1
|
Wang Y, Zhao Y, Wang X, Xie Y, Bai L, Guan S. Fucoidan/collagen composite coating on magnesium alloy for better corrosion resistance and pro-endothelialization potential. Int J Biol Macromol 2024; 255:128044. [PMID: 37981269 DOI: 10.1016/j.ijbiomac.2023.128044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Magnesium alloy stents (MAS) have broad application prospects in the treatment of cardiovascular diseases. However, poor corrosion resistance and biocompatibility greatly limit the clinical application of MAS. In this work, the coating consisting of MgF2 layer, polydopamine layer, fucoidan and collagen IV was constructed on Mg-Zn-Y-Nd (ZE21B) alloy to improve its corrosion resistance and pro-endothelialization potential. The fucoidan and collagen IV in the coating could obviously enhance the hemocompatibility and pro-endothelialization potential respectively. Compared with bare ZE21B alloy, the fucoidan/collagen composite coating modified ZE21B alloy possessed lower corrosion current density and better corrosion resistance. Moreover, the modified ZE21B alloy exhibited relatively low hemolysis rate, fibrinogen adsorption and platelet adhesion in the blood experiments, suggesting the improved hemocompatibility. Furthermore, the modified ZE21B alloy favorably supported the adhesion and proliferation of vascular endothelial cells (ECs) and effectively regulated the phenotype of smooth muscle cells (SMCs), thus improving the pro-endothelialization potential of vascular stent materials. The fucoidan/collagen composite coating can significantly improve the corrosion resistance and pro-endothelialization potential of ZE21B alloy, showing great potential in the development of degradable MAS.
Collapse
Affiliation(s)
- Yahui Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China
| | - Yuan Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China
| | - Xinyu Wang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China
| | - Yinde Xie
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingchuang Bai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China.
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Advanced Magnesium Alloys, Zhengzhou 450002, China; Key Laboratory of Materials Processing and Mold Technology, Ministry of Education, Zhengzhou 450002, China
| |
Collapse
|
2
|
Tailoring ZE21B Alloy with Nature-Inspired Extracellular Matrix Secreted by Micro-Patterned Smooth Muscle Cells and Endothelial Cells to Promote Surface Biocompatibility. Int J Mol Sci 2022; 23:ijms23063180. [PMID: 35328601 PMCID: PMC8950948 DOI: 10.3390/ijms23063180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Delayed surface endothelialization is a bottleneck that restricts the further application of cardiovascular stents. It has been reported that the nature-inspired extracellular matrix (ECM) secreted by the hyaluronic acid (HA) micro-patterned smooth muscle cells (SMC) and endothelial cells (EC) can significantly promote surface endothelialization. However, this ECM coating obtained by decellularized method (dECM) is difficult to obtain directly on the surface of degradable magnesium (Mg) alloy. In this study, the method of obtaining bionic dECM by micro-patterning SMC/EC was further improved, and the nature-inspired ECM was prepared onto the Mg-Zn-Y-Nd (ZE21B) alloy surface by self-assembly. The results showed that the ECM coating not only improved surface endothelialization of ZE21B alloy, but also presented better blood compatibility, anti-hyperplasia, and anti-inflammation functions. The innovation and significance of the study is to overcome the disadvantage of traditional dECM coating and further expand the application of dECM coating to the surface of degradable materials and materials with different shapes.
Collapse
|
3
|
Bacterial Nanocellulose-Based Grafts for Cell Colonization Studies: An In Vitro Bioreactor Perfusion Model. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:205-222. [PMID: 34505267 DOI: 10.1007/7651_2021_417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the aging population, the demand for artificial small diameter vascular grafts is constantly increasing, as the availability of autologous grafts is limited due to vascular diseases. A confluent lining with endothelial cells is considered to be a cornerstone for long-term patency of artificial small diameter grafts. We use bacterial nanocellulose off-the-shelf grafts and describe a detailed methodology to study the ability of these grafts to re-colonize with endothelial cells in an in vitro bioreactor model. The viability of the constructs generated in this process was investigated using established cell culture and tissue engineering methods, which includes WST-1 proliferation assay, AcLDL uptake assay, lactate balancing and histological characterization. The data generated this straight forward methodology allow an initial assessment of the principal prospects of success in forming a stable endothelium in artificial vascular prostheses.
Collapse
|
4
|
Wacker M, Riedel J, Walles H, Scherner M, Awad G, Varghese S, Schürlein S, Garke B, Veluswamy P, Wippermann J, Hülsmann J. Comparative Evaluation on Impacts of Fibronectin, Heparin-Chitosan, and Albumin Coating of Bacterial Nanocellulose Small-Diameter Vascular Grafts on Endothelialization In Vitro. NANOMATERIALS 2021; 11:nano11081952. [PMID: 34443783 PMCID: PMC8398117 DOI: 10.3390/nano11081952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022]
Abstract
In this study, we contrast the impacts of surface coating bacterial nanocellulose small-diameter vascular grafts (BNC-SDVGs) with human albumin, fibronectin, or heparin–chitosan upon endothelialization with human saphenous vein endothelial cells (VEC) or endothelial progenitor cells (EPC) in vitro. In one scenario, coated grafts were cut into 2D circular patches for static colonization of a defined inner surface area; in another scenario, they were mounted on a customized bioreactor and subsequently perfused for cell seeding. We evaluated the colonization by emerging metabolic activity and the preservation of endothelial functionality by water soluble tetrazolium salts (WST-1), acetylated low-density lipoprotein (AcLDL) uptake assays, and immune fluorescence staining. Uncoated BNC scaffolds served as controls. The fibronectin coating significantly promoted adhesion and growth of VECs and EPCs, while albumin only promoted adhesion of VECs, but here, the cells were functionally impaired as indicated by missing AcLDL uptake. The heparin–chitosan coating led to significantly improved adhesion of EPCs, but not VECs. In summary, both fibronectin and heparin–chitosan coatings could beneficially impact the endothelialization of BNC-SDVGs and might therefore represent promising approaches to help improve the longevity and reduce the thrombogenicity of BNC-SDVGs in the future.
Collapse
Affiliation(s)
- Max Wacker
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
- Correspondence: ; Tel.: +49-391-67-14102
| | - Jan Riedel
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Heike Walles
- Core Facility Tissue Engineering, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Maximilian Scherner
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - George Awad
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sam Varghese
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Sebastian Schürlein
- Department Tissue Engineering and Regenerative Medicine (TERM), University Hospital Würzburg, 97070 Würzburg, Germany;
| | - Bernd Garke
- Institute of Experimental Physics, Otto-Von-Guericke University Magdeburg, 39106 Magdeburg, Germany;
| | - Priya Veluswamy
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jens Wippermann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| | - Jörn Hülsmann
- Department of Cardiothoracic Surgery, University Hospital Magdeburg, 39112 Magdeburg, Germany; (J.R.); (M.S.); (G.A.); (S.V.); (P.V.); (J.W.); (J.H.)
| |
Collapse
|
5
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
6
|
Surface Modification with NGF-Loaded Chitosan/Heparin Nanoparticles for Improving Biocompatibility of Cardiovascular Stent. Stem Cells Int 2021; 2021:9941143. [PMID: 33986810 PMCID: PMC8093045 DOI: 10.1155/2021/9941143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Late thrombosis and restenosis remain major challenges to the safety of drug-eluting stents. Biofunctional modification to endow the surface with selective anticoagulation and promote endothelium regeneration has become a hotpot recently. In this study, chitosan and heparin were found to form three-dimensional nanoparticles by spontaneous electrostatic interaction. Based on the specific binding properties between heparin and nerve growth factor (NGF), a new type of NGF-loaded heparin/chitosan nanoparticles was constructed for surface modification. The results of material characterization show that the nanoparticles are successfully immobilized on the surface of the material. In vitro blood compatibility and endothelial cell compatibility assay showed that the modified surface could selectively inhibit platelet adhesion and smooth muscle cell overproliferation, while accelerating endothelialization via promoting endothelial cell proliferation and enhancing endothelial progenitor cell mobilization.
Collapse
|
7
|
Ashcraft M, Douglass M, Chen Y, Handa H. Combination strategies for antithrombotic biomaterials: an emerging trend towards hemocompatibility. Biomater Sci 2021; 9:2413-2423. [PMID: 33599226 PMCID: PMC8035307 DOI: 10.1039/d0bm02154g] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Surface-induced thrombosis is a frequent, critical issue for blood-contacting medical devices that poses a serious threat to patient safety and device functionality. Antithrombotic material design strategies including the immobilization of anticoagulants, alterations in surface chemistries and morphology, and the release of antithrombotic compounds have made great strides in the field with the ultimate goal of circumventing the need for systemic anticoagulation, but have yet to achieve the same hemocompatibility as the native endothelium. Given that the endothelium achieves this state through the use of many mechanisms of action, there is a rising trend in combining these established design strategies for improved antithrombotic actions. Here, we describe this emerging paradigm, highlighting the apparent advantages of multiple antithrombotic mechanisms of action and discussing the demonstrated potential of this new direction.
Collapse
Affiliation(s)
- Morgan Ashcraft
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
8
|
Liang Q, Ge S, Liu C, Quan X, Tan B, Xu K, Zou H. The effect of composite PHB coating on the biological properties of a magnesium based alloy. J Biomater Appl 2021; 35:1264-1274. [PMID: 33632006 DOI: 10.1177/0885328221998040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnesium alloys have been widely investigated as biodegradable cardiovascular temporal implants due to their better mechanical properties and biocompatibility, but the rapid degradation limited its application. In this study, the anodic oxidation-Cu structure was used to improve the adhesive strength and stability between poly-β-hydroxybutyrate (PHB) and magnesium alloys, and the effects of anodic oxidation magnesium alloys with copper film and PHB film (MACP) on human umbilical vein endothelial cells (HUVECs), blood compatibility and antibacterial properties were investigated in this research. As the result, the MACP structure had a stable structure and better corrosion resistance, and significant antibacterial properties. The coating would not affect the original excellent biocompatibility of the magnesium alloy. It was indicated that MACP was a potential surface modification strategy for vascular stents candidate material.
Collapse
Affiliation(s)
- Quan Liang
- Chongqing University of Technology, Chongqing, China
| | - Shuping Ge
- School of Chemistry and Chemical Engineering Chongqing University of Technology Chongqing, China
| | - Chenyu Liu
- Chongqing University of Technology, Chongqing, China
| | - Xuejun Quan
- Chongqing University of Technology, Chongqing, China
| | - Binbin Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kai Xu
- China Coal Mining Group Chongqing Research Institute Co. LTD., Chongqing, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, China
| |
Collapse
|
9
|
Kasapgil E, Badv M, Cantú CA, Rahmani S, Erbil HY, Anac Sakir I, Weitz JI, Hosseini-Doust Z, Didar TF. Polysiloxane Nanofilaments Infused with Silicone Oil Prevent Bacterial Adhesion and Suppress Thrombosis on Intranasal Splints. ACS Biomater Sci Eng 2021; 7:541-552. [PMID: 33470781 DOI: 10.1021/acsbiomaterials.0c01487] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Like all biofluid-contacting medical devices, intranasal splints are highly prone to bacterial adhesion and clot formation. Despite their widespread use and the numerous complications associated with infected splints, limited success has been achieved in advancing their safety and surface biocompatibility, and, to date, no surface-coating strategy has been proposed to simultaneously enhance the antithrombogenicity and bacterial repellency of intranasal splints. Herein, we report an efficient, highly stable lubricant-infused coating for intranasal splints to render their surfaces antithrombogenic and repellent toward bacterial cells. Lubricant-infused intranasal splints were prepared by creating superhydrophobic polysiloxane nanofilament (PSnF) coatings using surface-initiated polymerization of n-propyltrichlorosilane (n-PTCS) and further infiltrating them with a silicone oil lubricant. Compared with commercially available intranasal splints, lubricant-infused, PSnF-coated splints significantly attenuated plasma and blood clot formation and prevented bacterial adhesion and biofilm formation for up to 7 days, the typical duration for which intranasal splints are kept. We further demonstrated that the performance of our engineered biointerface is independent of the underlying substrate and could be used to enhance the hemocompatibility and repellency properties of other medical implants such as medical-grade catheters.
Collapse
Affiliation(s)
- Esra Kasapgil
- Department of Materials Science and Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey.,School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Maryam Badv
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Claudia Alonso Cantú
- Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Sara Rahmani
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - H Yildirim Erbil
- Department of Chemical Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey
| | - Ilke Anac Sakir
- Department of Materials Science and Engineering, Gebze Technical University, TR-41400 Gebze, Kocaeli, Turkey
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Medicine, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Thrombosis & Atherosclerosis Research Institute (TaARI), 237 Barton Street East, Hamilton, Ontario, Canada L8L 2X2
| | - Zeinab Hosseini-Doust
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Chemical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8.,Institute for Infectious Disease Research (IIDR), McMaster University, 1280 Main St W, Hamilton, Ontario, Canada L8S 4L8
| |
Collapse
|
10
|
A biomimetic basement membrane consisted of hybrid aligned nanofibers and microfibers with immobilized collagen IV and laminin for rapid endothelialization. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Badv M, Bayat F, Weitz JI, Didar TF. Single and multi-functional coating strategies for enhancing the biocompatibility and tissue integration of blood-contacting medical implants. Biomaterials 2020; 258:120291. [PMID: 32798745 DOI: 10.1016/j.biomaterials.2020.120291] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Device-associated clot formation and poor tissue integration are ongoing problems with permanent and temporary implantable medical devices. These complications lead to increased rates of mortality and morbidity and impose a burden on healthcare systems. In this review, we outline the current approaches for developing single and multi-functional surface coating techniques that aim to circumvent the limitations associated with existing blood-contacting medical devices. We focus on surface coatings that possess dual hemocompatibility and biofunctionality features and discuss their advantages and shortcomings to providing a biocompatible and biodynamic interface between the medical implant and blood. Lastly, we outline the newly developed surface modification techniques that use lubricant-infused coatings and discuss their unique potential and limitations in mitigating medical device-associated complications.
Collapse
Affiliation(s)
- Maryam Badv
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fereshteh Bayat
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Jeffrey I Weitz
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Thrombosis & Atherosclerosis Research Institute (TaARI), Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada; Institute for Infectious Disease Research (IIDR), McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
12
|
Immobilization of Fibronectin-Loaded Polyelectrolyte Nanoparticles on Cardiovascular Material Surface to Improve the Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5478369. [PMID: 31781622 PMCID: PMC6875231 DOI: 10.1155/2019/5478369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Vascular stent interventional therapy is the main method for clinical treatment of coronary artery diseases. However, due to the insufficient biocompatibility of cardiovascular materials, the implantation of stents often leads to serious adverse cardiac events. Surface biofunctional modification to improve the biocompatibility of vascular stents has been the focus of current research. In this study, based on the structure and function of extracellular matrix on vascular injury healing, a novel fibronectin-loaded poly-l-lysine/heparin nanoparticles was constructed for stent surface modification. In vitro blood compatibility evaluation results showed that the nanoparticles-modified surface could effectively reduce platelet adhesion and activation. In vitro cellular compatibility evaluation results indicated that the nanocoating may provide adequate efficacy in promoting the adhesion and proliferation of endothelial cells and thereby accelerate endothelialization. This study provides a new approach for the surface biological function modification of vascular stents.
Collapse
|
13
|
Reggente M, Kriegel S, He W, Masson P, Pourroy G, Mura F, Faerber J, Passeri D, Rossi M, Palkowski H, Carradò A. How alkali-activated Ti surfaces affect the growth of tethered PMMA chains: a close-up study on the PMMA thickness and surface morphology. PURE APPL CHEM 2019. [DOI: 10.1515/pac-2019-0223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
The alkali-activation of titanium (Ti) surfaces performed in a heated sodium hydroxide (NaOH) aqueous solution, results in a porous layer rich in hydroxyl (OH) groups, the structure and porosity of which strongly depend on the reaction time and NaOH concentration used. In this study, a polymerization initiator is covalently grafted on the alkali-activated Ti substrates by using a phosphonic acid as coupling agent and the resulting surfaces are used as scaffolds to drive the growth of tethered poly(methyl methacrylate) (PMMA) chains via a surface initiated atom transfer radical polymerisation (SI-ATRP). A close-up investigation of how different treatment times (1 h, 3 h, 6 h, 12 h, and 24 h) and NaOH concentrations (0.1 M, 0.5 M, 1 M, 2 M, and 5 M) affect the final PMMA morphology and thickness are presented.
Collapse
Affiliation(s)
- Melania Reggente
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
| | - Sebastien Kriegel
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Wenjia He
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Patrick Masson
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Geneviève Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Francesco Mura
- Center for Nanotechnology for Engineering (CNIS) , Sapienza University of Rome , P. le A. Moro 5 , 00185 Rome , Italy
| | - Jacques Faerber
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (BASE) , Sapienza University of Rome , Via Antonio Scarpa 16 , 00161 Rome , Italy
- Center for Nanotechnology for Engineering (CNIS) , Sapienza University of Rome , P. le A. Moro 5 , 00185 Rome , Italy
| | - Heinz Palkowski
- Clausthal University of Technology (TUC), IMET Institute of Metallurgy , Robert-Koch-Strasse 42 , 38678 Clausthal-Zellerfeld , Germany
| | - Adele Carradò
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS , Université de Strasbourg , 23 rue du Loess BP 43 , 67034 Strasbourg , France
| |
Collapse
|
14
|
Elucidation of Endothelial Cell Hemostatic Regulation with Integrin-Targeting Hydrogels. Ann Biomed Eng 2019; 47:866-877. [PMID: 30607644 DOI: 10.1007/s10439-018-02194-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
Despite advances in the development of materials for cardiovascular devices, current strategies generally lack the thromboresistance of the native endothelium both in terms of efficacy and longevity. To harness this innate hemostatic regulation and improve long-term hemocompatibility, biohybrid devices are designed to promote endothelialization. Much of the research effort to date has focused on the use of extracellular matrix (ECM)-mimics and coatings to promote endothelial cell adhesion and migration with less attention given to the effect of the supported ECM binding events on hemostatic regulation. In this study, we developed integrin-targeted hydrogels to investigate the individual and combined effects of integrin binding events supported by many ECM-based coatings (α1β1, α2β1, α5β1, αvβ3). Targeted endothelial cell integrin interactions were first confirmed with antibody blocking studies and then correlated with gene expression of hemostatic regulators and a functional assay of platelet attachment and activation. Surfaces that targeted integrins α1β1 and α2β1 resulted in an endothelial cell layer that exhibited a thromboresistant phenotype with an associated reduction in platelet attachment and activation. It is anticipated that identification of specific integrins that promote endothelial cell adhesion as well as thromboresistance will enable the design of cardiovascular materials with improved long-term hemocompatibility.
Collapse
|
15
|
Modi A, Verma SK, Bellare J. Extracellular matrix-coated polyethersulfone-TPGS hollow fiber membranes showing improved biocompatibility and uremic toxins removal for bioartificial kidney application. Colloids Surf B Biointerfaces 2018; 167:457-467. [PMID: 29723817 DOI: 10.1016/j.colsurfb.2018.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022]
Abstract
In this study, L-3, 4-dihydroxyphenylalanine and human collagen type IV were coated over the outer surface of the custom-made hollow fiber membranes (HFMs) with the objective of simultaneously improving biocompatibility leading to proliferation of human embryonic kidney cells-293 (HEK-293) and improving separation of uremic toxins, thereby making them suitable for bioartificial kidney application. Physicochemical characterization showed the development of coated HFMs, resulting in low hemolysis (0.25 ± 0.10%), low SC5b-9 marker level (7.95 ± 1.50 ng/mL), prolonged blood coagulation time, and minimal platelet adhesion, which indicated their improved human blood compatibility. Scanning electron microscopy and confocal laser scanning microscopy showed significantly improved attachment and proliferation of HEK-293 cells on the outer surface of the coated HFMs, which was supported by the results of glucose consumption and MTT cell proliferation assay. The solute rejection profile of these coated HFMs was compared favorably with that of the commercial dialyzer membranes. These coated HFMs showed a remarkable 1.6-3.2 fold improvement in reduction ratio of uremic toxins as compared to standard dialyzer membranes. These results clearly demonstrated that these extracellular matrix-coated HFMs can be a potential biocompatible substrate for the attachment and proliferation of HEK-293 cells and removal of uremic toxins from the simulated blood, which may find future application for bioartificial renal assist device.
Collapse
Affiliation(s)
- Akshay Modi
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Surendra Kumar Verma
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Wadhwani Research Centre for Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India; Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
16
|
Reggente M, Masson P, Dollinger C, Palkowski H, Zafeiratos S, Jacomine L, Passeri D, Rossi M, Vrana NE, Pourroy G, Carradò A. Novel Alkali Activation of Titanium Substrates To Grow Thick and Covalently Bound PMMA Layers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5967-5977. [PMID: 29338177 DOI: 10.1021/acsami.7b17008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Titanium (Ti) is the most widely used metal in biomedical applications because of its biocompatibility; however, the significant difference in the mechanical properties between Ti and the surrounding tissues results in stress shielding which is detrimental for load-bearing tissues. In the current study, to attenuate the stress shielding effect, a new processing route was developed. It aimed at growing thick poly(methyl methacrylate) (PMMA) layers grafted on Ti substrates to incorporate a polymer component on Ti implants. However, the currently available methods do not allow the development of thick polymeric layers, reducing significantly their potential uses. The proposed route consists of an alkali activation of Ti substrates followed by a surface-initiated atom transfer radical polymerization using a phosphonic acid derivative as a coupling agent and a polymerization initiator and malononitrile as a polymerization activator. The average thickness of the grown PMMA layers is approximately 1.9 μm. The Ti activation-performed in a NaOH solution-leads to a porous sodium titanate interlayer with a hierarchical structure and an open microporosity. It promotes the covalent grafting reaction because of high hydroxyl groups' content and enables establishing a further mechanical interlocking between the growing PMMA layer and the Ti substrate. As a result, the produced graduated structure possesses high Ti/PMMA adhesion strength (∼260 MPa). Moreover, the PMMA layer is (i) thicker compared to those obtained with the previously reported techniques (∼1.9 μm), (ii) stable in a simulated body fluid solution, and (iii) biocompatible. This strategy opens new opportunities toward hybrid prosthesis with adjustable mechanical properties with respect to host bone properties for personalized medicines.
Collapse
Affiliation(s)
- Melania Reggente
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg , 23 rue du Loess BP 43, 67034 Strasbourg, France
- Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome , Via Antonio Scarpa 16, 00161 Rome, Italy
| | - Patrick Masson
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg , 23 rue du Loess BP 43, 67034 Strasbourg, France
| | | | - Heinz Palkowski
- Clausthal University of Technology (TUC), IMET Institute of Metallurgy , Robert-Koch-Strasse 42, 38678 Clausthal-Zellerfeld, Germany
| | - Spyridon Zafeiratos
- Institut de Chimie et Procédés pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, Université de Strasbourg , 25 rue Becquerel, 67087 Strasbourg, France
| | - Leandro Jacomine
- Institut Charles Sadron, CNRS, UPR 22 , 23 rue du Loess BP 84047, 67034 Strasbourg, France
| | - Daniele Passeri
- Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome , Via Antonio Scarpa 16, 00161 Rome, Italy
| | - Marco Rossi
- Department of Basic and Applied Sciences for Engineering (BASE), Sapienza University of Rome , Via Antonio Scarpa 16, 00161 Rome, Italy
- Center for Nanotechnology for Engineering (CNIS), Sapienza University of Rome , P. le A. Moro 5, 00185 Rome, Italy
| | - Nihal Engin Vrana
- Protip Medical , 8 Place de l'Hôpital, 67000 Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité , 1121, 11 rue Humann, 67085 Strasbourg Cedex, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Fédération de Médecine Translationnelle de Strasbourg, Fédération de Recherche Matériaux et Nanosciences Grand Est (FRMNGE) , P. le A. Moro 5, 67000 Strasbourg, France
| | - Geneviève Pourroy
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg , 23 rue du Loess BP 43, 67034 Strasbourg, France
| | - Adele Carradò
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS, Université de Strasbourg , 23 rue du Loess BP 43, 67034 Strasbourg, France
| |
Collapse
|
17
|
Li J, Wu F, Zhang K, He Z, Zou D, Luo X, Fan Y, Yang P, Zhao A, Huang N. Controlling Molecular Weight of Hyaluronic Acid Conjugated on Amine-rich Surface: Toward Better Multifunctional Biomaterials for Cardiovascular Implants. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30343-30358. [PMID: 28836435 DOI: 10.1021/acsami.7b07444] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The molecular weights (MWs) of hyaluronic acid (HA) in extracellular matrix secreted from both vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) play crucial roles in the cardiovascular physiology, as HA with appropriate MW influences important pathways of cardiovascular homeostasis, inhibits VSMC synthetic phenotype change and proliferation, inhibits platelet activation and aggregation, promotes endothelial monolayer repair and functionalization, and prevents inflammation and atherosclerosis. In this study, HA samples with gradients of MW (4 × 103, 1 × 105, and 5 × 105 Da) were prepared by covalent conjugation to a copolymerized film of polydopamine and hexamethylendiamine (PDA/HD) as multifunctional coatings (PDA/HD-HA) with potential to improve the biocompatibility of cardiovascular biomaterials. The coatings immobilized with high-MW-HA (PDA/HD-HA-2: 1 × 105 Da; PDA/HD-HA-3: 5 × 105 Da) exhibited a remarkable suppression of platelet activation/aggregation and thrombosis under 15 dyn/cm2 blood flow and simultaneously suppressed the adhesion and proliferation of VSMC and the adhesion, activation, and inflammatory cytokine release of macrophages. In particular, PDA/HD-HA-2 significantly enhanced VEC adhesion, proliferation, migration, and functional factors release, as well as the captured number of endothelial progenitor cells under dynamic condition. The in vivo results indicated that the multifunctional surface (PDA/HD-HA-2) created a favorable microenvironment of endothelial monolayer formation and functionalization for promoting reendothelialization and reducing restenosis of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Jingan Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Feng Wu
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Kun Zhang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
- School of Life Science, Zhengzhou University , 100 Science Road, Zhengzhou 450001, P. R. China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University , 40 University Road, Zhengzhou 450052, P. R. China
| | - Zikun He
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Dan Zou
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Xiao Luo
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Yonghong Fan
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ping Yang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Ansha Zhao
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University , Chengdu 610031, P. R. China
| |
Collapse
|
18
|
Liu T, Hu Y, Tan J, Liu S, Chen J, Guo X, Pan C, Li X. Surface biomimetic modification with laminin-loaded heparin/poly-l-lysine nanoparticles for improving the biocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:929-936. [PMID: 27987790 DOI: 10.1016/j.msec.2016.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 11/28/2022]
Abstract
Late thrombus and restenosis caused by delayed endothelialization and insufficient biocompatibility of polymer coating continue to be the greatest limitations of drug-eluting stents. In this study, based on the specific structure of vascular basement membrane, a novel biomimetic nano-coating was constructed by incorporating laminin into electrostatic-assembled heparin/poly-l-lysine nanoparticles. Alteration of heparin and poly-l-lysine concentration ratio in a certain range has no significantly influence nanoparticle size, uniformity and stability, but may affect the chemical property and subsequently the binding efficiency to dopamine-coated titanium surface. By use of this feature, four different nanoparticles were synthesized and immobilized on titanium surface for creating gradient nanoparticle binding density. According to in vitro biocompatibility evaluation, the nanoparticle modified surfaces were found to effectively block coagulation pathway and reduce thrombosis formation. Moreover, NP10L and NP15L modified surface with relatively low heparin exposing density (4.9 to 7.1μg/cm2) showed beneficial effect in selective promoting EPCs and ECs proliferation, as well as stimulating cell migration and NO synthesis.
Collapse
Affiliation(s)
- Tao Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, China.
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, China
| | - Jianying Tan
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Shihui Liu
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, China
| | - Junying Chen
- Key Lab. of Advanced Technology for Materials of Chinese Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xin Guo
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, China
| | - Changjiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai'an, China
| | - Xia Li
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical College, Huai'an, China.
| |
Collapse
|
19
|
Haghjooy Javanmard S, Anari J, Zargar Kharazi A, Vatankhah E. In vitro hemocompatibility and cytocompatibility of a three-layered vascular scaffold fabricated by sequential electrospinning of PCL, collagen, and PLLA nanofibers. J Biomater Appl 2016; 31:438-49. [PMID: 27247131 DOI: 10.1177/0885328216652068] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Aiming to mimic a blood vessel structurally, morphologically, and mechanically, a sequential electrospinning technique using a small diameter mandrel collector was performed and a three-layered tubular scaffold composed of nanofibers of polycaprolactone, collagen, and poly(l-lactic acid) as inner, intermediate, and outer layers, respectively, was developed. Biological performances of the scaffold in terms of compatibility with blood and endothelial cells were assessed to get some insights into its potential use as a tissue engineered small-diameter vascular replacement compared to an expanded polytetrafluoroethylene vascular graft. Due to direct contact of the blood and endothelial cells with inner surface of the scaffold, polycaprolactone fibers were characterized using SEM, water contact angle measurement, and ATR-FTIR. Despite similar surface wettability of the electrospun scaffold and the expanded polytetrafluoroethylene graft, the three-layered scaffold significantly reduced platelet adhesion and hemolysis ratio compared to expanded polytetrafluoroethylene graft while comparable blood clotting profiles were observed for both electrospun scaffold and expanded polytetrafluoroethylene graft. However, inflammatory response to nanofibrous surface of the scaffold was reduced compared to expanded polytetrafluoroethylene graft. The electrospun scaffold also presented a significantly more supportive substrate for endothelialization than the expanded polytetrafluoroethylene graft. The results described herein suggested that the three-layered scaffold has superior biological properties compared to an expanded polytetrafluoroethylene graft for vascular tissue engineering.
Collapse
Affiliation(s)
- Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jamal Anari
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials, School of Advanced Medical Technology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Cellulose and Paper Technology, Faculty of New Technologies and Energy Engineering, Shahid Beheshti University, Zirab Campus, Mazandaran, Iran
| |
Collapse
|
20
|
Zhang K, Chen JY, Qin W, Li JA, Guan FX, Huang N. Constructing bio-layer of heparin and type IV collagen on titanium surface for improving its endothelialization and blood compatibility. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:81. [PMID: 26936367 DOI: 10.1007/s10856-016-5693-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/21/2016] [Indexed: 06/05/2023]
Abstract
The modification of cardiovascular stent surface for a better micro-environment has gradually changed to multi-molecule, multi-functional designation. In this study, heparin (Hep) and type IV collagen (IVCol) were used as the functional molecule to construct a bifunctional micro-environment of anticoagulation and promoting endothelialization on titanium (Ti). The surface characterization results (AFM, Alcian Blue 8GX Staining and fluorescence staining of IVCol) indicated that the bio-layer of Hep and IVCol were successfully fabricated on the Ti surface through electrostatic self-assembly. The APTT and platelet adhesion test demonstrated that the bionic layer possessed better blood compatibility compared with Ti surface. The adhesion, proliferation, migration and apoptosis tests of endothelial cells proved that the Hep/IVCol layer was able to enhance the endothelialization of the Ti surface. The in vivo animal implantation results manifested that the bionic surface could encourage new endothelialization. This work provides an important reference for the construction of multifunction micro-environment on the cardiovascular scaffold surface.
Collapse
Affiliation(s)
- Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China.
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University, 40 University Road, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Jun-ying Chen
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Wei Qin
- Jiangsu Heze Allian Cells Bioscience Co., Ltd, Changzhou, 213000, People's Republic of China
| | - Jing-an Li
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Fang-xia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, People's Republic of China
- Center of Stem Cell and Regenerative Medicine, First Affiliated Hospital of Zhengzhou University, 40 University Road, Zhengzhou, 450052, People's Republic of China
| | - Nan Huang
- Key Laboratory for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| |
Collapse
|
21
|
Koenig G, Ozcelik H, Haesler L, Cihova M, Ciftci S, Dupret-Bories A, Debry C, Stelzle M, Lavalle P, Vrana NE. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration. Acta Biomater 2016; 33:301-10. [PMID: 26802440 DOI: 10.1016/j.actbio.2016.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/17/2015] [Accepted: 01/19/2016] [Indexed: 11/30/2022]
Abstract
Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards the titanium beads and fibroblast proliferation was significantly higher in hybrids compared to gel only controls. The MMP (Matrix Metalloproteinase)-sensitive hydrogels induced sprouting by cells in co-culture configuration which was quantified by fluorescence microscopy, confocal microscopy and qRT-PCR (Quantitative Reverse transcription polymerase chain reaction). When the microhybrid up-scaled to 3D thick structures, cellular localisation in specific areas of the 3D titanium structures was achieved, without decreasing overall cell proliferation compared to titanium only scaffolds. Microhybrids of titanium and hydrogels are useful models for deciding the necessary modifications of metallic implants and they can be used as a modelling system for the study of tissue/titanium implant interactions. STATEMENT OF SIGNIFICANCE This article demonstrates a method to apply cell-laden hydrogels to porous titanium implants and a model of titanium/hydrogel interaction at micro-level using titanium microbeads. The feasibility of site-specific modification of titanium implants with cell-laden microgels has been demonstrated. Use of titanium microbeads in combination with hydrogels with conventional analysis techniques as described in the article can facilitate the characterisation of surface modification of titanium in a relevant model system.
Collapse
Affiliation(s)
- Geraldine Koenig
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Hayriye Ozcelik
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | - Lisa Haesler
- NMI Natural and Medical Sciences Institute at the University of Tübingen, BioMEMS Group, Markwiesenstraße 55, D-72770 Reutlingen, Germany
| | - Martina Cihova
- NMI Natural and Medical Sciences Institute at the University of Tübingen, BioMEMS Group, Markwiesenstraße 55, D-72770 Reutlingen, Germany
| | - Sait Ciftci
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Service Oto-Rhino-Laryngologie, 67098 Strasbourg, France
| | - Agnes Dupret-Bories
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Service Oto-Rhino-Laryngologie, 67098 Strasbourg, France; Institut Universitaire du Cancer de Toulouse, 1 avenue Irène Joliot Curie, 31059 Toulouse, France
| | - Christian Debry
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Hôpitaux Universitaires de Strasbourg, Service Oto-Rhino-Laryngologie, 67098 Strasbourg, France
| | - Martin Stelzle
- NMI Natural and Medical Sciences Institute at the University of Tübingen, BioMEMS Group, Markwiesenstraße 55, D-72770 Reutlingen, Germany
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 Rue Humann, 67000 Strasbourg, France; Faculté de Chirurgie Dentaire, Université de Strasbourg, 8 rue Sainte Elisabeth, 67000 Strasbourg, France
| | | |
Collapse
|
22
|
Jin K, Li B, Lou L, Xu Y, Ye X, Yao K, Ye J, Gao C. In vivo vascularization of MSC-loaded porous hydroxyapatite constructs coated with VEGF-functionalized collagen/heparin multilayers. Sci Rep 2016; 6:19871. [PMID: 26794266 PMCID: PMC4726420 DOI: 10.1038/srep19871] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/18/2015] [Indexed: 12/18/2022] Open
Abstract
Rapid and adequate vascularization is vital to the long-term success of porous orbital enucleation implants. In this study, porous hydroxyapatite (HA) scaffolds coated with vascular endothelial growth factor (VEGF)-functionalized collagen (COL)/heparin (HEP) multilayers (porosity 75%, pore size 316.8 ± 77.1 μm, VEGF dose 3.39 ng/mm3) were fabricated to enhance vascularization by inducing the differentiation of mesenchymal stem cells (MSCs) to endothelial cells. The in vitro immunofluorescence staining, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting results demonstrated that the expression of the endothelial differentiation markers CD31, Flk-1, and von Willebrand factor (vWF) was significantly increased in the HA/(COL/HEP)5/VEGF/MSCs group compared with the HA/VEGF/MSCs group. Moreover, the HA/(COL/HEP)5 scaffolds showed a better entrapment of the MSCs and accelerated cell proliferation. The in vivo assays showed that the number of newly formed vessels within the constructs after 28 d was significantly higher in the HA/(COL/HEP)5/VEGF/MSCs group (51.9 ± 6.3/mm2) than in the HA (26.7 ± 2.3/mm2) and HA/VEGF/MSCs (38.2 ± 2.4/mm2) groups. The qRT-PCR and western blotting results demonstrated that the HA/(COL/HEP)5/VEGF/MSCs group also had the highest expression of CD31, Flk-1, and vWF at both the mRNA and protein levels.
Collapse
Affiliation(s)
- Kai Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Bo Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Lixia Lou
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Yufeng Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Xin Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Ke Yao
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou 310009, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Pacelli S, Manoharan V, Desalvo A, Lomis N, Jodha KS, Prakash S, Paul A. Tailoring biomaterial surface properties to modulate host-implant interactions: implication in cardiovascular and bone therapy. J Mater Chem B 2015; 4:1586-1599. [PMID: 27630769 PMCID: PMC5019489 DOI: 10.1039/c5tb01686j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Host body response to a foreign medical device plays a critical role in defining its fate post implantation. It is thus important to control host-material interactions by designing innovative implant surfaces. In the recent years, biochemical and topographical features have been explored as main target to produce this new type of bioinert or bioresponsive implants. The review discusses specific biofunctional materials and strategies to achieve a precise control over implant surface properties and presents possible solutions to develop next generation of implants, particularly in the fields of bone and cardiovascular therapy.
Collapse
Affiliation(s)
- Settimio Pacelli
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Vijayan Manoharan
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Anna Desalvo
- University of Southampton, School of Medicine, University Road, Southampton SO17 1BJ, United Kingdom
| | - Nikita Lomis
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Kartikeya Singh Jodha
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, Duff Medical Building, 3775 University Street, McGill University, QC, Canada H3A 2B4
| | - Arghya Paul
- BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of Engineering, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
24
|
Jin K, Ye X, Li S, Li B, Zhang C, Gao C, Ye J. A biomimetic collagen/heparin multi-layered porous hydroxyapatite orbital implant for in vivo vascularization studies on the chicken chorioallantoic membrane. Graefes Arch Clin Exp Ophthalmol 2015; 254:83-9. [PMID: 26330187 DOI: 10.1007/s00417-015-3144-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/17/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The vascularization of an orbital implant is a key issue for reducing complications, such as exposure and infection. METHODS Here, we developed a facile layer-by-layer assembly approach to modify porous hydroxyapatite (pHA) orbital implants with five collagen (COL)/heparin (HEP) multilayers. RESULTS SEM characterization showed that the average pore size of the pHA/(COL/HEP)5 scaffold was 316.8 ± 77.1 μm. After being coated with five COL/HEP multilayers, the mechanical strength was improved compared with that of the pHA scaffolds. The in vitro assay displayed that the pHA scaffolds covered with COL/HEP multilayers resulted in a larger number of human umbilical vein endothelial cells after being cultured for 14 days. The macroscopic evaluation and semi-quantitative vascular density analysis of the chicken chorioallantoic membrane assay showed that the pHA/(COL/HEP)5 scaffolds resulted in more intense angiogenesis than the pHA scaffolds. CONCLUSIONS These studies demonstrate that the biomembrane-mimicking coating of COL/HEP multilayers is a simple and effective strategy to endow combined biological performances of pHA orbital implants and to potentially reduce implant-related complications.
Collapse
Affiliation(s)
- Kai Jin
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Xin Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China
| | - Sha Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education and Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Caiqiao Zhang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education and Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
25
|
Hemocompatibility and selective cell fate of polydopamine-assisted heparinized PEO/PLLA composite coating on biodegradable AZ31 alloy. Colloids Surf B Biointerfaces 2014; 121:451-60. [DOI: 10.1016/j.colsurfb.2014.06.036] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 11/17/2022]
|
26
|
Freeze-Thawed Hybridized Preparation with Biomimetic Self-Assembly for a Polyvinyl Alcohol/Collagen Hydrogel Created for Meniscus Tissue Engineering. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2014. [DOI: 10.4028/www.scientific.net/jbbbe.21.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Freeze-thawed hybridized preparation and the biomimetic self-assembly technique were used to fabricate hydrogel as tissue engineered scaffolds for meniscus tissue. Because of the advantages of both techniques, they were hybridized together as an interesting preparation for hydrogel. Three molecular weights (high, medium, and low) of PVA were prepared in a biomimetic solution before formation into hydrogel by freeze-thawing. The most suitable molecular weight PVA for hydrogel formation was chosen to be mixed with collagen. PVA, PVA/collagen, and collagen were prepared in biomimetic solutions and freeze-thawed into hydrogels. The hydrogels were analyzed and characterized by FTIR, DSC, and SEM. FTIR characterization indicated that high molecular weight PVA formed molecular interaction better than the other molecular weights, and PVA molecules formed molecular interaction with collagen molecules via –OH and C=O groups. DSC characterization showed that the hybridized preparation of freeze-thawing and biomimetic self-assembly kept the characteristics of PVA and collagen. SEM analysis demonstrated that the morphological formation of PVA/collagen was hybridized during freeze-thawing and collagen self-assembly. The morphological structure was organized into a porous network structure. The porous structure showed a rough wall that was formed by the hybridized structure of the crystal domain dispersed in amorphous and collagen self-assembly.
Collapse
|
27
|
Yuan S, Li Z, Zhao J, Luan S, Ma J, Song L, Shi H, Jin J, Yin J. Enhanced biocompatibility of biostable poly(styrene-b-isobutylene-b-styrene) elastomer via poly(dopamine)-assisted chitosan/hyaluronic acid immobilization. RSC Adv 2014. [DOI: 10.1039/c4ra04523h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
New strategies for developing cardiovascular stent surfaces with novel functions (Review). Biointerphases 2014; 9:029017. [DOI: 10.1116/1.4878719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
29
|
A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:235-43. [PMID: 24656374 DOI: 10.1016/j.msec.2014.02.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/13/2014] [Accepted: 02/04/2014] [Indexed: 12/22/2022]
Abstract
The method of stent implantation is currently considered an effective means of treating atherosclerosis. However, implanting of cardiovascular stent often leads to intimal breakage and hyperplasia. The phenomenon that vascular smooth muscle cells (SMCs) transform from contractile to synthetic phenotype becomes a serious obstacle to intimal recovery. To improve how SMCs transform from a synthetic to contractile phenotype, a technique of coimmobilization was used to form type IV collagen (CoIV) and hyaluronic acid (HA) coating on the widely used stent material, titanium (Ti). In this work, several bio-functional coatings made of CoIV/HA mixtures in different ratios were fabricated on the Ti surface. The quantitative characterization of CoIV showed that introducing HA could enhance the amount of the immobilized CoIV on the alkali activated Ti (TiOH) surface. The immunofluorescence staining results of myosin heavy chain (MHC) and DAPI showed that the coating of CoIV/HA in ratios of 200 μg/ml (M200) and 500 μg/ml (M500) also could promote SMCs expressing more contractile phenotype compared with TiOH/CoIV control samples, while the AO/PI staining results indicated that SMCs on the M200 and M500 samples showed less apoptosis ratio. Thus, we hope that this study can provide more helpful exploration and application for promoting the SMC contractile phenotype on the cardiovascular stents.
Collapse
|
30
|
Xi M, Jin J, Zhang BY. Surface modification of poly(propylene carbonate) by layer-by-layer assembly and its hemocompatibility. RSC Adv 2014. [DOI: 10.1039/c4ra05982d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heparin and lysozyme were used to immobilize onto surface of poly(propylene carbonate) by layer-by-layer assembly to improve hemocompatibility.
Collapse
Affiliation(s)
- Man Xi
- The Research Center for Molecular Science and Engineering
- Northeastern University
- Shenyang 110819, P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, P. R. China
| | - Bao-yan Zhang
- The Research Center for Molecular Science and Engineering
- Northeastern University
- Shenyang 110819, P. R. China
| |
Collapse
|
31
|
Ma J, Luan S, Jin J, Song L, Yuan S, Zheng W, Yin J. Surface modification of cycloolefin polymer via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion. RSC Adv 2014. [DOI: 10.1039/c4ra02619e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cycloolefin polymer was modified via surface-initiated photoiniferter-mediated polymerization for suppressing bioadhesion.
Collapse
Affiliation(s)
- Jiao Ma
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shifang Luan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jing Jin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Shuaishuai Yuan
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences
| | - Wanling Zheng
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, People's Republic of China
| |
Collapse
|
32
|
Li AJ. Immobilization of hesperidin on stainless steel surfaces and its blood compatibility. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2013.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|