand–DNA complex is derived. For the ε-oligolysines εK6–εK10, the experimental dependencies of EC50 on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551.
| | | | | | | | | |
Collapse
|
16
|
Korolev N, Zhao Y, Allahverdi A, Eom KD, Tam JP, Nordenskiöld L. The effect of salt on oligocation-induced chromatin condensation. Biochem Biophys Res Commun 2012; 418:205-10. [DOI: 10.1016/j.bbrc.2011.12.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022]
|
17
|
Dias RS, Linse P, Pais AACC. Stepwise disproportionation in polyelectrolyte complexes. J Comput Chem 2011; 32:2697-707. [DOI: 10.1002/jcc.21851] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/11/2011] [Accepted: 05/12/2011] [Indexed: 01/09/2023]
|
18
|
Korolev N, Allahverdi A, Yang Y, Fan Y, Lyubartsev AP, Nordenskiöld L. Electrostatic origin of salt-induced nucleosome array compaction. Biophys J 2011; 99:1896-905. [PMID: 20858435 DOI: 10.1016/j.bpj.2010.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/01/2010] [Accepted: 07/06/2010] [Indexed: 10/19/2022] Open
Abstract
The physical mechanism of the folding and unfolding of chromatin is fundamentally related to transcription but is incompletely characterized and not fully understood. We experimentally and theoretically studied chromatin compaction by investigating the salt-mediated folding of an array made of 12 positioning nucleosomes with 177 bp repeat length. Sedimentation velocity measurements were performed to monitor the folding provoked by addition of cations Na(+), K(+), Mg(2+), Ca(2+), spermidine(3+), Co(NH(3))(6)(3+), and spermine(4+). We found typical polyelectrolyte behavior, with the critical concentration of cation needed to bring about maximal folding covering a range of almost five orders of magnitude (from 2 μM for spermine(4+) to 100 mM for Na(+)). A coarse-grained model of the nucleosome array based on a continuum dielectric description and including the explicit presence of mobile ions and charged flexible histone tails was used in computer simulations to investigate the cation-mediated compaction. The results of the simulations with explicit ions are in general agreement with the experimental data, whereas simple Debye-Hückel models are intrinsically incapable of describing chromatin array folding by multivalent cations. We conclude that the theoretical description of the salt-induced chromatin folding must incorporate explicit mobile ions that include ion correlation and ion competition effects.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | | | | | | | | |
Collapse
|
19
|
Korolev N, Lyubartsev AP, Nordenskiöld L. Cation-induced polyelectrolyte-polyelectrolyte attraction in solutions of DNA and nucleosome core particles. Adv Colloid Interface Sci 2010; 158:32-47. [PMID: 19758583 DOI: 10.1016/j.cis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/05/2009] [Accepted: 08/15/2009] [Indexed: 12/26/2022]
Abstract
The paper reviews our current studies on the experimentally induced cation compaction and aggregation in solutions of DNA and nucleosome core particles and the theoretical modelling of these processes using coarse-grained continuum models with explicit mobile ions and with all-atom molecular dynamics (MD) simulations. Recent experimental results on DNA condensation by cationic oligopeptides and the effects of added salt are presented. The results of MD simulations modelling DNA-DNA attraction due to the presence of multivalent ions including the polyamine spermidine and fragments of histone tails, which exhibit bridging between adjacent DNA molecules, are discussed. Experimental data on NCP aggregation, using recombinantly prepared systems are summarized. Literature data and our results of studying of the NCP solutions are compared with predictions of coarse-grained MD simulations, including the important ion correlation as well as bridging mechanisms. The importance of the results to chromatin folding and aggregation is discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
20
|
Wei YF, Hsiao PY. Effect of chain stiffness on ion distributions around a polyelectrolyte in multivalent salt solutions. J Chem Phys 2010; 132:024905. [DOI: 10.1063/1.3284785] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
21
|
Korolev N, Berezhnoy NV, Eom KD, Tam JP, Nordenskiöld L. A universal description for the experimental behavior of salt-(in)dependent oligocation-induced DNA condensation. Nucleic Acids Res 2009; 37:7137-50. [PMID: 19773427 PMCID: PMC2790876 DOI: 10.1093/nar/gkp683] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 01/19/2023] Open
Abstract
We report a systematic study of the condensation of plasmid DNA by oligocations with variation of the charge, Z, from +3 to +31. The oligocations include a series of synthetic linear epsilon-oligo(l-lysines), (denoted epsilonKn, n = 3-10, 31; n is the number of lysines equal to the ligand charge) and branched alpha-substituted homologues of epsilonK10: epsilonYK10, epsilonLK10 (Z = +10); epsilonRK10, epsilonYRK10 and epsilonLYRK10 (Z = +20). Data were obtained by light scattering, UV absorption monitored precipitation assay and isothermal titration calorimetry in a wide range concentrations of DNA and monovalent salt (KCl, C(KCl)). The dependence of EC(50) (ligand concentration at the midpoint of DNA condensation) on C(KCl) shows the existence of a salt-independent regime at low C(KCl) and a salt-dependent regime with a steep rise of EC(50) with increase of C(KCl). Increase of the ligand charge shifts the transition from the salt-independent to salt-dependent regime to higher C(KCl). A novel and simple relationship describing the EC(50) dependence on DNA concentration, charge of the ligand and the salt-dependent dissociation constant of the ligand-DNA complex is derived. For the epsilon-oligolysines epsilonK3-epsilonK10, the experimental dependencies of EC(50) on C(KCl) and Z are well-described by an equation with a common set of parameters. Implications from our findings for understanding DNA condensation in chromatin are discussed.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
22
|
Pinto MFV, Morán MC, Miguel MG, Lindman B, Jurado AS, Pais AACC. Controlling the Morphology in DNA Condensation and Precipitation. Biomacromolecules 2009; 10:1319-23. [DOI: 10.1021/bm900211j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maria F. V. Pinto
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| | - M. Carmen Morán
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| | - M. Graça Miguel
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| | - Björn Lindman
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| | - Amália S. Jurado
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| | - Alberto A. C. C. Pais
- Chemistry Department, Coimbra University, Rua Larga, 3004-535 Coimbra, Portugal, and Biochemistry Department, Coimbra University, Rua dos Estudos, 3001-401 Coimbra, Portugal
| |
Collapse
|