1
|
Pandey M, Singh AK, Pandey PC. Synthesis and in vitro antibacterial behavior of curcumin-conjugated gold nanoparticles. J Mater Chem B 2023; 11:3014-3026. [PMID: 36938847 DOI: 10.1039/d2tb02256g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Owing to the rise in multidrug-resistant bacterial diseases and the dwindling supply of newer antibiotics, it is crucial to discover newer compounds or modify current compounds for more effective antimicrobial therapies. According to reports, more than 80% of bacterial infections have been linked to bacterial biofilms. In addition to having antimicrobial properties, the hydrophobic polyphenol curcumin (Cur) also inhibits quorum sensing. The application of curcumin was constrained by its weak aqueous solubility and quick degradation. Over the past years, nanotechnology-based biomaterials with multi-functional characteristics have been engineered with high interest. The present study focused on the development of nano-biomaterials with excellent testifiers for bacterial infection in vitro. In this study, water dispersibility and stability of curcumin were improved through conjugation with gold nanoparticles. The successful synthesis of curcumin-conjugated gold nanoparticles (Cur-AuNPs) was confirmed using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and UV-vis absorbance spectroscopy. Transmission electron microscopy (TEM) revealed an average particle size of about 10-13 nm. The antibacterial characteristics in terms of the minimum inhibitory concentration (MIC) of Cur-AuNP treatments were found to be lowest than those with AuNPs and Cur treatments. The quantitative analysis revealed the superior antibacterial characteristics of Cur-AuNP-treated bacterial cells compared to the untreated samples. In addition, curcumin-conjugated AuNPs, produced more reactive oxygen species and increased the membrane permeability. Besides, the biocompatibility of Cur-AuNPs was also assessed quantitatively and qualitatively. Statistical analyses revealed the augmented MG-63 cell proliferation in Cur-AuNPs compared to those with Cur and AuNPs treatments. Overall, Cur-AuNPs exhibited enhanced antibacterial, and antibiofilm characteristics and cytocompatibility.
Collapse
Affiliation(s)
- Maneesha Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| | - Ashish Kumar Singh
- Model Rural Health Research Unit, Datia; Indian Council of Medical Research-National Institute of Research in Tribal Health (ICMR-NIRTH), Jabalpur-482003, India
| | - P C Pandey
- Department of Chemistry, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India.
| |
Collapse
|
2
|
Sharifiaghdam Z, Dalouchi F, Sharifiaghdam M, Shaabani E, Ramezani F, Nikbakht F, Azizi Y. Curcumin-coated gold nanoparticles attenuate doxorubicin-induced cardiotoxicity via regulating apoptosis in a mouse model. Clin Exp Pharmacol Physiol 2021; 49:70-83. [PMID: 34449914 DOI: 10.1111/1440-1681.13579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used chemotherapy agents; however, its nonselective effect causes cardiotoxicity. Curcumin (Cur), a well known dietary polyphenol, could exert a significant cardioprotective effect, but the biological application of this substance is limited by its chemical insolubility. To overcome this limitation, in this study, we synthesised gold nanoparticles based on Cur (Cur-AuNPs). Ultraviolet-visible (UV-Vis) absorbance spectroscopy and transmission electron microscopy (TEM) were performed for the characterisation of synthesised NPs, and Fourier transform infrared (FTIR) spectroscopy were applied to detect Cur on the surface of AuNPs. Its cytotoxicity effect on H9c2 cells was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The biological efficacy of Cur-AuNPs was assessed after acute cardiotoxicity induction in BALB/c mice with DOX injection. The serum biomarkers, myocardial histological changes, and cardiomyocyte apoptosis were then measured. The results revealed that the heart protection by Cur-AuNPs is more effective than Cur alone. Heart protective effect of Cur-AuNPs was evident both in the short-term (24 hours) and long-term (14 days) study. The results of Cur-AuNPs400 after 24 hours of toxicity induction displayed the reduction of the cardiac injury serum biomarkers (LDH, CK-MB, cTnI, ADT, and ALT) and apoptotic proteins (Bax and Caspase-3), as well as increase of Bcl-2 anti-apoptotic proteins without any sign of interfibrillar haemorrhage and intercellular spaces in the heart tissue microscopic images. Our long-term study signifies that Cur-AuNPs400 in DOX-intoxicated mice could successfully inhibit body and heart weight loss in comparison to DOX group.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sharifiaghdam
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Elnaz Shaabani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine (SATiM), Tehran University of Medical Sciences (TUMS, Tehran, Iran.,Laboratory of General Biochemistry & Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Adeluola A, Zulfiker AHM, Brazeau D, Amin ARMR. Perspectives for synthetic curcumins in chemoprevention and treatment of cancer: An update with promising analogues. Eur J Pharmacol 2021; 906:174266. [PMID: 34146588 DOI: 10.1016/j.ejphar.2021.174266] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a pure compound extracted from the flowering plant, turmeric (Curcuma longa. Zingiberaceae), is a common dietary ingredient found in curry powder. It has been studied extensively for its anti-inflammatory, antioxidant, antimicrobial and anti-tumour activities. Evidence is accumulating demonstrating its potential in chemoprevention and as an anti-tumour agent for the treatment of cancer. Despite demonstrated safety and tolerability, the clinical application of curcumin is frustrated by its poor solubility, metabolic instability and low oral bioavailability. Consequently researchers have tried novel techniques of formulation and delivery as well as synthesis of analogues with enhanced properties to overcome these barriers. This review presents the synthetic analogues of curcumin that have proven their anticancer potential from different studies. It also highlights studies that combined these analogues with approved chemotherapies and delivered them via novel techniques. Currently, there are no reports of clinical studies on any of the synthetic congeners of curcumin and this presents an opportunity for future research. This review presents the synthetic analogues of curcumin and makes a compelling argument for their potential application in the management of cancerous disease.
Collapse
Affiliation(s)
- Adeoluwa Adeluola
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| | - Abu Hasanat Md Zulfiker
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - Daniel Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA
| | - A R M Ruhul Amin
- Department of Pharmaceutical Sciences and Research, School of Pharmacy, Marshall University, Huntington, WV, 25701, USA.
| |
Collapse
|
4
|
Zhang M, Cheng J, Luo J, Hu J, Zhang Y, Sun Z, Cao P, Kong H, Qu H, Zhao Y. Development of Ecofriendly Carbon Dots for Improving Solubility and Antinociceptive Activity of Glycyrrhizic Acid. J Biomed Nanotechnol 2021; 17:640-651. [DOI: 10.1166/jbn.2021.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The therapeutic potential of glycyrrhizic acid (GA) with various pharmacological properties is extremely limited owing to its poor water solubility. To solve this problem, nanocarrier-nontoxic Glycyrrhizae Radix et Rhizoma-derived carbon dots (GRR-CDs) with a narrow particle
distribution of (1.90 ±0.44) nm were developed by an ecofriendly, simple and low-cost calcination method using GRR as the sole precursor. Then, the solubility of GA was shown to be prominently improved up to 27 times by GRR-CDs via a convenient and cost-effective ultrasonic dispersion
method without needing to add any organic reagent. Various technologies were further used to demonstrate the interaction between GA and GRR-CDs. In addition, a release study in vitro exhibited a sustained release of GA for 24 h with a higher release ratio of up to 92.87% compared with
that of pure GA. A significantly higher antinociceptive activity of the GRR-CDs-GA complexes compared to unprocessed GRR-CDs and GA was further demonstrated in both hot-plate model and acetic acid-induced writhing model. These results support the promising application of GRR-CDs as a potential
tool for improving the solubility and antinociceptive activity of poorly water-soluble drugs, such as GA.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziwei Sun
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Cao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
5
|
Wang H, Luo J, Zhang Y, He D, Jiang R, Xie X, Yang Q, Li K, Xie J, Zhang J. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. Int J Pharm 2020; 582:119301. [DOI: 10.1016/j.ijpharm.2020.119301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022]
|
6
|
Monroe JD, Hodzic D, Millay MH, Patty BG, Smith ME. Anti-Cancer and Ototoxicity Characteristics of the Curcuminoids, CLEFMA and EF24, in Combination with Cisplatin. Molecules 2019; 24:molecules24213889. [PMID: 31671767 PMCID: PMC6864451 DOI: 10.3390/molecules24213889] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
In this study, we investigated whether the curcuminoids, CLEFMA and EF24, improved cisplatin efficacy and reduced cisplatin ototoxicity. We used the lung cancer cell line, A549, to determine the effects of the curcuminoids and cisplatin on cell viability and several apoptotic signaling mechanisms. Cellular viability was measured using the MTT assay. A scratch assay was used to measure cell migration and fluorescent spectrophotometry to measure reactive oxygen species (ROS) production. Western blots and luminescence assays were used to measure the expression and activity of apoptosis-inducing factor (AIF), caspases-3/7, -8, -9, and -12, c-Jun N-terminal kinases (JNK), mitogen-activated protein kinase (MAPK), and proto-oncogene tyrosine-protein kinase (Src). A zebrafish model was used to evaluate auditory effects. Cisplatin, the curcuminoids, and their combinations had similar effects on cell viability (IC50 values: 2-16 μM) and AIF, caspase-12, JNK, MAPK, and Src expression, while caspase-3/7, -8, and -9 activity was unchanged or decreased. Cisplatin increased ROS yield (1.2-fold), and curcuminoid and combination treatments reduced ROS (0.75-0.85-fold). Combination treatments reduced A549 migration (0.51-0.53-fold). Both curcuminoids reduced auditory threshold shifts induced by cisplatin. In summary, cisplatin and the curcuminoids might cause cell death through AIF and caspase-12. The curcuminoids may potentiate cisplatin's effect against A549 migration, but may counteract cisplatin's effect to increase ROS production. The curcuminoids might also prevent cisplatin ototoxicity.
Collapse
Affiliation(s)
- Jerry D Monroe
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Denis Hodzic
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Matthew H Millay
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Blaine G Patty
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| | - Michael E Smith
- Department of Biology, Western Kentucky University, 1906 College Heights Boulevard, #11080, Bowling Green, KY 42101-1080, USA.
| |
Collapse
|
7
|
Gharib R, Fourmentin S, Charcosset C, Greige-Gerges H. Effect of hydroxypropyl-β–cyclodextrin on lipid membrane fluidity, stability and freeze-drying of liposomes. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Madni A, Batool A, Noreen S, Maqbool I, Rehman F, Kashif PM, Tahir N, Raza A. Novel nanoparticulate systems for lung cancer therapy: an updated review. J Drug Target 2017; 25:499-512. [PMID: 28151021 DOI: 10.1080/1061186x.2017.1289540] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Conventional therapy for lung cancer is associated with lack of specificity and access to the normal cells resulting in cytotoxicity, reduced cellular uptake, drug resistance and rapid drug clearance from the body. The emergence of nanotechnology has revolutionized the treatment of lung cancer. The focus of nanotechnology is to target tumor cells with improved bioavailability and reduced toxicity. In the recent years, nanoparticulate systems have extensively been exploited in order to overcome the obstacles in treatment of lung cancer. Nanoparticulate systems have shown much potential for lung cancer therapy by gaining selective access to the tumor cells due to surface modifiability and smaller size. In this review, various novel nanoparticles (NPs) based formulations have been discussed in the treatment of lung cancer. Nanotechnology is expected to grow fast in future, and it will provide new avenues for the improved treatment of lung cancer. This review article also highlights the characteristics, recent advances in the designing of NPs and therapeutic outcomes.
Collapse
Affiliation(s)
- Asadullah Madni
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amna Batool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Sobia Noreen
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Irsah Maqbool
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Faizza Rehman
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Prince Muhammad Kashif
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Nayab Tahir
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Ahmad Raza
- a Department of Pharmacy, Faculty of Pharmacy & Alternative Medicine , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| |
Collapse
|
9
|
Raghuvanshi D, Nkepang G, Hussain A, Yari H, Awasthi V. Stability study on an anti-cancer drug 4-(3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid (CLEFMA) using a stability-indicating HPLC method. J Pharm Anal 2017; 7:1-9. [PMID: 29404012 PMCID: PMC5686864 DOI: 10.1016/j.jpha.2016.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/21/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023] Open
Abstract
CLEFMA, 4-(3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl)-4-oxo-2-butenoic acid, is a new chemical entity with anti-cancer and anti-inflammatory activities. Here, we report its stability in solution against stress conditions of exposure to acid/base, light, oxidant, high temperature, and plasma. The identity of the degradation products was ascertained by mass and proton nuclear magnetic resonance spectroscopy. To facilitate this study, we developed and validated a reverse phase high performance liquid chromatography method for detection of CLEFMA and its degradation. The method was linear over a range of 1-100 µg/mL; the accuracy and precision were within acceptable limits; it was stability-indicating as it successfully separated cis-/trans-isomers of CLEFMA as well as its degradation product. The major degradation product was produced from amide hydrolysis at maleic acid functionality caused by an acidic buffer, oxidant (3% hydrogen peroxide), or temperature stress (40-60 °C). The log k-pH profile showed that CLEFMA was most stable at neutral pH. In accelerated stability study we found that the shelf-life (T90% ) of CLEFMA at 25 °C and 4 °C was 45 days and 220 days, respectively. Upon exposure to UV-light (365 nm), the normally prevalent trans-CLEFMA attained cis-configuration. This isomerization also involved the maleic acid moiety. CLEFMA was stable in plasma from which it could be efficiently extracted by an acetonitrile precipitation method. These results indicate that CLEFMA is sensitive to hydrolytic cleavage at its maleic acid moiety, and it is recommended that its samples should be stored under refrigerated and light-free conditions, and under inert environment.
Collapse
Affiliation(s)
| | | | | | | | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, 1110 N. Stonewall Avenue, Oklahoma City, OK 73117, USA
| |
Collapse
|
10
|
Zainuddin N, Ahmad I, Kargarzadeh H, Ramli S. Hydrophobic kenaf nanocrystalline cellulose for the binding of curcumin. Carbohydr Polym 2017; 163:261-269. [PMID: 28267505 DOI: 10.1016/j.carbpol.2017.01.036] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/07/2016] [Accepted: 01/07/2017] [Indexed: 11/16/2022]
Abstract
Nanocrystalline cellulose (NCC) extracted from lignocellulosic materials has been actively investigated as a drug delivery excipients due to its large surface area, high aspect ratio, and biodegradability. In this study, the hydrophobically modified NCC was used as a drug delivery excipient of hydrophobic drug curcumin. The modification of NCC with a cationic surfactant, cetyl trimethylammonium bromide (CTAB) was used to modulate the loading of hydrophobic drugs that would not normally bind to NCC. The FTIR, Elemental analysis, XRD, TGA, and TEM were used to confirm the modification of NCC with CTAB. The effect of concentration of CTAB on the binding efficiency of hydrophobic drug curcumin was investigated. The amounts of curcumin bound onto the CTAB-NCC nanoparticles were analyzed by UV-vis Spectrophotometric. The result showed that the modified CTAB-NCC bound a significant amount of curcumin, in a range from 80% to 96% curcumin added. Nevertheless, at higher concentration of CTAB resulted in lower binding efficiency.
Collapse
Affiliation(s)
- Norhidayu Zainuddin
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia
| | - Ishak Ahmad
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia
| | - Hanieh Kargarzadeh
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia
| | - Suria Ramli
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia; Polymer Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia UKM, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
11
|
Gharib R, Auezova L, Charcosset C, Greige-Gerges H. Drug-in-cyclodextrin-in-liposomes as a carrier system for volatile essential oil components: Application to anethole. Food Chem 2016; 218:365-371. [PMID: 27719922 DOI: 10.1016/j.foodchem.2016.09.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 10/21/2022]
Abstract
A combined approach based on cyclodextrin/drug inclusion complex formation and loading into liposomes was applied to improve the effectiveness of liposome loading with essential oils. Hydroxypropyl-β-cyclodextrin/ANE (HP-β-CD/ANE) inclusion complexes were prepared and encapsulated into liposomes (ACL). ANE-double-loaded liposomes (ACL2) were obtained with the HP-β-CD/ANE complex in the aqueous phase and ANE in the organic phase. Liposomes were prepared from saturated (Phospholipon 90H) or unsaturated (Lipoid S100) phospholipids and characterized for size, polydispersity index, zeta potential, morphology, loading rate (LR) and photo- and storage stabilities. All liposome batches were nanometric oligolamellar-type vesicles. Compared to ANE-loaded liposomes, ACL-90H, ACL2-90H and ACL2-S100 displayed significantly increased ANE LR, with ACL2-S100 exhibiting the highest LR. All formulations provided ANE photoprotection, were physically stable after 15months of storage at 4°C (with the exception of ACL2-S100), and retained more than 25% of the ANE initially present in the liposome suspensions.
Collapse
Affiliation(s)
- Riham Gharib
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon I, France
| | - Lizette Auezova
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon I, France
| | - Hélène Greige-Gerges
- Faculty of Sciences, Bioactive Molecules Research Group, Doctoral School of Sciences and Technologies, Jdaidet El-Matn, Lebanese University, Lebanon.
| |
Collapse
|
12
|
Hofferberth SC, Grinstaff MW, Colson YL. Nanotechnology applications in thoracic surgery. Eur J Cardiothorac Surg 2016; 50:6-16. [PMID: 26843431 DOI: 10.1093/ejcts/ezw002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 01/16/2023] Open
Abstract
Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future.
Collapse
Affiliation(s)
- Sophie C Hofferberth
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark W Grinstaff
- Departments of Biomedical Engineering, Chemistry, and Medicine, Boston University, Boston, MA, USA
| | - Yolonda L Colson
- Division of Thoracic Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Exploring the use of nanocarrier systems to deliver the magical molecule; Curcumin and its derivatives. J Control Release 2016; 225:1-30. [PMID: 26778694 DOI: 10.1016/j.jconrel.2016.01.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/09/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022]
Abstract
Curcumin and its derivatives; curcuminoids have been proven as potential remedies in different diseases. However, their delivery carries several challenges owing to their poor aqueous solubility, photodegradation, chemical instability, poor bioavailability and rapid metabolism. This review explores and criticizes the numerous attempts that were adopted through the years to entrap/encapsulate this valuable drug in nanocarriers aiming to reach its most appropriate and successful delivery system.
Collapse
Affiliation(s)
- Mina Mehanny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar Mansour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt; Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
14
|
Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C, Auezova L. Liposomes incorporating cyclodextrin–drug inclusion complexes: Current state of knowledge. Carbohydr Polym 2015; 129:175-86. [DOI: 10.1016/j.carbpol.2015.04.048] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 10/23/2022]
|
15
|
Ahmad MZ, Alkahtani SA, Akhter S, Ahmad FJ, Ahmad J, Akhtar MS, Mohsin N, Abdel-Wahab BA. Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target 2015; 24:273-93. [DOI: 10.3109/1061186x.2015.1055570] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Saad Ahmed Alkahtani
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Sohail Akhter
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Farhan Jalees Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Javed Ahmad
- Nanomedicine Research Lab, Faculty of Pharmacy, Jamia Hamdrad, New Delhi, India, and
| | - Mohammad Shabib Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Nehal Mohsin
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia,
| | - Basel A. Abdel-Wahab
- Deparment of Pharmacology, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Chen J, Lu S, Gu W, Peng P, Dong J, Xu F, Yang X, Xiong Z, Yang X. Characterization of 9-nitrocamptothecin-in-cyclodextrin-in-liposomes modified with transferrin for the treating of tumor. Int J Pharm 2015; 490:219-28. [PMID: 26004006 DOI: 10.1016/j.ijpharm.2015.05.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/03/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
Abstract
Encapsulation of hydrophobic drugs in the form of drug-cyclodextrin (CD) complex in liposomes has been applied as a novel strategy to combine the relative advantages of CDs and liposomes into one system, naming drug-in-CD-in-liposome (DCL). In the present study, soluble 9-NC/hydroxypropyl-β-cyclodextrin (HP-β-CD) inclusion complexes were prepared using the freeze-drying technique. Then 9-NC inclusion complexes were further encapsulated into liposomes by ethanol injection method and transferrin (Tf) was conjugated to the surface of 9-NC DCL to obtain Tf modified 9-NC DCL (Tf-9-NC-CL). Compared to PEGylated 9-NC DCL (P-9-NC-CL), the lactone stability and vesicle stability of Tf-9-NC-CL were significantly increased. Both 9-NC and HP-β-CD were found to release from the DCL and Tf modification resulted in reduced release of them. The enhanced targeting efficiency of the Tf-modified liposomes was demonstrated by flow cytometry and confocal microscopy. In vivo pharmacokinetics in rats showed improved lactone stability of 9-NC following intravenous injection of Tf-9-NC-CL. The cytotoxicity of Tf-9-NC-CL against tumor cells and normal cells was investigated in vitro and the antitumor efficacy was evaluated in S180 tumor-bearing mice in vivo. Compared with free 9-NC, 9-NC inclusion complexes and P-9-NC-CL, Tf-9-NC-CL demonstrated the strongest cytotoxicity to tumor cells. And the inhibitory rate of tumor (IRT) values were determined to be 43.08%, 56.92%, 67.69% and 80.00% for 9-NC solution, inclusion complexes, P-9-NC-CL and Tf-9-NC-CL, respectively. In conclusion, Tf modification can be useful in increasing vesicle stability, targeting drug delivery efficiency and antitumor efficacy of DCL containing hydrophobic antitumor drugs, such as 9-NC.
Collapse
Affiliation(s)
- Jun Chen
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shanshan Lu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Gu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Pei Peng
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen 448000, China
| | - Jie Dong
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Xu
- Pharmaceutical Research Laboratory, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xueqin Yang
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen 448000, China
| | - Zheyun Xiong
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen 448000, China
| | - Xixiong Yang
- Hubei Collaborative Innovation Center of Targeted Antitumor Drug, Jingchu University of Technology, Jingmen 448000, China.
| |
Collapse
|
17
|
Matloob AH, Mourtas S, Klepetsanis P, Antimisiaris SG. Increasing the stability of curcumin in serum with liposomes or hybrid drug-in-cyclodextrin-in-liposome systems: A comparative study. Int J Pharm 2014; 476:108-15. [DOI: 10.1016/j.ijpharm.2014.09.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023]
|
18
|
Yadav VR, Sahoo K, Awasthi V. Preclinical evaluation of 4-[3,5-bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid, in a mouse model of lung cancer xenograft. Br J Pharmacol 2014; 170:1436-48. [PMID: 24102070 DOI: 10.1111/bph.12406] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE 4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid CLEFMA is a new anti-cancer molecule. Here, we investigated changes in apoptosis and inflammatory markers during CLEFMA-induced tumour suppression. EXPERIMENTAL APPROACH Lung adenocarcinoma H441 and A549, and normal lung fibroblast CCL151 cell lines were used, along with a xenograft model of H441 cells implanted in mice. Tumour tissues were analysed by immunoblotting, immunohistochemistry and/or biochemical assays. The ex vivo results were confirmed by performing selected assays in cultured cells. KEY RESULTS CLEFMA-induced cell death was associated with cleavage of caspases 3/9 and PARP. In vivo, CLEFMA treatment resulted in a dose-dependent suppression of tumour growth and (18) F-fluorodeoxyglucose uptake in tumours, along with a reduction in the expression of the proliferation marker Ki-67. In tumour tissue homogenates, the anti-apoptotic markers (cellular inhibitor of apoptosis protein-1(cIAP1), Bcl-xL, Bcl-2, and survivin) were inhibited and the pro-apoptotic Bax and BID were up-regulated. Further, CLEFMA decreased translocation of phospho-p65-NF-κB into the nucleus. In vitro, it inhibited the DNA-binding and transcriptional activity of NF-κB. It also reduced the expression of COX-2 in tumours and significantly depressed serum TNF-α and IL-6 levels. These effects of CLEFMA were accompanied by a reduced transcription and/or translation of the invasion markers VEGF, MMP9, MMP10, Cyclin D1 and ICAM-1. CONCLUSIONS AND IMPLICATIONS Overall, CLEFMA inhibited growth of lung cancer xenografts and this tumour suppression was associated with NF-κB-regulated anti-inflammatory and anti-metastatic effects.
Collapse
Affiliation(s)
- Vivek R Yadav
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | | |
Collapse
|
19
|
Nanotechnology-applied curcumin for different diseases therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:394264. [PMID: 24995293 PMCID: PMC4066676 DOI: 10.1155/2014/394264] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/25/2014] [Indexed: 02/08/2023]
Abstract
Curcumin is a lipophilic molecule with an active ingredient in the herbal remedy and dietary spice turmeric. It is used by different folks for treatment of many diseases. Recent studies have discussed poor bioavailability of curcumin because of poor absorption, rapid metabolism, and rapid systemic elimination. Nanotechnology is an emerging field that is potentially changing the way we can treat diseases through drug delivery with curcumin. The recent investigations established several approaches to improve the bioavailability, to increase the plasma concentration, and to enhance the cellular permeability processes of curcumin. Several types of nanoparticles have been found to be suitable for the encapsulation or loading of curcumin to improve its therapeutic effects in different diseases. Nanoparticles such as liposomes, polymeric nanoparticles, micelles, nanogels, niosomes, cyclodextrins, dendrimers, silvers, and solid lipids are emerging as one of the useful alternatives that have been shown to deliver therapeutic concentrations of curcumin. This review shows that curcumin's therapeutic effects may increase to some extent in the presence of nanotechnology. The presented board of evidence focuses on the valuable special effects of curcumin on different diseases and candidates it for future clinical studies in the realm of these diseases.
Collapse
|
20
|
Chen J, Lu WL, Gu W, Lu SS, Chen ZP, Cai BC, Yang XX. Drug-in-cyclodextrin-in-liposomes: a promising delivery system for hydrophobic drugs. Expert Opin Drug Deliv 2014; 11:565-77. [PMID: 24490763 DOI: 10.1517/17425247.2014.884557] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Recently, the entrapment of hydrophobic drugs in the form of water-soluble drug-cyclodextrin (CD) complex in liposomes has been investigated as a new strategy to combine the relative advantages of CDs and liposomes into one system, namely drug-in-CD-in-liposome (DCL) systems. AREAS COVERED For DCLs preparation, an overall understanding of the interaction between CDs and lipid components of liposomes is necessary and valuable. The present article reviews the preparation, characterization and application of DCLs, especially as antitumor or transdermal carriers. Double-loading technique, an interesting strategy to control release and increase drug-loading capacity, is also discussed. EXPERT OPINION DCL approach can be useful in increasing drug solubility and vesicles stability, in controlling the in vivo fate of hydrophobic drugs and in avoiding burst release of drug from the vesicles. To obtain stable DCL, the CDs should have a higher affinity to drug molecules compared with liposomal membrane lipids. DCLs prepared by double-loading technique seem to be a suitable targeted drug delivery system because they have a fast onset action with prolonged drug release process and the significantly enhanced drug-loading capacity. In particular, DCLs are suitable for the delivery of hydrophobic drugs which also possess volatility.
Collapse
Affiliation(s)
- Jun Chen
- Nanjing University of Chinese Medicine, School of Pharmacy , Nanjing , PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 2014; 46:2-18. [PMID: 24520218 PMCID: PMC3918523 DOI: 10.4143/crt.2014.46.1.2] [Citation(s) in RCA: 625] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 12/31/2013] [Indexed: 12/12/2022] Open
Abstract
Curcumin (diferuloylmethane) is a yellow pigment present in the spice turmeric (Curcuma longa) that has been associated with antioxidant, anti-inflammatory, anticancer, antiviral, and antibacterial activities as indicated by over 6,000 citations. In addition, over one hundred clinical studies have been carried out with curcumin. One of the major problems with curcumin is perceived to be the bioavailability. How curcumin should be delivered in vivo, how bioavailable is it, how well curcumin is absorbed and how it is metabolized, is the focus of this review. Various formulations of curcumin that are currently available are also discussed.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
2-[3,5-Bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide and Its Evaluation as an Anticancer Agent. J CHEM-NY 2013. [DOI: 10.1155/2013/935646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Synthesis of 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide, a derivative of 3,5-bis-(2-fluorobenzylidene)-4-piperidone (EF24), as an antiproliferative and imageable compound is described. The radioactive derivative was synthesized in 40–45% radiochemical yield using N-[4-fluoro(18F)benzyl]-2-bromoacetamide (NFLOBA) as a radiolabeled synthon for coupling with EF24. Cell proliferation assays showed that 2-[3,5-bis-(2-fluorobenzylidene)-4-piperidon-1-yl]-N-(4-fluorobenzyl)-acetamide (NFLOBA-EF24) had antiproliferative efficacy similar to that of EF24 in lung adenocarcinoma H441 cells.18F-NFLOBA-EF24 was investigated in normal rats for whole-body PET imaging and biodistribution. At necropsy after 1 h of injection, about 12% of injected compound was still circulating in blood; liver, kidney, and muscle were other tissues with moderate amounts of accumulation. In order to assess the tumor-suppressive activity, nonradioactive NFLOBA-EF24 was administered in nude rats carrying xenograft H441 tumor. After 15 days of treatment, the tumor size decreased by approximately 83% compared to the tumors in control rats. The tumor regression was also confirmed by molecular imaging of glucose metabolism with18F- fluorodeoxyglucose. The results suggest that EF24 could be efficiently modified with18F-labeled synthon NFLOBA for convenient PET imaging without altering the antitumor efficacy of the original compound. This study provides visual kinetics of synthetic curcuminoid EF24 by positron emission tomography for the first time.
Collapse
|
23
|
Rahman S, Cao S, Steadman KJ, Wei M, Parekh HS. Native and β-cyclodextrin-enclosed curcumin: entrapment within liposomes and theirin vitrocytotoxicity in lung and colon cancer. Drug Deliv 2012; 19:346-53. [DOI: 10.3109/10717544.2012.721143] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv 2012; 9:1347-64. [PMID: 22971222 DOI: 10.1517/17425247.2012.724676] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Curcumin is a safe, affordable and natural bioactive molecule of turmeric (Curcuma longa). It has gained considerable attention in recent years for its multiple pharmacological activities. However, its optimum pharmaceutical potential has been limited by its lack of aqueous solubility and poor bioavailability. To mitigate the above limitations, recently various nanostructured water-soluble delivery systems were developed to increase the solubility and bioavailability of curcumin. AREAS COVERED Major reasons contributing to the low bioavailability of curcumin appear to be owing to its poor solubility, low absorption, rapid metabolism and rapid systemic elimination. The present review summarizes the strategies using curcumin in various nanocarrier delivery systems to overcome poor solubility and inconsistent bioavailability of curcumin and describes the current status and challenges for the future. EXPERT OPINION The development of various drug delivery systems to deliver curcumin will certainly provide a step up towards augmenting the therapeutic activity of curcumin thereby increasing the solubility and bioavailability of curcumin. However, the future of such delivery technology will be highly dependent on the development of safe, non-toxic and non-immunogenic nanocarriers.
Collapse
Affiliation(s)
- Chandana Mohanty
- Institute of Life Sciences, Laboratory for Nanomedicine, Nalco Square, Bhubaneswar, Orissa, 751023, India
| | | | | |
Collapse
|
25
|
Lagisetty P, Subramaniam D, Sahoo K, Anant S, Awasthi V. Anticancer activity of an imageable curcuminoid 1-[2-aminoethyl-(6-hydrazinopyridine-3-carbamidyl)-3,5-bis-(2-fluorobenzylidene)-4-piperidone (EFAH). Chem Biol Drug Des 2011; 79:194-201. [PMID: 22107757 DOI: 10.1111/j.1747-0285.2011.01271.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,5-Bis(2-fluorobenzylidine)-4-piperidone or EF24 is a potent anticancer derivative of curcumin. Using an amine derivative of EF24, we synthesized a hydrazinonicotinic acid conjugate, EFAH, for Tc-99m radiolabelling and single photon emission tomography imaging. The aqueous solubility of EFAH (3.5 mg/mL) was significantly more than that of EF24 (1.2 mg/mL); the octanol/water partition coefficient of EFAH was estimated at log P = 0.33. As an antiproliferative agent, EFAH was as effective as EF24 in suppressing the proliferation of H441, MiaPaCa-2 and Panc-1 cells. Daily intraperitoneal injection of EFAH (5 μg) for 3 weeks in mice carrying xenografts of Panc-1 pancreatic cancer showed a mean tumour volume reduction of 79%; the tumour weight decreased by 82% in the treated group. For imaging and biodistribution, EFAH was labelled with Tc-99m (98% RCY) and intravenously administered in rats. Approximately 23.7% and 14.3% of injected dose accumulated in liver and intestine, respectively, suggesting that EFAH is mostly eliminated by hepatobiliary route. The results indicate that HYNIC modification of EF24 for Tc-99m radiolabelling does not affect its antiproliferative efficacy. For the first time, a visual biodisposition of EF24 in a live animal model has been demonstrated. Such knowledge could be of benefit in developing therapeutic curcuminoids, such as EF24.
Collapse
Affiliation(s)
- Pallavi Lagisetty
- Department of Pharmaceutical Sciences and Small Animal Imaging Facility, University of Oklahoma Health Science Center, 1110 N, Stonewall Avenue, Oklahoma City, OK 73117, USA
| | | | | | | | | |
Collapse
|
26
|
Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today 2011; 17:71-80. [PMID: 21959306 DOI: 10.1016/j.drudis.2011.09.009] [Citation(s) in RCA: 458] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/02/2011] [Accepted: 09/13/2011] [Indexed: 12/31/2022]
Abstract
Curcumin, a natural diphenolic compound derived from turmeric Curcuma longa, has proven to be a modulator of intracellular signaling pathways that control cancer cell growth, inflammation, invasion and apoptosis, revealing its anticancer potential. In this review, we focus on the design and development of nanoparticles, self-assemblies, nanogels, liposomes and complex fabrication for sustained and efficient curcumin delivery. We also discuss the anticancer applications and clinical benefits of nanocurcumin formulations. Only a few novel multifunctional and composite nanosystem strategies offer simultaneous therapy as well as imaging characteristics. We also summarize the challenges to developing curcumin delivery platforms and up-to-date solutions for improving curcumin bioavailability and anticancer potential for therapy.
Collapse
|