1
|
Mori S, Shionyu M, Shimamoto K, Nomura K. Bacterial Glycolipid Acting on Protein Transport Across Membranes. Chembiochem 2024; 25:e202300808. [PMID: 38400776 DOI: 10.1002/cbic.202300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 02/22/2024] [Indexed: 02/26/2024]
Abstract
The process of protein transport across membranes involves a variety of factors and has been extensively investigated. Traditionally, proteinaceous translocons and chaperones have been recognized as crucial factors in this process. However, recent studies have highlighted the significant roles played by lipids and a glycolipid present in biological membranes in membrane protein transport. Membrane lipids can influence transport efficiency by altering the physicochemical properties of membranes. Notably, our studies have revealed that diacylglycerol (DAG) attenuates mobility in the membrane core region, leading to a dramatic suppression of membrane protein integration. Conversely, a glycolipid in Escherichia coli inner membranes, named membrane protein integrase (MPIase), enhances integration not only through the alteration of membrane properties but also via direct interactions with membrane proteins. This review explores the mechanisms of membrane protein integration mediated by membrane lipids, specifically DAG, and MPIase. Our results, along with the employed physicochemical analysis methods such as fluorescence measurements, nuclear magnetic resonance, surface plasmon resonance, and docking simulation, are presented to elucidate these mechanisms.
Collapse
Affiliation(s)
- Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| | - Masafumi Shionyu
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga, 526-0829, Japan
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
- Department of Chemistry Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto, 619-0284, Japan
| |
Collapse
|
2
|
Merkulyeva YA, Shcherbakov DN, Sharlaeva EA, Chirkova VY. Phospholipases C from the Genus Bacillus: Biological Role, Properties, and Fields of Application. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
4
|
Fujikawa K, Nomura K, Nishiyama KI, Shimamoto K. Novel Glycolipid Involved in Membrane Protein Integration: Structure and Mode of Action. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.1096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences
| | - Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences
| | - Ken-ichi Nishiyama
- Department of Biological Chemistry, Faculty of Agriculture, Iwate University
| | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences
| |
Collapse
|
5
|
Nomura K, Yamaguchi T, Mori S, Fujikawa K, Nishiyama KI, Shimanouchi T, Tanimoto Y, Morigaki K, Shimamoto K. Alteration of Membrane Physicochemical Properties by Two Factors for Membrane Protein Integration. Biophys J 2019; 117:99-110. [PMID: 31164197 PMCID: PMC6626835 DOI: 10.1016/j.bpj.2019.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022] Open
Abstract
After a nascent chain of a membrane protein emerges from the ribosomal tunnel, the protein is integrated into the cell membrane. This process is controlled by a series of proteinaceous molecular devices, such as signal recognition particles and Sec translocons. In addition to these proteins, we discovered two endogenous components regulating membrane protein integration in the inner membrane of Escherichia coli. The integration is blocked by diacylglycerol (DAG), whereas the blocking is relieved by a glycolipid named membrane protein integrase (MPIase). Here, we investigated the influence of these integration-blocking and integration-promoting factors on the physicochemical properties of membrane lipids via solid-state NMR and fluorescence measurements. These factors did not have destructive effects on membrane morphology because the membrane maintained its lamellar structure and did not fuse in the presence of DAG and/or MPIase at their effective concentrations. We next focused on membrane flexibility. DAG did not affect the mobility of the membrane surface, whereas the sugar chain in MPIase was highly mobile and enhanced the flexibility of membrane lipid headgroups. Comparison with a synthetic MPIase analog revealed the effects of the long sugar chain on membrane properties. The acyl chain order inside the membrane was increased by DAG, whereas the increase was cancelled by the addition of MPIase. MPIase also loosened the membrane lipid packing. Focusing on the transbilayer movement, MPIase reduced the rapid flip-flop motion of DAG. On the other hand, MPIase could not compensate for the diminished lateral diffusion by DAG. These results suggest that by manipulating the membrane lipids dynamics, DAG inhibits the protein from contacting the inner membrane, whereas the flexible long sugar chain of MPIase increases the opportunity for interaction between the membrane and the protein, leading to membrane integration of the newly formed protein.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Toshiyuki Yamaguchi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | | | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
6
|
Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1450. [PMID: 28198148 PMCID: PMC5557698 DOI: 10.1002/wnan.1450] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/25/2022]
Abstract
The ultimate goal of drug delivery is to increase the bioavailability and reduce the toxic side effects of the active pharmaceutical ingredient (API) by releasing them at a specific site of action. In the case of antitumor therapy, association of the therapeutic agent with a carrier system can minimize damage to healthy, nontarget tissues, while limit systemic release and promoting long circulation to enhance uptake at the cancerous site due to the enhanced permeation and retention effect (EPR). Stimuli-responsive systems have become a promising way to deliver and release payloads in a site-selective manner. Potential carrier systems have been derived from a wide variety of materials, including inorganic nanoparticles, lipids, and polymers that have been imbued with stimuli-sensitive properties to accomplish triggered release based on an environmental cue. The unique features in the tumor microenvironment can serve as an endogenous stimulus (pH, redox potential, or unique enzymatic activity) or the locus of an applied external stimulus (heat or light) to trigger the controlled release of API. In liposomal carrier systems triggered release is generally based on the principle of membrane destabilization from local defects within bilayer membranes to effect release of liposome-entrapped drugs. This review focuses on the literature appearing between November 2008-February 2016 that reports new developments in stimuli-sensitive liposomal drug delivery strategies using pH change, enzyme transformation, redox reactions, and photochemical mechanisms of activation. WIREs Nanomed Nanobiotechnol 2017, 9:e1450. doi: 10.1002/wnan.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Y Lee
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - D H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Patra SK, Sengupta D, Deb M, Kar S, Kausar C. Interaction of phospholipase C with liposome: A conformation transition of the enzyme is critical and specific to liposome composition for burst hydrolysis and fusion in concert. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:647-654. [PMID: 27788468 DOI: 10.1016/j.saa.2016.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 10/11/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Phospholipase C (PLC)1 is known to help the pathogen B. cereus entry to the host cell and human PLC is over expressed in multiple cancers. Knowledge of dynamic activity of the enzyme PLC while in action on membrane lipids is essential and helpful to drug design and delivery. In view of this, interactions of PLC with liposome of various lipid compositions have been visualized by testing enzyme activity and microenvironments around the intrinsic fluorophores of the enzyme. Overall change of the protein's conformation has been monitored by fluorescence spectroscopy and circular dichroism (CD). Liposome aggregation and fusion were predicted by increase in turbidity and vesicle size. PLC in solution has high fluorescence and exhibit appreciable shift in its emission maxima, upon gradual change in excitation wavelength towards the red edge of the absorption band. REES fluorescence studies indicated that certain Trp fluorophores of inactive PLC are in motionally restricted compact/rigid environments in solution conformation. PLC fluorescence decreased in association with liposome and Trps loosed rigidity where liposome aggregation and fusion occurred. We argue that the structural flexibility is the cause of decrease of fluorescence, mostly to gain optimum conformation for maximum activity of the enzyme PLC. Further studies deciphered that the enzyme PLC undergoes change of conformation when mixed to LUVs prepared with specific lipids. CD data at the far-UV and near-UV regions of PLC in solution are in excellent agreement with the previous reports. CD analyses of PLC with LUVs, showed significant reduction of α-helices, increase of β-sheets; and confirmed dramatic change of orientations of Trps. In case of liposome composed of lipid raft like composition, the enzyme binds very fast, hydrolyze PC with higher rate, exhibit highest structural flexibility and promote vesicle fusion. These data strongly suggest marked differences in conformation transition induced PLC activation and liposome fusion on the lipid composition.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India.
| | - Dipta Sengupta
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Moonmoon Deb
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Swayamsiddha Kar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| | - Chahat Kausar
- Department of Life Science, National Institute of Technology, Rourkela, Orissa, India
| |
Collapse
|
8
|
Huang Q, Gershenson A, Roberts MF. Recombinant broad-range phospholipase C from Listeria monocytogenes exhibits optimal activity at acidic pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:697-705. [PMID: 26976751 DOI: 10.1016/j.bbapap.2016.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
The broad-range phospholipase C (PLC) from Listeria monocytogenes has been expressed using an intein expression system and characterized. This zinc metalloenzyme, similar to the homologous enzyme from Bacillus cereus, targets a wide range of lipid substrates. With monomeric substrates, the length of the hydrophobic acyl chain has significant impact on enzyme efficiency by affecting substrate affinity (Km). Based on a homology model of the enzyme to the B. cereus protein, several active site residue mutations were generated. While this PLC shares many of the mechanistic characteristics of the B. cereus PLC, a major difference is that the L. monocytogenes enzyme displays an acidic pH optimum regardless of substrate status (monomer, micelle, or vesicle). This unusual behavior might be advantageous for its role in the pathogenicity of L. monocytogenes.
Collapse
Affiliation(s)
- Qiongying Huang
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States.
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, United States
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
9
|
Nguyen T, Tekrony A, Yaehne K, Cramb DT. Designing a better theranostic nanocarrier for cancer applications. Nanomedicine (Lond) 2015; 9:2371-86. [PMID: 25413855 DOI: 10.2217/nnm.14.110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nanocarriers show incredible potential in theranostic applications as they offer diagnostic capabilities along with the ability to encapsulate and protect drugs from degradation, be functionalized with targeting moieties and be designed with controlled release mechanisms. Most clinically approved nanocarrier drugs are liposomal formulations. As such, considerable research has been directed towards designing liposomal carriers that can release their payloads via exogenous or endogenous triggers. For triggered release to effectively increase drug bioavailability, nanocarriers must first accumulate at the tumor site via the enhanced retention and permeability effect. It has been demonstrated in the chicken embryo chorioallantoic membrane and murine xenografted models that nanoparticle surface charge and geometry, with respect to vascular endothelium fenestration size, drive this accumulation in angiogenic tissue.
Collapse
Affiliation(s)
- Trinh Nguyen
- University of Calgary, Department of Chemistry, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | | | | | | |
Collapse
|
10
|
Melnik TN, Majorina MA, Larina DS, Kashparov IA, Samatova EN, Glukhov AS, Melnik BS. Independent of their localization in protein the hydrophobic amino acid residues have no effect on the molten globule state of apomyoglobin and the disulfide bond on the surface of apomyoglobin stabilizes this intermediate state. PLoS One 2014; 9:e98645. [PMID: 24892675 PMCID: PMC4043776 DOI: 10.1371/journal.pone.0098645] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/06/2014] [Indexed: 01/07/2023] Open
Abstract
At present it is unclear which interactions in proteins reveal the presence of intermediate states, their stability and formation rate. In this study, we have investigated the effect of substitutions of hydrophobic amino acid residues in the hydrophobic core of protein and on its surface on a molten globule type intermediate state of apomyoglobin. It has been found that independent of their localization in protein, substitutions of hydrophobic amino acid residues do not affect the stability of the molten globule state of apomyoglobin. It has been shown also that introduction of a disulfide bond on the protein surface can stabilize the molten globule state. However in the case of apomyoglobin, stabilization of the intermediate state leads to relative destabilization of the native state of apomyoglobin. The result obtained allows us not only to conclude which mutations can have an effect on the intermediate state of the molten globule type, but also explains why the introduction of a disulfide bond (which seems to “strengthen” the protein) can result in destabilization of the protein native state of apomyoglobin.
Collapse
Affiliation(s)
- Tatiana N. Melnik
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Maria A. Majorina
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Daria S. Larina
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Ivan A. Kashparov
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
| | - Ekaterina N. Samatova
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Bogdan S. Melnik
- Institute of Protein Research, RAS, Pushchino, Moscow Region, Russia
- * E-mail:
| |
Collapse
|
11
|
HAYASHI K, UMAKOSHI H, SHIMANOUCHI T. Comparison of the Interfacial Properties of Span 80 Vesicle, W/O Emulsions and Liposomes. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT-JAPAN 2014. [DOI: 10.15261/serdj.21.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Keita HAYASHI
- Department of Chemical Engineering, Nara National College of Technology
| | | | | |
Collapse
|