1
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
2
|
Das M, Sethy C, Kundu CN, Tripathy J. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties. Int J Biol Macromol 2023; 239:124185. [PMID: 36977443 DOI: 10.1016/j.ijbiomac.2023.124185] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Incorporating single or combined nanofillers in polymeric matrices is a promising approach for developing antimicrobial materials for applications in wound healing and packaging etc. This study reports a facile fabrication of antimicrobial nanocomposite films using biocompatible polymers sodium carboxymethyl cellulose (CMC) and sodium alginate (SA) reinforced with nanosilver (Ag) and graphene oxide (GO) using the solvent casting approach. Eco-friendly synthesis of Ag nanoparticles within a size range of 20-30 nm was carried out within the polymeric solution. GO was introduced into the CMC/SA/Ag solution in different weight percentages. The films were characterized by UV-Vis, FT-IR, Raman, XRD, FE-SEM, EDAX, and TEM. The results indicated the enhanced thermal and mechanical performance of CMC/SA/Ag-GO nanocomposites with increased GO weight %. The antibacterial efficacy of the fabricated films was evaluated on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The CMC/SA/Ag-GO2% nanocomposite exhibited the highest zone of inhibition of 21.30 ± 0.70 mm against E. coli and 18.00 ± 1.00 mm against S. aureus. The CMC/SA/Ag-GO nanocomposites exhibited excellent antibacterial activity as compared to CMC/SA and CMC/SA-Ag due to the synergetic bacterial growth inhibition activities of the GO and Ag. The cytotoxic activity of the prepared nanocomposite films was also assessed to investigate their biocompatibility.
Collapse
|
3
|
Pectin-based inks development for 3D bioprinting of scaffolds. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Controlling the Interaction between Starchy Polyelectrolyte Layers for Adjusting Protein Release from Nanocapsules in a Simulated Gastrointestinal Tract. Foods 2022; 11:foods11172681. [PMID: 36076863 PMCID: PMC9455774 DOI: 10.3390/foods11172681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Orally delivered bioactive proteins face great challenges in the harsh environment of the upper gastrointestinal tract (GIT) in the field of functional foods based on bioactive proteins. Therefore, it is necessary to design carriers and delivery systems that have the potential to overcome the problem of lower bioaccessibility for protein cargoes. In this work, we present a starchy oral colon-targeting delivery system, capable of improving the release profile of the protein cargoes. The starchy oral colon-targeting delivery system was fabricated using layer-by-layer assembly of starchy polyelectrolytes (carboxymethyl anionic starch and spermine cationic starch) onto the surface of protein nanoparticles via electrostatic interaction. The dynamic change in the interaction between the starchy polyelectrolytes affected the shell aggregation structure and determined the release kinetics of nanocapsules in the GIT. Specifically, the stronger interactions between the starchy layers and the thicker and more compact shell layer kept the nanocapsule intact in the simulated gastric and intestinal fluids, better-protecting the protein from degradation by digestive fluids, thus avoiding the burst release effect in the SGF and SIF. However, the nanocapsule could quickly swell with the decreasing molecular interactions between starchy polyelectrolytes, increasing protein release (63.61%) in the simulated colonic fluid. Therefore, release behaviors of protein cargoes could be appropriately controlled by adjusting the number of deposited layers of pH-sensitive starchy polyelectrolytes on the nanocapsule. This could improve the bioaccessibility of oral targeted delivery of bioactive proteins to the colon.
Collapse
|
5
|
Michely L, Chesneau C, Dika E, Evrard T, Belbekhouche S. Easy way for fabricating calcium carbonate hybrid microparticles-supported carrier: Focus on the loading of several hydrosoluble cargos all at once. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Fu J, Leo CP, Show PL. Recent advances in the synthesis and applications of pH-responsive CaCO3. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Pawlak A, Michely L, Belbekhouche S. Multilayer dextran derivative based capsules fighting bacteria resistant to Antibiotic: Case of Kanamycin-Resistant Escherichia coli. Int J Biol Macromol 2022; 200:242-246. [PMID: 34968549 DOI: 10.1016/j.ijbiomac.2021.12.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022]
Abstract
Bacteria resistance to antibiotics has emerged as a major health problem. Developing new antibacterial systems is then of major interest. In this sense, we present biocapsules presenting inherent antibacterial capacity. The self-assembly of charged biopolymer, namely diethylaminoethyl-dextran hydrochloride (dex+) and dextran sulfate (dex-), were done on calcium carbonate microparticles, used as a template. Zeta potential measurements have shown the successful alternate adsorption of these biopolymers and related charge reversal upon the multilayer film construction onto the particles surface. The shape of the capsules was characterized by scanning electron microscopy (SEM). These particles were tested against bacteria resistant to antibiotics, namely kanamycin-resistant Escherichia coli. An inhibitory effect of the particles was observed during bacterial growth in liquid medium, i.e. in the range of 10 % for (dex+/dex-)n coated CaCO3 materials and of 50% for (dex+/dex-)n capsules. These findings evidence the high potential of capsules to act as antimicrobial agents in future and in treatments against infections.
Collapse
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), IMRB U955, Créteil F-94010, France; Université Paris Est, Faculté de Médecine, UMRS 955, Créteil F-94010, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
8
|
Recent Advances in Cellulose-Based Structures as the Wound-Healing Biomaterials: A Clinically Oriented Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11177769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Application of wound-healing/dressing biomaterials is amongst the most promising approaches for wound repair through protection from pathogen invasion/contamination, maintaining moisture, absorbing exudates, modulating inflammation, and facilitating the healing process. A wide range of materials are used to fabricate wound-healing/dressing biomaterials. Active wound-healing/dressings are next-generation alternatives for passive biomaterials, which provide a physical barrier and induce different biological activities, such as antibacterial, antioxidant, and proliferative effects. Cellulose-based biomaterials are particularly promising due to their tunable physical, chemical, mechanical, and biological properties, accessibility, low cost, and biocompatibility. A thorough description and analysis of wound-healing/dressing structures fabricated from cellulose-based biomaterials is discussed in this review. We emphasize and highlight the fabrication methods, applied bioactive molecules, and discuss the obtained results from in vitro and in vivo models of cellulose-based wound-healing biomaterials. This review paper revealed that cellulose-based biomaterials have promising potential as the wound-dressing/healing materials and can be integrated with various bioactive agents. Overall, cellulose-based biomaterials are shown to be effective and sophisticated structures for delivery applications, safe and multi-customizable dressings, or grafts for wound-healing applications.
Collapse
|
9
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
10
|
Arafa IM, Shatnawi MY, Abdallah MH, Algharaibeh ZA. Grafting of glycine, alanine, serine, and threonine on cellulose membranes and their role in regulating the uniport, symport, and antiport permeation of glucose. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Isam M. Arafa
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Mazin Y. Shatnawi
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad H. Abdallah
- Department of Applied Chemistry, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | | |
Collapse
|
11
|
Ali Said F, Bousserrhine N, Alphonse V, Michely L, Belbekhouche S. Antibiotic loading and development of antibacterial capsules by using porous CaCO3 microparticles as starting material. Int J Pharm 2020; 579:119175. [DOI: 10.1016/j.ijpharm.2020.119175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/24/2022]
|
12
|
Sharma V, Sundaramurthy A. Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:508-532. [PMID: 32274289 PMCID: PMC7113543 DOI: 10.3762/bjnano.11.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Multilayer capsules have been of great interest for scientists and medical communities in multidisciplinary fields of research, such as drug delivery, sensing, biomedicine, theranostics and gene therapy. The most essential attributes of a drug delivery system are considered to be multi-functionality and stimuli responsiveness against a range of external and internal stimuli. Apart from the highly explored strong polyelectrolytes, weak polyelectrolytes offer great versatility with a highly controllable architecture, unique stimuli responsiveness and easy tuning of the properties for intracellular delivery of cargo. This review describes the progress in the preparation, functionalization and applications of capsules made of weak polyelectrolytes or their combination with biopolymers. The selection of a sacrificial template for capsule formation, the driving forces involved, the encapsulation of a variety of cargo and release based on different internal and external stimuli have also been addressed. We describe recent perspectives and obstacles of weak polyelectrolyte/biopolymer systems in applications such as therapeutics, biosensing, bioimaging, bioreactors, vaccination, tissue engineering and gene delivery. This review gives an emerging outlook on the advantages and unique responsiveness of weak polyelectrolyte based systems that can enable their widespread use in potential applications.
Collapse
Affiliation(s)
- Varsha Sharma
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anandhakumar Sundaramurthy
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| |
Collapse
|
13
|
Fang Z, Pan S, Gao P, Sheng H, Li L, Shi L, Zhang Y, Cai X. Stimuli-responsive charge-reversal nano drug delivery system: The promising targeted carriers for tumor therapy. Int J Pharm 2020; 575:118841. [DOI: 10.1016/j.ijpharm.2019.118841] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
|
14
|
Javanbakht S, Shaabani A. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. Int J Biol Macromol 2019; 123:389-397. [DOI: 10.1016/j.ijbiomac.2018.11.118] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/28/2018] [Accepted: 11/12/2018] [Indexed: 01/07/2023]
|
15
|
Elizarova IS, Luckham PF. Layer-by-layer adsorption: Factors affecting the choice of substrates and polymers. Adv Colloid Interface Sci 2018; 262:1-20. [PMID: 30448237 DOI: 10.1016/j.cis.2018.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 01/10/2023]
Abstract
The electrostatic layer-by-layer technique for fabrication of multi-layered structures of various sizes and shapes using flat and colloidal templates coupled with polyelectrolyte layer-forming materials has attracted significant interest among both academic and industrial researchers due to its versatility and relative simplicity of the procedures involved in its execution. Fabrication of the multi-layered structures using the electrostatic layer-by-layer method involves several distinct stages each of which holds great importance when considering the production of a high-quality product. These stages include selection of materials (both template and a pair of construction polyelectrolytes), adsorption of the first polyelectrolyte layer onto the selected templates, formation of the second layer comprised of the oppositely charged polyelectrolyte and guided by the interactions between the two chosen polyelectrolytes, and multi-layering, where a selected number of layers are produced, and which is conditioned by both intrinsic properties of the involved construction materials and external fabrication conditions such as temperature, pH and ionic strength. The current review summarises the most important aspects of each stage mentioned above and gives examples of the materials suitable for utilization of the technique and describes the underlying physics involved.
Collapse
|
16
|
Polymer/silica hybrid hollow nanoparticles with channels and thermo-responsive gatekeepers for drug storage and release. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4397-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydr Polym 2018; 195:453-459. [DOI: 10.1016/j.carbpol.2018.04.103] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 11/26/2022]
|
18
|
A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen. Biomed Pharmacother 2018; 107:96-108. [PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/13/2023] Open
Abstract
Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
Collapse
|
19
|
Tan C, Selig MJ, Lee MC, Abbaspourrad A. Polyelectrolyte microcapsules built on CaCO 3 scaffolds for the integration, encapsulation, and controlled release of copigmented anthocyanins. Food Chem 2017; 246:305-312. [PMID: 29291853 DOI: 10.1016/j.foodchem.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
The all-polysaccharide based polyelectrolyte microcapsules combining copigmentation for anthocyanin encapsulation and stabilization were fabricated. Copigmented complexes of chondroitin sulfate and anthocyanin were preloaded in CaCO3 scaffold, and then microcapsules were created by coating the sacrificial CaCO3 using layer-by-layer technique. It was observed that the preloading of copigmented complex affected the precipitation reaction of CaCO3 and the subsequent entrapment of anthocyanin. With addition of anthocyanin from 0.125 to 0.75 mg, copigmentation can significantly increase the encapsulation efficiency of anthocyanin in CaCO3, whereas such effect was not obvious at higher loadings. The leakage of anthocyanin during CaCO3 core dissolution and storage was also inhibited by two polysaccharide layers coupled with copigmentation, which may be related to the formation of interconnecting networks. Additionally, a higher anthocyanin antioxidant activity was provided by carbohydrate matrix. These findings may allow for the encapsulation of large amounts of water-soluble components; particularly natural colorant by copigmented complex-polyelectrolyte structures.
Collapse
Affiliation(s)
- Chen Tan
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michael Joseph Selig
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Michelle C Lee
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States
| | - Alireza Abbaspourrad
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
20
|
López-Cebral R, Civantos A, Ramos V, Seijo B, López-Lacomba JL, Sanz-Casado JV, Sanchez A. Gellan gum based physical hydrogels incorporating highly valuable endogen molecules and associating BMP-2 as bone formation platforms. Carbohydr Polym 2017; 167:345-355. [PMID: 28433171 DOI: 10.1016/j.carbpol.2017.03.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/20/2022]
Abstract
Physical hydrogels have been designed for a double purpose: as growth factor delivery systems and as scaffolds to support cell colonization and formation of new bone. Specifically, the polysaccharide gellan gum and the ubiquitous endogenous molecules chondroitin, albumin and spermidine have been used as exclusive components of these hydrogels. The mild ionotropic gelation technique was used to preserve the bioactivity of the selected growth factor, rhBMP-2. In vitro tests demonstrated the effective delivery of rhBMP-2 in its bioactive form. In vivo experiments performed in the muscle tissue of Wistar rats provided a proof of concept of the ability of the developed platforms to elicit new bone formation. Furthermore, this biological effect was better than that of a commercial formulation currently used for regenerative purposes, confirming the potential of these hydrogels as new and innovative growth factor delivery platforms and scaffolds for regenerative medicine applications.
Collapse
Affiliation(s)
- Rita López-Cebral
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain
| | - Ana Civantos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Viviana Ramos
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | - Begoña Seijo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies, Complutense University of Madrid (UCM), 28040 Madrid, Spain
| | | | - Alejandro Sanchez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Campus Sur, 15782 Santiago de Compostela, Spain; Genetics and Biology of the Development of Kidney Diseases Unit, Sanitary Research Institute (IDIS) of the University Hospital Complex of Santiago de Compostela (CHUS), Travesía da Choupana, s/n, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
21
|
He X, Sun Z, He K, Guo S. Biopolymer microencapsulations of Bacillus thuringiensis crystal preparations for increased stability and resistance to environmental stress. Appl Microbiol Biotechnol 2017; 101:2779-2789. [PMID: 28050633 DOI: 10.1007/s00253-016-8070-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/12/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Parasporal crystals synthesized by Bacillus thuringiensis (Bt) have been widely used as microbial pesticides because of their toxicity to the larval stages of specific insects. However, parasporal crystals can be damaged by environmental stresses, such as high temperature, ultraviolet radiation, and desiccation. To reduce environmental susceptibility of parasporal crystals and extend the duration of their activity, we developed a new type of protection by making microcapsules of crystals (MCs). The microcapsules were self-assembled by alternate deposition (layer by layer) of low-cost chitosan and sodium alginate (or sodium carboxymethyl cellulose) on the crystal surface. Crystal toxins (Cry1Ac) were released from microcapsules at pH values above 9.0. Bioassay results demonstrated that microencapsulated preparations had larvicidal toxicity equivalent to the non-encapsulated form. Microencapsuled crystals were protected from environmental stresses such as high temperature and desiccation. The results indicate that microcapsule protection can enhance the efficacy of Bt in pest control, especially to Lepidoptera larvae that have a alkaline midgut.
Collapse
Affiliation(s)
- Xiaolin He
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhongqin Sun
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
22
|
Chen X, Liu L, Jiang C. Charge-reversal nanoparticles: novel targeted drug delivery carriers. Acta Pharm Sin B 2016; 6:261-7. [PMID: 27471667 PMCID: PMC4951588 DOI: 10.1016/j.apsb.2016.05.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 01/31/2023] Open
Abstract
Spurred by significant progress in materials chemistry and drug delivery, charge-reversal nanocarriers are being developed to deliver anticancer formulations in spatial-, temporal- and dosage-controlled approaches. Charge-reversal nanoparticles can release their drug payload in response to specific stimuli that alter the charge on their surface. They can elude clearance from the circulation and be activated by protonation, enzymatic cleavage, or a molecular conformational change. In this review, we discuss the physiological basis for, and recent advances in the design of charge-reversal nanoparticles that are able to control drug biodistribution in response to specific stimuli, endogenous factors (changes in pH, redox gradients, or enzyme concentration) or exogenous factors (light or thermos-stimulation).
Collapse
Key Words
- Abs, integrin aVb3 mAbs
- B-PDEAEA, poly[(2-acryloyl) ethyl (p-boronic acid benzyl) diethylammonium bromide]
- BPS, bridged polysilsesquioxanexerogel
- BSA, bovine serum albumin
- CA4, combretastatin A4
- CAPL, charge reversible pullulan-based
- CHPNH2, cationic cholesteryl group–bearing pullulans
- CMC, carboxymethyl cellulose
- CPLAs, cationic polylactides
- Cancer therapy
- Charge-reversal nanoparticles
- Cit, citraconic anhydride
- Cya, cysteamine hydrochloride
- DAP, 2,3-diamino-propionate
- DCL, dimethyl maleamidic acid-ε-caprolactone
- DDS, drug delivery system
- DM, dimyristeroyl
- DMA, 2,3-dimethylmaleic anhydride
- DMPA, dimethylol propionic acid
- DOX, doxorubicin
- Drug delivery carriers
- FITC, fluorescein isothiocyanate
- GO, graphene oxide
- GSH, glutathione
- Glu, glutamic acid
- HCC, hepatocellular carcinoma
- HEP, 1,4-bis(2-hydroxyethyl) piperazine
- HMP, p-hydroxylmethylenephenol
- His, histidine
- MG, microgels
- MMPs, matrix metalloproteinases
- MNP, magnetic nanoparticles
- NPs, nanoparticles
- Nanotechnology
- PAEP, poly(allyl ethylene phosphate)
- PAH, poly(allylamine) hydrochloride
- PBAE, poly(β-amino ester)
- PCL, poly(ε-caprolactone)
- PDADMAC, poly(diallyldimethylammonium chloride)
- PEG, polyethylene glycol
- PEI, polyethylenimine
- PEO, poly(ethylene oxide)
- PK, protein kinase
- PLA, ploylactic acid
- PLGA, poly(lactic-co-glycolic acid)
- PLL, poly(l-lysine)
- PMA, poly(methacrylic acid)
- PS, pH sensitive
- PSS, poly(sodium 4-styrenesulfonate)
- PSSS, poly(styrene-co-4-styrene-sulfonate)
- PTX, paclitaxel
- PU, polyurethane
- PVPON, poly(N-vinylpyrrolidone)
- ROS, reactive oxygen species
- SOD, superoxide dismutase
- Stimuli responsive
- TMA, 2-(mercaptoethyl) trimethylammonium chloride
- TUNA, thioundecyl-tetraethyleneglycolester-o-nitrobenzy-lethyldimethyl ammonium bromide
- pA-F, fluorescein-labeled polyanion
Collapse
Affiliation(s)
- Xinli Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lisha Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Yang JM, Tsai RZ, Hsu CC. Protein adsorption on polyanion/polycation layer-by-layer assembled polyelectrolyte films. Colloids Surf B Biointerfaces 2016; 142:98-104. [DOI: 10.1016/j.colsurfb.2016.02.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/12/2016] [Accepted: 02/16/2016] [Indexed: 12/27/2022]
|
24
|
Chen N, Tong Z, Yang W, Brennan AB. Biocomposites with tunable properties from poly(lactic acid)-based copolymers and carboxymethyl cellulose via ionic assembly. Carbohydr Polym 2015; 128:122-9. [DOI: 10.1016/j.carbpol.2015.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/10/2015] [Accepted: 04/12/2015] [Indexed: 12/25/2022]
|
25
|
Jaganathan S. Bioresorbable polyelectrolytes for smuggling drugs into cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:1080-97. [PMID: 25961363 DOI: 10.3109/21691401.2015.1011801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is ample evidence that biodegradable polyelectrolyte nanocapsules are multifunctional vehicles which can smuggle drugs into cells, and release them upon endogenous activation. A large number of endogenous stimuli have already been tested in vitro, and in vivo research is escalating. Thus, the interest in the design of intelligent polyelectrolyte multilayer (PEM) drug delivery systems is clear. The need of the hour is a systematic translation of PEM-based drug delivery systems from the lab to clinical studies. Reviews on multifarious stimuli that can trigger the release of drugs from such systems already exist. This review summarizes the available literature, with emphasis on the recent progress in PEM-based drug delivery systems that are receptive in the presence of endogenous stimuli, including enzymes, glucose, glutathione, pH, and temperature, and addresses different active and passive drug targeting strategies. Insights into the current knowledge on the diversified endogenous approaches and methodological challenges may bring inspiration to resolve issues that currently bottleneck the successful implementation of polyelectrolytes into the catalog of third-generation drug delivery systems.
Collapse
Affiliation(s)
- Sripriya Jaganathan
- a SRM Research Institute, SRM University , Kattankulathur, 603203 , Chennai , Tamil Nadu , India
| |
Collapse
|
26
|
Xu J, Yang L, Hu X, Xu S, Wang J, Feng S. The effect of polysaccharide types on adsorption properties of LbL assembled multilayer films. SOFT MATTER 2015; 11:1794-1799. [PMID: 25609027 DOI: 10.1039/c4sm02699c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Three types of biocompatible films were fabricated via electrostatic layer-by-layer (LbL) adsorption of oppositely charged cationic polyurethane and anionic polysaccharides with different primary structures, including sodium hyaluronate, sodium carboxymethyl cellulose and sodium alginate. The adsorption behaviors of films were investigated by using the cationic dye methylene blue (MB) as a model drug at various pH values and salt concentrations. The relationship between the type of polysaccharide and the adsorption behavior of LbL films was comparatively studied. It was found that the adsorption capacity increased with an increase of the initial concentration of MB in the concentration range of the experiment to all of the films, and the pH of environment ranged from 3.0 to 9.0. The Langmuir equation fit perfectly to the experiment data. In addition, a pseudo second-order adsorption model can well describe the adsorption behaviors of MB for three films. The results showed that the type of side chains and the charge density of the polysaccharides played key roles in the adsorption properties of the PU/polysaccharide multilayer films.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education & Xinjiang Uyghur Autonomous Region, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, 830046, P. R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 47:313-24. [DOI: 10.1016/j.msec.2014.10.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 09/27/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022]
|
28
|
Wani TA, Shah AG, Wani SM, Wani IA, Masoodi FA, Nissar N, Shagoo MA. Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Crit Rev Food Sci Nutr 2015; 56:2431-2454. [DOI: 10.1080/10408398.2013.845814] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Teekamp N, Duque LF, Frijlink HW, Hinrichs WLJ, Olinga P. Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Deliv 2015; 12:1311-31. [DOI: 10.1517/17425247.2015.1003807] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Guo M, Zhang W, Ding G, Guo D, Zhu J, Wang B, Punyapitak D, Cao Y. Preparation and characterization of enzyme-responsive emamectin benzoate microcapsules based on a copolymer matrix of silica–epichlorohydrin–carboxymethylcellulose. RSC Adv 2015. [DOI: 10.1039/c5ra17901g] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Novel enzyme-responsive emamectin benzoate microcapsules with remarkable loading ability and photo- and thermal stability were prepared for sustained crop protection.
Collapse
Affiliation(s)
- Mingcheng Guo
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Wenbing Zhang
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Guanglong Ding
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Dong Guo
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Juanli Zhu
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Baitao Wang
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Darunee Punyapitak
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| | - Yongsong Cao
- College of Agriculture and Biotechnology
- China Agricultural University
- Beijing
- China
| |
Collapse
|
31
|
Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.07.002] [Citation(s) in RCA: 309] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
32
|
Vasilieva EA, Ibragimova AR, Mirgorodskaya AB, Yackevich EI, Dobrynin AB, Nizameev IR, Kadirov MK, Zakharova LY, Zuev YF, Konovalov AI. Polyelectrolyte micro- and nanocapsules with varied shell permeability controlling the rate of esters hydrolysis. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0418-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
33
|
Nugraha C, Bora M, Venkatraman SS. Release retardation of model protein on polyelectrolyte-coated PLGA nano- and microparticles. PLoS One 2014; 9:e92393. [PMID: 24647768 PMCID: PMC3960216 DOI: 10.1371/journal.pone.0092393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/21/2014] [Indexed: 01/08/2023] Open
Abstract
PEM capsules have been proposed for vehicles of drug microencapsulation, with the release triggered by pH, salt, magnetic field, or light. When built on another carrier encapsulating drugs, such as nanoparticles, it could provide additional release barrier to the releasing drug, providing further control to drug release. Although liposomes have received considerable attention with PEM coating for sustained drug release, similar results employing PEM built on poly(lactic-co-lycolic acid) (PLGA) particles is scant. In this work, we demonstrate that the build-up pH and polyelectrolyte pairs of PEM affect the release retardation of BSA from PLGA particles. PAH/PSS pair, the most commonly used polyelectrolyte pair, was used in comparison with PLL/DES. In addition, we also demonstrate that the release retardation effect of PEM-coated PLGA particles diminishes as the particle size increases. We attribute this to the diminishing relative thickness of the PEM coating with respect to the size of the particle as the particle size increases, reducing the diffusional resistance of the PEM.
Collapse
Affiliation(s)
- Chandra Nugraha
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Meghali Bora
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Subbu S. Venkatraman
- School of Materials Science & Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
34
|
Cuomo F, Lopez F, Ceglie A. Templated globules--applications and perspectives. Adv Colloid Interface Sci 2014; 205:124-33. [PMID: 24011695 DOI: 10.1016/j.cis.2013.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/11/2013] [Indexed: 12/21/2022]
Abstract
Polyelectrolyte capsules represent a class of particles composed of an internal core and an external polymer matrix shell. In recent years, it has become clear that the manufacture of polyelectrolyte capsule is likely to have a significant role in several areas including medicine and biology. Many distinct methodologies for the fabrications of templated globules have been reported. Despite the huge availability of knowledge used to obtain such globules, the choice of the appropriate technology for the desired applications demands a deeper appreciation of this issue. Furthermore, the extent to which the applications of polyelectrolyte capsule may be actively involved in the practical biomedical field is still a fascinating challenge. Here, we review the recipes for the globule assembly with their own benefits and limitations and how different templates could affect the final globule features, with a particular focus on the Layer by Layer (LbL) procedure. The latest applications in biological, therapeutical and diagnostic areas are also discussed and some outlooks for the strategic development of polymer globule are highlighted.
Collapse
|
35
|
Wu X, Zhao S, Zhang J, Wu P, Peng C. Encapsulation of EV71-specific IgY antibodies by multilayer polypeptide microcapsules and its sustained release for inhibiting enterovirus 71 replication. RSC Adv 2014. [DOI: 10.1039/c3ra46943c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Ninan N, Muthiah M, Park IK, Elain A, Thomas S, Grohens Y. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 2013; 98:877-85. [PMID: 23987424 DOI: 10.1016/j.carbpol.2013.06.067] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/18/2013] [Accepted: 06/28/2013] [Indexed: 02/01/2023]
Abstract
Highly porous three-dimensional scaffolds made of biopolymers are of great interest in tissue engineering applications. A novel scaffold composed of pectin, carboxymethyl cellulose (CMC) and microfibrillated cellulose (MFC) were synthesised using lyophilisation technique. The optimised scaffold with 0.1% MFC, C(0.1%), showed highest compression modulus (~3.987 MPa) and glass transition temperature (~103 °C). The pore size for the control scaffold, C(0%), was in the range of 30-300 μm while it was significantly reduced to 10-250 μm in case of C(0.1%). Using micro computed tomography, the porosity of C(0.1%) was estimated to be 88%. C(0.1%) showed excellent thermal stability and lower degradation rate compared to C(0%). The prepared samples were also characterised using XRD and FTIR. C(0.1%) showed controlled water uptake ability and in vitro degradation in PBS. It exhibited highest cell viability on NIH3T3 fibroblast cell line. These results suggest that these biocompatible composite scaffolds can be used for tissue engineering applications.
Collapse
Affiliation(s)
- Neethu Ninan
- Université de Bretagne Sud, Laboratoire Ingénierie des Matériaux de Bretagne, BP 92116, 56321 Lorient Cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Radhakrishnan K, Tripathy J, Raichur AM. Dual enzyme responsive microcapsules simulating an “OR” logic gate for biologically triggered drug delivery applications. Chem Commun (Camb) 2013; 49:5390-2. [DOI: 10.1039/c3cc42017e] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|