1
|
Wang Y, Wang Z, Lu W, Hu Y. Review on chitosan-based antibacterial hydrogels: Preparation, mechanisms, and applications. Int J Biol Macromol 2024; 255:128080. [PMID: 37977472 DOI: 10.1016/j.ijbiomac.2023.128080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 11/12/2023] [Indexed: 11/19/2023]
Abstract
Chitosan (CS) is known for its remarkable properties, such as good biocompatibility, biodegradability, and renewability, in addition to its antibacterial and biological activities. However, as CS is insoluble in water, it displays limited antibacterial performance under neutral and physiological conditions. A viable solution to this problem is grafting chemically modified groups onto the CS framework, thereby increasing its solubility and enhancing its antibacterial effect. Herein, the antibacterial action mechanism of CS and its derivatives is reviewed, confirming the prevalent use of composite materials comprising CS and its derivatives as an antibacterial agent. Generally, the antimicrobial ability of CS-based biomaterials can be enhanced by incorporating supplementary polymers and antimicrobial agents. Research on CS-based composite biomaterials is ongoing and numerous types of biomaterials have been reported, including inorganic nanoparticles, antibacterial agents, and CS derivatives. The development of these composite materials has considerably expanded the application of CS-based antibacterial materials. This study reviews the latest progress in research regarding CS-based composite hydrogels for wound repair, tissue engineering, drug release, water purification, and three-dimensional printing applications. Finally, the summary and future outlook of CS-based antibacterial hydrogels are presented in anticipation of a broader range of applications of CS-based antibacterial hydrogels.
Collapse
Affiliation(s)
- Yixi Wang
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| | - Zhicun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenya Lu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China
| | - Yu Hu
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan 614000, China.
| |
Collapse
|
2
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Li B, Chang G, Dang Q, Liu C, Song H, Chen A, Yang M, Shi L, Zhang B, Cha D. Preparation and characterization of antibacterial, antioxidant, and biocompatible p-coumaric acid modified quaternized chitosan nanoparticles. Int J Biol Macromol 2023:125087. [PMID: 37247710 DOI: 10.1016/j.ijbiomac.2023.125087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
To fabricate multifunctional nanoparticles (NPs) based on chitosan (CS) derivative, we first prepared quaternized CS (2-hydroxypropyltrimethyl ammonium chloride CS, HTCC) via a one-step approach, then synthesized p-coumaric acid (p-CA) modified HTCC (HTCC-CA) for the first time through amide reaction, and finally fabricated a series of NPs (HTCC-CA NPs) using HTCC-CAs with different substitution degrees and sodium tripolyphosphate (TPP) by ionic gelation. Newly-prepared HTCC and HTCC-CAs were characterized by FT-IR, 1H NMR, elemental analysis (EA), full-wavelength UV scanning, silver nitrate titration, and Folin-Ciocalteu methods. DLS and TEM results demonstrated that three selected HTCC-CA NPs had moderate size (< 350 nm), good dispersion (PDI < 0.4), and positive zeta potential (11-20 mV). The HTCC-CA NPs had high antibacterial activity against six bacterial strains, and the minimum inhibitory concentration (MIC) values were almost the same as the minimum bactericidal concentration (MBC) values (250-1000 μg/mL). Also, the HTCC-CA NPs had good antioxidation (radical scavenging ratio > 65 %) and low cytotoxicity (relative cell viability >80 %) to the tested cells. Totally, HTCC-CA NPs with high antibacterial activity, great antioxidation, and low cytotoxicity might serve as new biomedical materials for promoting skin wound healing.
Collapse
Affiliation(s)
- Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Hao Song
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Aoqing Chen
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Meng Yang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Lufei Shi
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
4
|
Mohammed AE, Abdalhalim LR, Atalla KM, Mohdaly AAA, Ramadan MF, Abdelaliem YF. Chitosan and sodium alginate nanoparticles synthesis and its application in food preservation. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-023-01154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Lopes DP, Freitas SRM, Tanaka CB, Delechiave G, Kikuchi LNT, Braga RR, Kruzic JJ, Moreira MS, Boaro LCC, Catalani LH, Gonçalves F. Synthesis of Submicrometric Chitosan Particles Loaded with Calcium Phosphate for Biomedical Applications. AAPS PharmSciTech 2023; 24:56. [PMID: 36759364 DOI: 10.1208/s12249-023-02517-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Chitosan particles loaded with dibasic calcium phosphate anhydrous (DCPA) is a promising strategy for combining antimicrobial and osteoconduction properties in regenerative medicine. However, mostly micrometer-sized particles have been reported in the literature, limiting their use and reducing their effect in the biomedical field. We have recently overcome this limitation by developing submicrometer-sized particles with electrospray technique. The objective of this study was to understand how the process parameters control the size and properties of submicrometer chitosan particles loaded with DCPA. Solutions of 10 mg/mL chitosan and 2.5 mg/mL DCPA in a 90% acetic acid were electrosprayed under three distinct flow rate conditions: 0.2, 0.5, and 1.0 mL/h. The particles were crosslinked in a glutaraldehyde atmosphere and characterized in terms of their morphology, inorganic content, zeta potential, and minimum inhibitory concentration (MIC) against S. mutans. All conditions showed particles with two similar morphologies: one small-sized with a spherical shape and another larger-sized with a bi-concave shape. All generated a broad particle size distribution, with a similar mean size of ~ 235 nm. The addition of DCPA decreased the zeta potential for all the samples, but it was above 30 mV, indicating a low aggregation potential. The lower flow rate showed the worst efficacy for DCPA incorporation. Antimicrobial activity was greater in chitosan/DCPA particles with flow rate of 0.5 mL/h. It can be concluded that the flow rate of 0.5 mL/h presents the best compromise solution in terms of morphology, zeta potential, MIC, and inorganic content.
Collapse
Affiliation(s)
- Diana Pereira Lopes
- Departamento de Odontologia, Universidade Ibirapuera, Av. Interlagos 1329 - 4° andar, São Paulo, SP, 04661-100, Brazil
| | - Selma Regina Muniz Freitas
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil
| | - Carina Baptiston Tanaka
- Centre for Rural Dentistry & Oral Health, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Giovanne Delechiave
- Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Lucia Nobuco Takamori Kikuchi
- Departamento de Odontologia, Universidade Ibirapuera, Av. Interlagos 1329 - 4° andar, São Paulo, SP, 04661-100, Brazil
| | - Roberto R Braga
- Faculdade de Odontologia da Universidade de São Paulo, Departamento de Biomateriais e Biologia Oral, Av. Prof. Lineu Prestes, 2222, São Paulo, SP, 05508-000, Brazil
| | - Jamie J Kruzic
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Maria Stella Moreira
- Departamento de Odontologia, Universidade Ibirapuera, Av. Interlagos 1329 - 4° andar, São Paulo, SP, 04661-100, Brazil
| | - Leticia Cristina Cidreira Boaro
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil.
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química da Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP, 05508-000, Brazil
| | - Flávia Gonçalves
- Faculdade de Odontologia, Universidade Santo Amaro, Av. Prof. Eneas de Siqueira Neto, 340, São Paulo, SP, 04829-900, Brazil
| |
Collapse
|
6
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Corrigendum: Applications of chitosan and its derivatives in skin and soft tissue diseases. Front Bioeng Biotechnol 2022; 10:1082945. [PMID: 36507275 PMCID: PMC9732665 DOI: 10.3389/fbioe.2022.1082945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/27/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fbioe.2022.894667.].
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
7
|
Wu T, Yang Y, Su H, Gu Y, Ma Q, Zhang Y. Recent developments in antibacterial or antibiofilm compound coating for biliary stents. Colloids Surf B Biointerfaces 2022; 219:112837. [PMID: 36137334 DOI: 10.1016/j.colsurfb.2022.112837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
Cholestasis of the indwelling biliary stents usually leads to stone recurrence after endoscopic retrograde cholangio pancreatoraphy (ERCP). Biliary stents, including metallic and none-degradable plastic stents are widely used in clinical settings due to their many excellent properties. However, conventional biliary stents still suffer from poor antibacterial activity and anti-bile-adhesion, which lead to injured, local fibroblasts proliferating. Currently, various coatings for biliary stents have been prepared to meet the clinical demands. In this review, we start by summarizing and discussing classifications of biliary stents and antibacterial/antibiofilm mechanism. Then, the latest advances about developing antibacterial and antibiofilm coatings for improving the properties of biliary stents are reviewed and discussed in detail. Lastly, we list several possible directions for future development of biliary stents coatings and biliary stent, such as anti-bile-adhesion coating, multifunctional coating, drug-eluting biodegradable biliary stents and 3D printed biliary stents.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Yang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - He Su
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yuanhui Gu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Quanming Ma
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China
| | - Yan Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu province, Gansu Provincial Hospital, 730000 Lanzhou, PR China; The First School of Clinical Medicine, Lanzhou University, 730000 Lanzhou, PR China.
| |
Collapse
|
8
|
Li Y, Wu J, Oku H, Ma G. Polymer‐Modified Micromotors with Biomedical Applications: Promotion of Functionalization. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yanan Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Hiroyuki Oku
- Division of Molecular Science Graduate School of Science and Engineering Gunma University Gunma 376-8515 Japan
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
9
|
Kikuchi LNT, Freitas SRM, Amorim AF, Delechiave G, Catalani LH, Braga RR, Moreira MS, Boaro LCC, Gonçalves F. Effects of the crosslinking of chitosan/DCPA particles in the antimicrobial and mechanical properties of dental restorative composites. Dent Mater 2022; 38:1482-1491. [PMID: 35835609 DOI: 10.1016/j.dental.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/09/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The development of restorative materials containing antibacterial agents is an alternative to reduce the progression of caries lesions. OBJECTIVE to compare the influence of the degree of crosslinking of chitosan particles loaded with dibasic calcium phosphate (DCPA) on the mechanical properties, degree of conversion (DC), and antimicrobial properties of experimental composites. METHODS Chitosan/DCPA particles were synthesized by the electrospraying, crosslinked by 0, 8, or 16 h in glutaraldehyde, and characterized by zeta potential and minimum inhibitory concentration (MIC) against S. mutans. Experimental resin composites of Bis-GMA and TEGDMA and 59.5% of barium glass were synthesized, chitosan/DCPA particles were added at 0 or 0.5 wt% with the different crosslinking time. The materials were subject to DC analysis, three-point bending test at 24 h and 7 days, and antimicrobial assays. Data were submitted to one-way ANOVA and Tukey test (α = 0.05). RESULTS The particles with longer crosslinking time presented higher zeta potential and MIC, and the composite containing these particles showed significantly higher biofilm inhibition than the control group. The other two groups were similar to each other and the control. The composite containing particles with 88 h crosslinking time showed the lowest flexural strength at 7 days in water, and materials with non-crosslinked particles and longer crosslinking time presented flexural strength similar to control. The flexural modulus and DC showed no statistical difference among groups. SIGNIFICANCE composite resin containing 0.5% chitosan/DCPA particles crosslinked by 16 h showed a reduction of biofilm formation without affecting the mechanical properties in relation to the control.
Collapse
Affiliation(s)
- Lucia Nobuco Takamori Kikuchi
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | - Selma Regina Muniz Freitas
- Universidade Santo Amaro, Faculdade de Odontologia, Rua Prof. Eneas de Siqueira Neto, 340, 04829-300 São Paulo, SP, Brazil.
| | - Aldo Ferreira Amorim
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | - Giovanne Delechiave
- Instituto de Química da Universidade de São Paulo, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Luiz Henrique Catalani
- Instituto de Química da Universidade de São Paulo, Departamento de Química Fundamental, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil.
| | - Roberto Ruggiero Braga
- Faculdade de Odontologia da Universidade de São Paulo, Departamento de Biomateriais e Biologia Oral, Av. Prof. Lineu Prestes, 2222, 05508-000 São Paulo, SP, Brazil.
| | - Maria Stella Moreira
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil.
| | | | - Flávia Gonçalves
- Universidade Ibirapuera, Departamento de Odontologia, Av. Interlagos 1329 - 4º andar, 04661-100 São Paulo, SP, Brazil; Universidade Santo Amaro, Faculdade de Odontologia, Rua Prof. Eneas de Siqueira Neto, 340, 04829-300 São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Xia Y, Wang D, Liu D, Su J, Jin Y, Wang D, Han B, Jiang Z, Liu B. Applications of Chitosan and its Derivatives in Skin and Soft Tissue Diseases. Front Bioeng Biotechnol 2022; 10:894667. [PMID: 35586556 PMCID: PMC9108203 DOI: 10.3389/fbioe.2022.894667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
Chitosan and its derivatives are bioactive molecules that have recently been used in various fields, especially in the medical field. The antibacterial, antitumor, and immunomodulatory properties of chitosan have been extensively studied. Chitosan can be used as a drug-delivery carrier in the form of hydrogels, sponges, microspheres, nanoparticles, and thin films to treat diseases, especially those of the skin and soft tissue such as injuries and lesions of the skin, muscles, blood vessels, and nerves. Chitosan can prevent and also treat soft tissue diseases by exerting diverse biological effects such as antibacterial, antitumor, antioxidant, and tissue regeneration effects. Owing to its antitumor properties, chitosan can be used as a targeted therapy to treat soft tissue tumors. Moreover, owing to its antibacterial and antioxidant properties, chitosan can be used in the prevention and treatment of soft tissue infections. Chitosan can stop the bleeding of open wounds by promoting platelet agglutination. It can also promote the regeneration of soft tissues such as the skin, muscles, and nerves. Drug-delivery carriers containing chitosan can be used as wound dressings to promote wound healing. This review summarizes the structure and biological characteristics of chitosan and its derivatives. The recent breakthroughs and future trends of chitosan and its derivatives in therapeutic effects and drug delivery functions including anti-infection, promotion of wound healing, tissue regeneration and anticancer on soft tissue diseases are elaborated.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Da Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ye Jin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Beibei Han
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
11
|
Current trends in chitosan based nanopharmaceuticals for topical vaginal therapies. Int J Biol Macromol 2021; 193:2140-2152. [PMID: 34780894 DOI: 10.1016/j.ijbiomac.2021.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/03/2021] [Accepted: 11/06/2021] [Indexed: 01/21/2023]
Abstract
Large surface area, rich vascularisation, well defined mucous membrane, balanced pH and relatively low enzymatic activity makes vagina a suitable site for drugs associated with women's health issues like Urinary tract infection (UTI) and vaginal infections. Therapeutic performance of intravaginal dosage forms largely depends on the properties of polymers and drugs. Chitosan (CS) because of its unique physical, chemical, pharmaceutical and biopharmaceutical properties have received a great deal of attention as an essential component in vaginal drug delivery systems. Further the presence of free amino and hydroxyl groups on the chitosan skeleton allows easy derivatization under mild conditions to meet specific application requirements. Moreover, CS-based nanopharmaceuticals like nanoparticles, nanofiber, nanogel, nanofilm, liposomes and micelles are widely studied to improve therapeutic performance of vaginal formulations. However, susceptibility of CS to the acidic pH of vagina, poor loading of hydrophobic drugs, rapid mucosal turn over are the key issues need to be addressed for successful outcomes. In this review, we have discussed the application of CS and CS derivatives in vaginal drug delivery and also highlight the recent progress in chitosan based nanocarrier platforms in terms of their limitations and potentials.
Collapse
|
12
|
Guzel Kaya G, Aznar E, Deveci H, Martínez-Máñez R. Aerogels as promising materials for antibacterial applications: a mini-review. Biomater Sci 2021; 9:7034-7048. [PMID: 34636816 DOI: 10.1039/d1bm01147b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The increasing cases of bacterial infections originating from resistant bacteria are a serious problem globally and many approaches have been developed for different purposes to treat bacterial infections. Aerogels are a novel class of smart porous materials composed of three-dimensional networks. Recently, aerogels with the advantages of ultra-low density, high porosity, tunable particle and pore sizes, and biocompatibility have been regarded as promising carriers for the design of delivery systems. Recently, aerogels have also been provided with antibacterial activity through loading of antibacterial agents, incorporation of metal/metal oxides and via surface functionalization and coating with various functional groups. In this mini-review, the synthesis of aerogels from both conventional and low-cost precursors is reported and examples of aerogels displaying antibacterial properties are summarized. As a result, it is clear that the encouraging antibacterial performance of aerogels promotes their use in many antibacterial applications, especially in the food industry, pharmaceutics and medicine.
Collapse
Affiliation(s)
- Gulcihan Guzel Kaya
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey.,Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Huseyin Deveci
- Department of Chemical Engineering, Konya Technical University, Konya, Turkey
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain. .,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain.,Unidad Mixta de Investigación en Nanomedicina y Sensores. Universitat Politècnica de València, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Unidad Mixta UPC-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina. Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
13
|
Liang Y, Li M, Huang Y, Guo B. An Integrated Strategy for Rapid Hemostasis during Tumor Resection and Prevention of Postoperative Tumor Recurrence of Hepatocellular Carcinoma by Antibacterial Shape Memory Cryogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101356. [PMID: 34382336 DOI: 10.1002/smll.202101356] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/25/2021] [Indexed: 06/13/2023]
Abstract
The inevitable bleeding during tumor resection greatly increases the risk of tumor recurrence caused by metastasis of cancer cells with blood, and hemostasis and prevention of post-operation tumor recurrence is still a challenge. However, a biomaterials approach for rapid hemostasis during tumor resection and simultaneous prevention of tumor recurrence is rarely reported. Here, zeolitic imidazolate framework (ZIF-8) nanoparticle-enhanced multinetwork cryogels are proposed which provide an integrated treatment regimen for rapid hemostasis through intraoperative blood trigger shape recovery and enhanced coagulation, and prevention of postoperative cancer recurrence via sonodynamic anticancer in a hepatocellular carcinoma model. A series of antibacterial shape memory multifunctional cryogels are synthesized based on glycidyl methacrylate-functionalized quaternized chitosan (QCSG), dopamine-modified hyaluronic acid (HA-DA), and hematoporphyrin monomethyl ether (HMME)-loaded dopamine-modified ZIF-8 (ZDH). Blood loss in different bleeding models confirms good hemostasis of ZIF-8 loading cryogels. Besides, in vitro tests confirm that QCSG/HA-DA/ZDH (QH/ZDH) cryogels significantly killed cancer cells by generating reactive oxygen species under ultrasound. Finally, significantly reduced tumor recurrence after the resection of ectopic hepatocellular carcinoma further confirms the good effect of QH/ZDH cryogels in preventing recurrence by a coordinated strategy of intraoperative hemostasis and postoperative sonodynamic therapy by pH-responsive HMME release, showing great potential in clinical application.
Collapse
Affiliation(s)
- Yongping Liang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ying Huang
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
14
|
Mahjoub MA, Ebrahimnejad P, Shahlaee F, Ebrahimi P, Sadeghi-Ghadi Z. Preparation and optimization of controlled release nanoparticles containing cefixime using Central Composite design: An attempt to enrich its antimicrobial activity. Curr Drug Deliv 2021; 19:369-378. [PMID: 34315365 DOI: 10.2174/1567201818666210726160956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Due to the increased resistance against existing antibiotics, research is essential to discover new and alternative ways to control infections induced by resistant pathogens. OBJECTIVE The goal of the current scrutinization was to enrich the dissolution rate and antibacterial property of cefixime (CEF) orally. METHODS To achieve the desired results, chitosan nanoparticles (NPs) containing CEF were fabricated using the ionic gelation method. Central Composite design has been applied to get the optimal formulation for the delivery of CEF. The effect of three variables such as the concentration of chitosan, tripolyphosphate, and tween 80 on the characteristics of NPs was evaluated. RESULTS The optimized NPs were a relatively monodispersed size distribution with an average diameter of 193 nm and a zeta potential of about 11 mV. The scanning tunneling microscope confirmed the size of NPs. The surface morphology of NPs was observed by scanning electron microscopy. The calorimetric analysis indicated the amorphous state of cefixime in the formulation. The dissolution rate of NPs in aqueous media was acceptable and the model of release kinetic for CEF from NPs followed the Peppas model. The potency of CEF in NPs against various types of bacteria was hopefully efficient. The ex- vivo release study demonstrated higher penetration of NPs from the rat intestine compared to free drug. The cell culture study showed the safety of the optimized formulation. CONCLUSION It was concluded that CLN could be considered as a prospering system for the controlled delivery of CEF with advantaging its antibacterial effectiveness.
Collapse
Affiliation(s)
- Mohammad Ali Mahjoub
- Department of Pharmaceutics, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pedram Ebrahimnejad
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Shahlaee
- Islamic Azad University Tehran North Branch, Department of Chemistry, Tehran, Iran
| | - Pouneh Ebrahimi
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Zaynab Sadeghi-Ghadi
- Department of Pharmaceutics, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
15
|
Structure and antimicrobial comparison between N-(benzyl) chitosan derivatives and N-(benzyl) chitosan tripolyphosphate nanoparticles against bacteria, fungi, and yeast. Int J Biol Macromol 2021; 186:724-734. [PMID: 34273342 DOI: 10.1016/j.ijbiomac.2021.07.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
Abstract
Chitosan (Ch) was reacted with seven benzaldehyde analogs separately through reductive amination in which the corresponding imines were formed and followed by reduction to produce N-(benzyl) chitosan (NBCh) derivatives. 1H NMR spectroscopy was used to characterize the products. The nanoparticles (NPs) of Ch and NBCh derivatives were prepared according to the ionotropic gelation mechanism between Ch products and sodium tripolyphosphate, followed by high-energy ultrasonication. Scanning electron microscopy, particle size, polydispersity index, and zeta potential were applied for the NPs examination. The particle size was ranged from 235.17 to 686.90 nm and narrow size distribution (PDI <1). The zeta potential of NPs was varied between -1.26 and -27.50 mV. The antimicrobial activity was evaluated against bacteria (Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. carotovora, and Ralstonia solanacearum), fungi (Aspergillus flavus and Aspergillus niger), and yeast (Candida albicans). The action of NBCh derivatives was significantly higher than Ch. The NPs had considerably higher than the Ch and NBCh derivatives. The activity was directly proportional to the chemical derivatization of Ch and the zeta potential of the NPs. The antimicrobial efficacy of these derivatives formulated in a greener approach could become an alternative to using traditional antimicrobial applications in an environmentally friendly manner.
Collapse
|
16
|
Mathew GM, Ulaeto SB, Reshmy R, Sukumaran RK, Binod P, Pandey A, Sindhu R. Chitosan Derivatives: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Preparation, characterization and antibacterial activity of a novel soluble polymer derived from xanthone and O-carboxymethyl-N, N, N-trimethyl chitosan. Int J Biol Macromol 2020; 164:836-844. [DOI: 10.1016/j.ijbiomac.2020.07.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022]
|
18
|
Synthesis of Dimethyl Octyl Aminoethyl Ammonium Bromide and Preparation of Antibacterial ABS Composites for Fused Deposition Modeling. Polymers (Basel) 2020; 12:polym12102229. [PMID: 32998332 PMCID: PMC7600671 DOI: 10.3390/polym12102229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing (AM) demonstrates benefits in the high-precision production of devices with complicated structures, and the modification of materials for AM is an urgent need. To solve the bacterial infection of medical devices in their daily application, dimethyl octyl aminoethyl ammonium bromide (octyl-QDED), an organic antibacterial agent, was synthesized via the quaternary ammonium reaction. Then, the synthesized octyl-QDED was blended with acrylonitrile butadiene styrene (ABS) through the melt extrusion process to prepare antibacterial composite filaments for fused deposition modeling (FDM). The entire preparation processes were convenient and controllable. Characterizations of the structure and thermal stability of octyl-QDED confirmed its successful synthesis and application in the subsequent processes. The introduced maleic acid in the blending process acted as a compatibilizer, which improved the compatibility between the two phases. Characterizations of the rheological and mechanical properties proved that the addition of octyl-QDED made a slight difference to the comprehensive performance of the ABS matrix. When the content of octyl-QDED reached 3 phr, the composites showed excellent antibacterial properties. The prepared antibacterial composite filaments for FDM demonstrated great potential in medical and surgical areas.
Collapse
|
19
|
Salama A, Hasanin M, Hesemann P. Synthesis and antimicrobial properties of new chitosan derivatives containing guanidinium groups. Carbohydr Polym 2020; 241:116363. [PMID: 32507164 DOI: 10.1016/j.carbpol.2020.116363] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
New chitosan derivatives bearing guanidinium functions were synthesized following different synthesis strategies. N-guanidinium chitosan acetate and N-guanidinium chitosan chloride were synthesized by direct reaction between chitosan and cyanamide in the presence of scandium(III) triflate. The synthesis of N-guanidinium chitosan (N,N'-dicyclohexyl) chloride and N-guanidinium chitosan (N-(3-dimethylaminopropyl)-N'-ethyl hydrochloride) chloride involved the reaction of chitosan with carbodiimides in ionic liquid. The chitosan derivatives were characterized by analytical techniques including 13C solid state NMR, FT-IR spectroscopies, thermogravimetry and elemental analysis. The antimicrobial properties of chitosan and the new derivatives were investigated using the minimal inhibitory concentration (MIC) technique. All new guanylated chitosan derivatives displayed high antimicrobial activity in comparison with neat chitosan. The N-guanidinium chitosan acetate reduced the time required for killing to half in comparison with chitosan and recorded MIC values less than 3.125 mg/mL against all assayed microorganisms. This work opens new perspectives for using chitosan derivatives as antimicrobial surfaces.
Collapse
Affiliation(s)
- Ahmed Salama
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France; Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Mohamed Hasanin
- Cellulose and Paper Department, National Research Center, 33 El-Behouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Peter Hesemann
- Institut Charles Gerhardt de Montpellier, UMR CNRS 5253 Université de Montpellier-CNRS-ENSCM, Place Eugène Bataillon, 34095, Montpellier Cedex 05, France
| |
Collapse
|
20
|
Duan Y, Li K, Wang H, Wu T, Zhao Y, Li H, Tang H, Yang W. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydr Polym 2020; 238:116195. [PMID: 32299553 DOI: 10.1016/j.carbpol.2020.116195] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Curcumin grafted hyaluronic acid modified pullulan polymers (Cur-HA-SPu) by chemical conjugation was designed and prepared, and its film may be used to accelerate wound healing and help to fight infection. The synthesis of Cur-HA-SPu polymer was characterized by FT-IR, 1H NMR and DSC. Cur-HA-SPu film has a higher swelling ratio than that of HA-SPu film. Moreover, the good biocompatibility of Cur-HA-SPu polymer was confirmed by skin irritation, cytotoxicity and hemolysis tests. Compared to Cur, the MTT and proliferation test carried out in L929 cells revealed that Cur-HA-SPu polymer showed no cytotoxicity and enhanced cell proliferation. Cur-HA-SPu polymer exhibited a certain bactericidal activity against E. coli and S. aureus. Furthermore, the materials showed antioxidant activity when DPPH method determined. Wound healing study using wistar rat model demonstrated that Cur-HA-SPu film obtained better wound healing result than that of HA-SPu film or natural healing. The above results suggest that Cur-HA-SPu film is a promising and safety formulation for accelerating skin wound healing.
Collapse
Affiliation(s)
- Yumeng Duan
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Kaiyue Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Huangwei Wang
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Tong Wu
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Yafei Zhao
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China
| | - Haiying Li
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China.
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, PR China.
| | - Wenzhi Yang
- College of Pharmacy & Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
21
|
He W, Zhang Z, Zheng Y, Qiao S, Xie Y, Sun Y, Qiao K, Feng Z, Wang X, Wang J. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J Biomed Mater Res A 2020; 108:1086-1098. [PMID: 31943702 DOI: 10.1002/jbm.a.36884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC) membranes display special properties and structures, thus attracting much attention in application in the biomedical areas, for example, as implants for bone or cartilage tissue engineering, as substitutes for skin repairing, and as supports for controlled drug delivery. However, native BC lacks the activity to inhibit bacteria growth on its surface, which limits its applications in biomedical fields. There have been reports on chemical modification of BC membranes to endow them with antimicrobial properties needed for some special biomedical applications. In the present study, aminoalkyl-grafted BC membranes were prepared by alkoxysilane polycondensation using 3-aminopropyltriethoxysilane (APTES). The characterization for morphology and chemical composition showed that BC membranes were successfully grafted with aminoalkylsilane groups through covalent bonding. The surface morphology and roughness of the membranes changed after chemical grafting. Furthermore, after grafting with APTES, the membranes got less hydrophilic than native BC. The aminoalkyl-grafted BC membranes showed strong antibacterial properties against Staphylococcus aureus and Escherichia coli and moreover, they were nontoxic to normal human dermal fibroblasts. These results indicate that aminoalkyl-grafted BC membranes are potential to be used for biomedical applications.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhaoyu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shen Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jialong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
22
|
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020; 21:E487. [PMID: 31940963 PMCID: PMC7014278 DOI: 10.3390/ijms21020487] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qiuyu Meng
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qi Li
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Jinbao Liu
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
23
|
Avelelas F, Horta A, Pinto LFV, Cotrim Marques S, Marques Nunes P, Pedrosa R, Leandro SM. Antifungal and Antioxidant Properties of Chitosan Polymers Obtained from Nontraditional Polybius henslowii Sources. Mar Drugs 2019; 17:md17040239. [PMID: 31013628 PMCID: PMC6520793 DOI: 10.3390/md17040239] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 11/16/2022] Open
Abstract
Chitin was extracted from Polybius henslowii, a swimming crab, captured in large quantities throughout the Portuguese coast by purse seine vessels as bycatch. After standard chitin extraction procedures, water-soluble chitosan products were obtained via two different methods: (1) N-acetylation with the addition of acetic anhydride and (2) a reaction with hydrogen peroxide. The chemical structure and molecular weight of chitosan derivatives, water-soluble chitosan (WSC) and chitooligosaccharides (COS), were confirmed by Fourier Transform Infrared Spectroscopy (FT-IR) and gel permeation chromatography (GPC). Antioxidant and metal chelation activities were evaluated, and the growth inhibition capacity was tested on four phytopatogens. The chitooligosaccharides from pereopods (pCOS) and shell body parts (sCOS) inhibited all fungal species tested, particularly Cryphonectria parasitica with 84.7% and 85.5%, respectively. Both radical scavenging and antifungal activities proved to be dose-dependent. Chitooligosaccharides with a low molecular weight (2.7, 7.4, and 10.4 Kg·mol−1) showed the highest activity among all properties tested. These results suggested that chitosan derivatives from P. henslowii raw material could potentially be used against phytopathogens or as ingredient in cosmetics and other products related to oxidative stress.
Collapse
Affiliation(s)
- Francisco Avelelas
- MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - André Horta
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Luís F V Pinto
- BioCeramed, S.A., Rua José Gomes Ferreira nº 1 - Armazém D 2660-360 São Julião do Tojal, Portugal.
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia FCT, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Sónia Cotrim Marques
- MARE-Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
- Instituto Português do Mar e da Atmosfera (IPMA) Rua Alfredo Magalhães Ramalho, 6, 1449-006 Lisboa, Portugal.
| | - Paulo Marques Nunes
- MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| | - Sérgio Miguel Leandro
- MARE-Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
24
|
Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr Polym 2019; 208:477-485. [DOI: 10.1016/j.carbpol.2018.12.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
|
25
|
Insights on the ultra high antibacterial activity of positionally substituted 2′-O-hydroxypropyl trimethyl ammonium chloride chitosan: A joint interaction of -NH2 and -N+(CH3)3 with bacterial cell wall. Colloids Surf B Biointerfaces 2019; 173:429-436. [DOI: 10.1016/j.colsurfb.2018.09.077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 11/22/2022]
|
26
|
Hu F, Zhou Z, Xu Q, Fan C, Wang L, Ren H, Xu S, Ji Q, Chen X. A novel pH-responsive quaternary ammonium chitosan-liposome nanoparticles for periodontal treatment. Int J Biol Macromol 2018; 129:1113-1119. [PMID: 30218737 DOI: 10.1016/j.ijbiomac.2018.09.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 09/05/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
The aim of this study was to evaluate the antibacterial activity and cytocompatibility of novel pH-activated nanoparticles (NPs) in vitro and in vivo. The NPs were synthesized from a quaternary ammonium chitosan, i.e., N,N,N-trimethyl chitosan, a liposome, and doxycycline (TMC-Lip-DOX NPs). The cytocompatibility of the NPs was evaluated. The TMC-Lip-DOX NPs achieved superb inhibition of free mixed bacteria and biofilm formation. They also showed excellent biocompatibility with human periodontal ligament fibroblasts. Animal experiments showed that the NPs strongly inhibited biofilm formation and prevented alveolar bone absorption in vivo. All the results indicate that the TMC-Lip-DOX NPs have good potential for use in the treatment of periodontal and other inflammatory diseases.
Collapse
Affiliation(s)
- Fang Hu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Zhongzheng Zhou
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China
| | - Quanchen Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Hao Ren
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Shuo Xu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China; Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
27
|
Elena P, Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf B Biointerfaces 2018; 169:195-205. [DOI: 10.1016/j.colsurfb.2018.04.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
28
|
Fan Z, Qin Y, Liu S, Xing R, Yu H, Chen X, Li K, Li P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym 2018; 190:1-11. [PMID: 29628225 DOI: 10.1016/j.carbpol.2018.02.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 10/18/2022]
Abstract
Botrytis cinerea, Phytophthora capsici Leonian, and Fusarium solani are important plant pathogenic fungi which can cause great crop losses worldwide, but their control methods are limited. It is necessary to develop efficient and green fungicides from abundant marine resources. Chitosan is a non-toxic, biodegradable, biocompatible marine polysaccharide which has prospective applications in agriculture. In this paper, to increase the antifungal activity of chitosan for application, novel water-soluble functional chitosan derivatives were synthesized by grafting polyaminoethyl and diethoxyphosphoryl groups in accordance with a strategy of improving protonation potential. The derivatives were characterized by FTIR, NMR, XRD, SEM, Gaussian 09 and elemental analysis. The antifungal activities against the three fungi and the cytotoxicity were estimated in vitro. The results showed that the derivatives had better antifungal activities and water solubility than chitosan, and had good biocompatibility. They confirmed that these chitosan derivatives can be developed as antifungal agents for plant protection purposes.
Collapse
Affiliation(s)
- Zhaoqian Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Xiaolin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
29
|
Zhou Z, Hu F, Hu S, Kong M, Feng C, Liu Y, Cheng X, Ji Q, Chen X. pH-Activated nanoparticles with targeting for the treatment of oral plaque biofilm. J Mater Chem B 2018; 6:586-592. [PMID: 32254487 DOI: 10.1039/c7tb02682j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral plaque biofilms are highly resilient microbial assemblies that are challenging to eradicate. We described the pH-positive, doxycycline (DOX)-loaded nanocarriers to combat multidrug-resistant pathogenic biofilms.
Collapse
Affiliation(s)
- Zhongzheng Zhou
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Fang Hu
- Department of Periodontology
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Shihao Hu
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Ming Kong
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Chao Feng
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Ya Liu
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Xiaojie Cheng
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
| | - Qiuxia Ji
- Department of Periodontology
- The Affiliated Hospital of Qingdao University
- Qingdao
- China
| | - Xiguang Chen
- College of Marine Life Science
- Ocean University of China
- 266003 Qingdao
- China
- Qingdao National Laboratory for Marine Science and Technology
| |
Collapse
|
30
|
Zhao H, Sun D, Tang Y, Yao J, Yuan X, Zhang M. Thermo/pH dual-responsive core–shell particles for apatinib/doxorubicin controlled release: preparation, characterization and biodistribution. J Mater Chem B 2018; 6:7621-7633. [PMID: 32254884 DOI: 10.1039/c8tb02334d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of the structure and functioning mechanism of DD particles.
Collapse
Affiliation(s)
- He Zhao
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dahui Sun
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Yajun Tang
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Jihang Yao
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Xiaowei Yuan
- Norman Bethune First Hospital
- Jilin University
- Changchun 130021
- China
| | - Mei Zhang
- Alan G. MacDiarmid Laboratory
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
31
|
Yan D, Hu S, Zhou Z, Zeenat S, Cheng F, Li Y, Feng C, Cheng X, Chen X. Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. Int J Biol Macromol 2017; 107:463-469. [PMID: 28887187 DOI: 10.1016/j.ijbiomac.2017.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/06/2017] [Accepted: 09/05/2017] [Indexed: 02/09/2023]
Abstract
The hemostatic properties of surface modified chitosan nonwoven had been investigated. The succinyl groups, carboxymethyl groups and quaternary ammonium groups were introduced into the surface of chitosan nonwoven (obtained NSCS, CMCS and TMCS nonwoven, respectively). For blood clotting, absorbance value (0.105±0.03) of NSCS1 nonwoven was the smallest (CS 0.307±0.002, NSCS2 0.148±0.002, CMCS1 0.195±0.02, CMCS2 0.233±0.001, TMCS1 0.191±0.002, TMCS2 0.345±0.002), which indicated the stronger hemostatic potential. For platelet aggregation, adenosine diphosphate agonist was added to induce the nonwoven to adhered platelets. The aggregation of platelet with TMCS2 nonwoven was highest (10.97±0.16%). Further research of blood coagulation mechanism was discussed, which indicated NSCS and CMCS nonwoven could activate the intrinsic pathway of coagulation to accelerate blood coagulation. NSCS1 nonwoven showed the shortest hemostatic time (147±3.7s) and the lowest blood loss (0.23±0.05g) in a rabbit ear artery injury model. These results demonstrated that these surface modified chitosan nonwoven dressings could use as a promising hemostatic intervention, especially NSCS nonwoven dressing.
Collapse
Affiliation(s)
- Dong Yan
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Shihao Hu
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Zhongzheng Zhou
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Shah Zeenat
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Feng Cheng
- Center Blood Station of Qingdao, 9# Longde Road, 266071 Qingdao, PR China.
| | - Yang Li
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China
| | - Xiaojie Cheng
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5 Yushan Road, 266003 Qingdao, PR China.
| |
Collapse
|
32
|
Lee YE, Kim H, Seo C, Park T, Lee KB, Yoo SY, Hong SC, Kim JT, Lee J. Marine polysaccharides: therapeutic efficacy and biomedical applications. Arch Pharm Res 2017; 40:1006-1020. [PMID: 28918561 PMCID: PMC7090684 DOI: 10.1007/s12272-017-0958-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/10/2017] [Indexed: 12/22/2022]
Abstract
The ocean contains numerous marine organisms, including algae, animals, and plants, from which diverse marine polysaccharides with useful physicochemical and biological properties can be extracted. In particular, fucoidan, carrageenan, alginate, and chitosan have been extensively investigated in pharmaceutical and biomedical fields owing to their desirable characteristics, such as biocompatibility, biodegradability, and bioactivity. Various therapeutic efficacies of marine polysaccharides have been elucidated, including the inhibition of cancer, inflammation, and viral infection. The therapeutic activities of these polysaccharides have been demonstrated in various settings, from in vitro laboratory-scale experiments to clinical trials. In addition, marine polysaccharides have been exploited for tissue engineering, the immobilization of biomolecules, and stent coating. Their ability to detect and respond to external stimuli, such as pH, temperature, and electric fields, has enabled their use in the design of novel drug delivery systems. Thus, along with the promising characteristics of marine polysaccharides, this review will comprehensively detail their various therapeutic, biomedical, and miscellaneous applications.
Collapse
Affiliation(s)
- Young-Eun Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Changwon Seo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Taejun Park
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Kyung Bin Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Seung-Yup Yoo
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Seong-Chul Hong
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Jeong Tae Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, South Korea.
| |
Collapse
|
33
|
Sobhani Z, Mohammadi Samani S, Montaseri H, Khezri E. Nanoparticles of Chitosan Loaded Ciprofloxacin: Fabrication and Antimicrobial Activity. Adv Pharm Bull 2017; 7:427-432. [PMID: 29071225 PMCID: PMC5651064 DOI: 10.15171/apb.2017.051] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 08/06/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022] Open
Abstract
Purpose: Chitosan is a natural mucoadhesive polymer with antibacterial activity. In the present study, chitosan (CS) nanoparticles were investigated as a vehicle for delivery of antibiotic, ciprofloxacin hydrochloride. Methods: Ionotropic gelation method was used for preparation chitosan nanoparticles. The effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), and homogenization rate on the size of nanoparticles were studied. The effects of various mass ratios of CS to ciprofloxacin hydrochloride on the encapsulation efficiency of nanoparticles were assessed. Results: The particles prepared under optimal condition of 0.45% CS concentration, 0.45% TPP concentration and homogenizer rate at 6000 rpm, had 72 nm diameter. In these particles with 1:0.5 mass ratio of CS to ciprofloxacin hydrochloride, the encapsulation efficiency was 23%. The antibacterial activity of chitosan nanoparticles and ciprofloxacin-loaded nanoparticles against E.coli and S.aureus was evaluated by calculation of minimum inhibitory concentration (MIC). Results showed that MIC of ciprofloxacin loaded chitosan nanoparticles was 50% lower than that of ciprofloxacin hydrochloride alone in both of microorganism species. Nanoparticles without drug exhibited antibacterial activity at higher concentrations and MIC of them against E.coli and S.aureus was 177 and 277 µg/ml, respectively. Conclusion: Therefore chitosan nanoparticles could be applied as carrier for decreasing the dose of antibacterial agents in the infections.
Collapse
Affiliation(s)
- Zahra Sobhani
- Department of quality control, Faculty of pharmacy, Shiraz University of Medical Science, Shiraz, Iran
- Center for nanotechnology in drug delivery, Faculty of pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Soliman Mohammadi Samani
- Department of pharmaceutics, Faculty of pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Hashem Montaseri
- Department of quality control, Faculty of pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| | - Elham Khezri
- Department of quality control, Faculty of pharmacy, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
34
|
Zhou C, Zhou X, Su X. Noncytotoxic polycaprolactone-polyethyleneglycol-ε-poly(l-lysine) triblock copolymer synthesized and self-assembled as an antibacterial drug carrier. RSC Adv 2017. [DOI: 10.1039/c7ra07102g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The PCL35-b-PEG45-b-EPL23 vesicles perform well in vitro drug release and antibacterial activity against Gram− and Gram+ bacteria with low cytotoxicity.
Collapse
Affiliation(s)
- Chuncai Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Xinyu Zhou
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| | - Xiaokai Su
- School of Materials Science and Engineering
- Tongji University
- Shanghai
- China
| |
Collapse
|
35
|
KUMOREK M, KUBIES D, RIEDEL T. Protein Interactions With Quaternized Chitosan/Heparin Multilayers. Physiol Res 2016; 65:S253-S261. [DOI: 10.33549/physiolres.933427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the behavior of single proteins at the polyelectrolyte multilayer film/solution interface is of prime importance for the designing of bio-functionalized surface coatings. In the present paper, we study the adsorption of the model proteins, albumin and lysozyme, as well as basic fibroblast growth factor (FGF-2) on a polysaccharide multilayer film composed of quaternized chitosan and heparin. Several analytical methods were used to describe the formation of the polysaccharide film and its interactions with the proteins. Both albumin and lysozyme adsorbed on quaternized chitosan/heparin films, however this process strongly depended on the terminating polysaccharide. Protein adsorption was driven mainly by electrostatic interactions between protein and the terminal layer of the film. The effective binding of FGF-2 by the heparin-terminated film suggested that other interactions could also contribute to the adsorption process. We believe that this FGF-2-presenting polysaccharide film may serve as a biofunctional surface coating for biologically-related applications.
Collapse
Affiliation(s)
- M. KUMOREK
- Department of Bioactive Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - D. KUBIES
- Department of Bioactive Polymers, Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | |
Collapse
|
36
|
Design, synthesis and antimicrobial activity of 6-N-substituted chitosan derivatives. Bioorg Med Chem Lett 2016; 26:4548-4551. [DOI: 10.1016/j.bmcl.2015.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 11/21/2022]
|
37
|
Zhou Z, Yan D, Cheng X, Kong M, Liu Y, Feng C, Chen X. Biomaterials based on N,N,N-trimethyl chitosan fibers in wound dressing applications. Int J Biol Macromol 2016; 89:471-6. [DOI: 10.1016/j.ijbiomac.2016.02.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/11/2016] [Accepted: 02/11/2016] [Indexed: 12/11/2022]
|
38
|
Wang Y, Li J, Li B. Nature-Inspired One-Step Green Procedure for Enhancing the Antibacterial and Antioxidant Behavior of a Chitin Film: Controlled Interfacial Assembly of Tannic Acid onto a Chitin Film. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5736-5741. [PMID: 27378105 DOI: 10.1021/acs.jafc.6b01859] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The final goal of this study was to develop antimicrobial food-contact materials based on a natural phenolic compound (tannic acid) and chitin, which is the second most abundant polysaccharide on earth, using an interfacial assembly approach. Chitin film has poor antibacterial and antioxidant ability, which limits its application in industrial fields such as active packaging. Therefore, in this study, a novel one-step green procedure was applied to introduce antibacterial and antioxidant properties into a chitin film simultaneously by incorporation of tannic acid into the chitin film through interfacial assembly. The antibacterial and antioxidant behavior of chitin film has been greatly enhanced. Hydrogen bonds and hydrophobic interaction were found to be the main driving forces for interfacial assembly. Therefore, controlled interfacial assembly of tannic acid onto a chitin film demonstrated a good way to develop functional materials that can be potentially applied in industry.
Collapse
Affiliation(s)
- Yuntao Wang
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan 430070, Hubei, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education , Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan 430070, Hubei, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education , Wuhan, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University , Wuhan 430070, Hubei, China
- Hubei Collaborative Innovation Centre for Industrial Fermentation, Hubei University of Technology , Wuhan 430068, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education , Wuhan, China
| |
Collapse
|
39
|
Croce M, Conti S, Maake C, Patzke GR. Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications. Carbohydr Polym 2016; 151:1184-1192. [PMID: 27474669 DOI: 10.1016/j.carbpol.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/31/2016] [Accepted: 06/02/2016] [Indexed: 02/01/2023]
Abstract
Low-molecular weight chitosan-thioglycolic acid has shown significant antibacterial properties against different microorganisms. In order to explore the potential and structure-activity relationships of newly synthesized alkyl thiomers, chitosan has been functionalized with a series of thio-acids with increasing alkyl chain length. All thiomers were characterized with special emphasis on the determination of their degree of deacetylation and substitution, as well as on their molecular weight and amount of thiol groups. The pre-screened chitosan-thiomers were further investigated with plate counting on Pseudomonas aeruginosa, Streptococcus sobrinus and Streptococcus mutans. Furthermore, LIVE/DEAD assays supported the efficiency of chitosan-thiomers against the above microorganisms. All fully characterized chitosan-thiomers showed comparable or enhanced antimicrobial activity compared to pristine chitosan. Our comprehensive approach paves the way to detailed explorations of much sought-after structure activity relationships in the complex chitosan parameter room, starting from correlations between alkyl chain length and antimicrobial activity.
Collapse
Affiliation(s)
- Matteo Croce
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simona Conti
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Caroline Maake
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
40
|
Ilk S, Saglam N, Özgen M. Kaempferol loaded lecithin/chitosan nanoparticles: preparation, characterization, and their potential applications as a sustainable antifungal agent. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:907-916. [PMID: 27265551 DOI: 10.1080/21691401.2016.1192040] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Flavonoid compounds are strong antioxidant and antifungal agents but their applications are limited due to their poor dissolution and bioavailability. The use of nanotechnology in agriculture has received increasing attention, with the development of new formulations containing active compounds. In this study, kaempferol (KAE) was loaded into lecithin/chitosan nanoparticles (LC NPs) to determine antifungal activity compared to pure KAE against the phytopathogenic fungus Fusarium oxysporium to resolve the bioavailability problem. The influence of formulation parameters on the physicochemical properties of KAE loaded lecithin chitosan nanoparticles (KAE-LC NPs) were studied by using the electrostatic self-assembly technique. KAE-LC NPs were characterized in terms of physicochemical properties. KAE has been successfully encapsulated in LC NPs with an efficiency of 93.8 ± 4.28% and KAE-LC NPs showed good physicochemical stability. Moreover, in vitro evaluation of the KAE-LC NP system was made by the release kinetics, antioxidant and antifungal activity in a time-dependent manner against free KAE. Encapsulated KAE exhibited a significantly inhibition efficacy (67%) against Fusarium oxysporium at the end of the 60 day storage period. The results indicated that KAE-LC NP formulation could solve the problems related to the solubility and loss of KAE during use and storage. The new nanoparticle system enables the use of smaller quantities of fungicide and therefore, offers a more environmentally friendly method of controlling fungal pathogens in agriculture.
Collapse
Affiliation(s)
- Sedef Ilk
- a Faculty of Ayhan Şahenk Agricultural Sciences and Technologies , Nigde University , Nigde , Turkey
| | - Necdet Saglam
- b Department of Nanotechnology and Nanomedicine , the Institute of Science and Engineering, Hacettepe University , Beytepe , Ankara , Turkey
| | - Mustafa Özgen
- c Department of Plant Production and Technologies, Faculty of Ayhan Şahenk Agricultural Sciences and Technologies , Nigde University , Nigde , Turkey
| |
Collapse
|
41
|
Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan. Carbohydr Polym 2016; 143:246-53. [DOI: 10.1016/j.carbpol.2016.01.073] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 10/22/2022]
|
42
|
Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:79-84. [DOI: 10.1016/j.msec.2015.12.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 11/18/2022]
|
43
|
Gupta N, Santhiya D, Aditya A. Tailored smart bioactive glass nanoassembly for dual antibiotic in vitro sustained release against osteomyelitis. J Mater Chem B 2016; 4:7605-7619. [DOI: 10.1039/c6tb01528j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of cetyltrimethylammonium bromide (CTAB) concentration as a sacrificial template on tunable mesostructure textured bioactive glass nanoparticles has been explored and characterized for osteomyelitis applications.
Collapse
Affiliation(s)
- Nidhi Gupta
- Delhi Technological University
- Department of Applied Chemistry and Polymer Technology
- Delhi-110 042
- India
| | - Deenan Santhiya
- Delhi Technological University
- Department of Applied Chemistry and Polymer Technology
- Delhi-110 042
- India
| | - Anusha Aditya
- Institute of Genomics and Integrative Biology (CSIR)
- Delhi-110025
- India
| |
Collapse
|
44
|
Sahariah P, Snorradóttir BS, Hjálmarsdóttir MÁ, Sigurjónsson ÓE, Másson M. Experimental design for determining quantitative structure activity relationship for antibacterial chitosan derivatives. J Mater Chem B 2016; 4:4762-4770. [DOI: 10.1039/c6tb00546b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experimental design was utilized for synthesis and optimization of antimicrobial chitosan derivatives and for the development of their structure–activity relationship.
Collapse
Affiliation(s)
- Priyanka Sahariah
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| | - Bergthóra S. Snorradóttir
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| | | | | | - Már Másson
- Faculty of Pharmaceutical Sciences
- School of Health Sciences
- University of Iceland
- IS-107 Reykjavík
- Iceland
| |
Collapse
|
45
|
Haghighi FH, Hadadzadeh H, Farrokhpour H. Investigation of the in situ generation of oxide-free copper nanoparticles using pulsed-laser ablation of bulk copper in aqueous solutions of DNA bases. RSC Adv 2016. [DOI: 10.1039/c6ra22038j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pulsed-laser ablation method was used as a facile and green approach to prepare oxide-free copper nanoparticles, and was performed by laser ablation of a copper target in aqueous solutions of the DNA bases.
Collapse
Affiliation(s)
- Farid Hajareh Haghighi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
- Department of Molecular Biotechnology
| | - Hassan Hadadzadeh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Hossein Farrokhpour
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| |
Collapse
|
46
|
Wang X, Yuan S, Guo Y, Shi D, Jiang T, Yan S, Ma J, Shi H, Luan S, Yin J. Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a ‘click’-type interfacial reaction. Colloids Surf B Biointerfaces 2015; 136:7-13. [DOI: 10.1016/j.colsurfb.2015.08.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/22/2015] [Accepted: 08/27/2015] [Indexed: 01/11/2023]
|
47
|
Li Z, Yang F, Yang R. Synthesis of chitosan derivative with dual-antibacterial functional groups and its antibacterial activity. J Appl Polym Sci 2015. [DOI: 10.1002/app.42663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhihan Li
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Fei Yang
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| | - Rendang Yang
- State Key Laboratory of Pulp & Paper Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
48
|
Arpornwichanop T, Polpanich D, Thiramanas R, Suteewong T, Tangboriboonrat P. Enhanced antibacterial activity of NR latex gloves with raspberry-like PMMA-N,N,N-trimethyl chitosan particles. Int J Biol Macromol 2015; 81:151-8. [DOI: 10.1016/j.ijbiomac.2015.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/16/2023]
|
49
|
Yang X, Zhang C, Qiao C, Mu X, Li T, Xu J, Shi L, Zhang D. A simple and convenient method to synthesize N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride in an ionic liquid. Carbohydr Polym 2015; 130:325-32. [DOI: 10.1016/j.carbpol.2015.05.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/02/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
|
50
|
Zhan J, Wang L, Liu S, Chen J, Ren L, Wang Y. Antimicrobial Hyaluronic Acid/Poly(amidoamine) Dendrimer Multilayer on Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) Prepared by a Layer-by-Layer Self-Assembly Method. ACS APPLIED MATERIALS & INTERFACES 2015; 7:13876-13881. [PMID: 26061897 DOI: 10.1021/acsami.5b02262] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this article, we prepared hyaluronic acid/poly(amidoamine) dendrimer (HA/PAMAM) multilayers on a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-4HB)] substrate by a layer-by-layer self-assembly method for antimicrobial biomaterials. The results of ζ potential and quartz crystal microbalance with dissipation (QCM-D) showed that HA/PAMAM multilayers could be formed on the substrate layer by layer. We used QCM-D to show that both the HA outer layer and the PAMAM outer layer exhibited good protein-resistant activity to bovine serum albumin and bacterial antiadhesion activity to Escherichia coli. By a live/dead assay and the colony counting method, we found that the PAMAM outer layer could also exhibit bactericidal activity against E. coli, while the HA outer layer had no bactericidal activity. Both the bacterial antiadhesion activity and the bactericidal activity of the samples could be maintained even after storage in phosphate-buffered saline for up to 14 days. An in vitro MTT assay showed that the multilayers had no cytotoxicity to L929 cells, and HA molecules in the multilayers could improve the biocompatibility of the film.
Collapse
Affiliation(s)
- Jiezhao Zhan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lin Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Junjian Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yingjun Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|