1
|
Naseem N, Kushwaha P, Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03408-w. [PMID: 39196394 DOI: 10.1007/s00210-024-03408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and proliferation, continues to be a major global health concern. Breast cancer, the most commonly diagnosed cancer among women, remains a leading cause of cancer-related deaths worldwide. Conventional treatment modalities such as surgery, radiation, and chemotherapy have made significant strides in improving patient outcomes. However, these approaches often face challenges such as limited efficacy, systemic toxicity, and multidrug resistance. Nanotechnology has emerged as a promising avenue for revolutionizing cancer therapy, offering targeted drug delivery, enhanced efficacy, and reduced side effects. Among the various nanocarrier systems, nanostructured lipid carriers (NLCs) have gained considerable attention for their unique advantages. Comprising a blend of solid and liquid lipids, NLCs offer improved drug loading capacity, enhanced stability, sustained release, and biocompatibility. This manuscript provides a comprehensive overview of the role of NLCs in breast cancer management, covering their formulation, methods of preparation, advantages, and disadvantages. Additionally, several studies are presented to illustrate the efficacy of NLCs in delivering anticancer drugs to breast tumors. These studies demonstrate the ability of NLCs to enhance drug cytotoxicity, improve tumor suppression, and minimize systemic toxicity. This manuscript aims to contribute to the existing literature by consolidating current knowledge and providing insights into the future directions of NLC-based therapeutics in breast cancer management.
Collapse
Affiliation(s)
- Nazish Naseem
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Faheem Haider
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| |
Collapse
|
2
|
Hadkar VM, Mohanty C, Selvaraj CI. Biopolymeric nanocarriers in cancer therapy: unleashing the potency of bioactive anticancer compounds for enhancing drug delivery. RSC Adv 2024; 14:25149-25173. [PMID: 39139249 PMCID: PMC11317881 DOI: 10.1039/d4ra03911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Effective cancer treatment is becoming a global concern, and recent developments in nanomedicine are essential for its treatment. Cancer is a severe metabolic syndrome that affects the human population and is a significant contributing factor to deaths globally. In science, nanotechnology offers rapidly developing delivery methods for natural bioactive compounds that are becoming increasingly prominent and can be used to treat diseases in a site-specific way. Chemotherapy and radiotherapy are conventional approaches for preventing cancer progression and have adverse effects on the human body. Many chemically synthesized drugs are used as anticancer agents, but they have several side effects; hence, they are less preferred. Medicinal plants and marine microorganisms represent a vast, mostly untapped reservoir of bioactive compounds for cancer treatment. However, they have several limitations, including nonspecific targeting, weak water solubility and limited therapeutic potential. An alternative option is the use of biopolymeric nanocarriers, which can generate effective targeted treatment therapies when conjugated with natural anticancer compounds. The present review focuses on biopolymeric nanocarriers utilizing natural sources as anticancer drugs with improved tumor-targeting efficiency. This review also covers various natural anticancer compounds, the advantages and disadvantages of natural and synthetic anticancer compounds, the problems associated with natural anticancer drugs and the advantages of biopolymeric nanocarriers over synthetic nanocarriers as drug delivery agents. This review also discusses various biopolymeric nanocarriers for enhancing the controlled delivery of anticancer compounds and the future development of nanomedicines for treating cancer.
Collapse
Affiliation(s)
- Vrushali Manoj Hadkar
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chirasmita Mohanty
- School of Biosciences and Technology, Vellore Institute of Technology (VIT) Vellore 632014 Tamil Nadu India
| | - Chinnadurai Immanuel Selvaraj
- Department of Genetics and Plant Breeding, VIT School of Agricultural Sciences and Advanced Learning (VAIAL), VIT Vellore 632014 Tamil Nadu India
| |
Collapse
|
3
|
Ng CX, How CW, Lee SH. Precision-engineered PEGylated liposome for dual payload delivery: enhancing efficacy of Doxorubicin hydrochloride and miR-145 mimics in breast cancer cells. J Liposome Res 2024:1-14. [PMID: 39101839 DOI: 10.1080/08982104.2024.2385457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Micro-145 down-regulation is frequently found in breast cancers, indicating its potential as a therapeutic target. The introduction of exogenous miR-145 directly to the tumor sites has been a hurdle due to limited delivery, low bioavailability, and hence lower therapeutic efficacy. Thus, this study aims to synthesize and characterize PEGylated liposome co-loaded with Dox-HCl and miR-145 mimics to investigate its in-vitro anti-proliferative activity against MDA-MB-231 cells. The formulations were developed using a composite central design to optimize nanoparticle size and encapsulation efficiency (EE%) of Dox-HCl and miR-145 mimics. The optimized formulation exhibited the highest desirability function (D = 0.814) and displayed excellent stability over 60 days at 4 °C, maintaining a stable nanoparticle size and zeta potential, with relative EE% of Dox-HCl and miR-145 mimics on the final incubation day 94.97 ± 0.53% and 51.96 ± 2.67%, respectively. The system displayed a higher rate of drug release within 4 h of incubation at an acidic condition. Additionally, the optimized formulation demonstrated a higher toxicity (IC50 = 0.58 μM) against MDA-MB-231 cells than the free Dox- HCl and miR-145 regimen (IC50 = 1.00 μM). Our findings suggest that PEGylated liposome is tunable for effective concurrent delivery of anticancer drugs and therapeutic miRNAs into tumor cells, necessitating further investigation.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, Selangor, Malaysia
- Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
Trendafilova I, Popova M. Porous Silica Nanomaterials as Carriers of Biologically Active Natural Polyphenols: Effect of Structure and Surface Modification. Pharmaceutics 2024; 16:1004. [PMID: 39204349 PMCID: PMC11359489 DOI: 10.3390/pharmaceutics16081004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024] Open
Abstract
For centuries, humans have relied on natural products to prevent and treat numerous health issues. However, biologically active compounds from natural sources, such as polyphenols, face considerable challenges, due to their low solubility, rapid metabolism, and instability, which hinder their effectiveness. Advances in the nanotechnologies have provided solutions to overcoming these problems through the use of porous silica materials as polyphenol carriers. These materials possess unique properties, such as a high specific surface area, adjustable particle and pore sizes, and a surface that can be easily and selectively modified, which favor their application in delivery systems of polyphenols. In this review, we summarize and discuss findings on how the pore and particle size, structure, and surface modification of silica materials influence the preparation of efficient delivery systems for biologically active polyphenols from natural origins. The available data demonstrate how parameters such as adsorption capacity, release and antioxidant properties, bioavailability, solubility, stability, etc., of the studied delivery systems could be affected by the structural and chemical characteristics of the porous silica carriers. Results in the literature confirm that by regulating the structure and selecting the appropriate surface modifications, the health benefits of the loaded bioactive molecules can be significantly improved.
Collapse
Affiliation(s)
- Ivalina Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, BG-1000 Sofia, Bulgaria;
| | | |
Collapse
|
5
|
Rajoriya V, Gupta R, Vengurlekar S, Surendra Singh U. Nanostructured lipid carriers (NLCs): A promising candidate for lung cancer targeting. Int J Pharm 2024; 655:123986. [PMID: 38493842 DOI: 10.1016/j.ijpharm.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Lung cancer stands as the foremost health issue and the principal reason for mortality worldwide. It is projected that India will see over 1.73 million new cases and more than 880,000 deaths related to cancer, with lung cancer being a significant contributor. The efficiency of existing chemotherapy procedures is not optimal because of less soluble nature and short half-life of anticancer substances. More precipitated toxicity and non-existence of targeting propensity can lead to severe side effects, non-compliance, and inconvenience for patients. Nonetheless, the domain of nanomedicine has undergone a revolution in the past few years with the advent of novel drug delivery mechanisms that tackle the drawbacks of conventional approaches. Diverse nanoparticle-based drug delivery methods, including liposomes, nanoparticles, nanostructured lipid carrier and solid lipid nanoparticle that encapsulated chemotherapy drugs, are currently employed for efficient lung cancer therapy. NLCs, recognized as the second-generation lipid nanocarriers, are a focused drug delivery mechanism that has garnered significant interest owing to their multitude of advantages such as increased stability, minimal toxicity, prolonged shelf life, superior encapsulation capability, and biocompatible nature. This review focuses on the NLCs carrier system, discussing its preparation methods, types, characterization, applications, and future prospects in lung cancer treatment.
Collapse
Affiliation(s)
- Vaibhav Rajoriya
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India.
| | - Ravikant Gupta
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Sudha Vengurlekar
- Faculty, University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| | - Upama Surendra Singh
- University Institute of Pharmacy, Oriental University, Indore, Madhya Pradesh 453555 India
| |
Collapse
|
6
|
Dogbey DM, Torres VES, Fajemisin E, Mpondo L, Ngwenya T, Akinrinmade OA, Perriman AW, Barth S. Technological advances in the use of viral and non-viral vectors for delivering genetic and non-genetic cargos for cancer therapy. Drug Deliv Transl Res 2023; 13:2719-2738. [PMID: 37301780 PMCID: PMC10257536 DOI: 10.1007/s13346-023-01362-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2023] [Indexed: 06/12/2023]
Abstract
The burden of cancer is increasing globally. Several challenges facing its mainstream treatment approaches have formed the basis for the development of targeted delivery systems to carry and distribute anti-cancer payloads to their defined targets. This site-specific delivery of drug molecules and gene payloads to selectively target druggable biomarkers aimed at inducing cell death while sparing normal cells is the principal goal for cancer therapy. An important advantage of a delivery vector either viral or non-viral is the cumulative ability to penetrate the haphazardly arranged and immunosuppressive tumour microenvironment of solid tumours and or withstand antibody-mediated immune response. Biotechnological approaches incorporating rational protein engineering for the development of targeted delivery systems which may serve as vehicles for packaging and distribution of anti-cancer agents to selectively target and kill cancer cells are highly desired. Over the years, these chemically and genetically modified delivery systems have aimed at distribution and selective accumulation of drug molecules at receptor sites resulting in constant maintenance of high drug bioavailability for effective anti-tumour activity. In this review, we highlighted the state-of-the art viral and non-viral drug and gene delivery systems and those under developments focusing on cancer therapy.
Collapse
Affiliation(s)
- Dennis Makafui Dogbey
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Emmanuel Fajemisin
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Liyabona Mpondo
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Takunda Ngwenya
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Olusiji Alex Akinrinmade
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Adam W Perriman
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD, Bristol, UK
| | - Stefan Barth
- South African Research Chair in Cancer Biotechnology, Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
- Medical Biotechnology and Immunotherapy Research Unit, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
7
|
Sobczak-Kupiec A, Kudłacik-Kramarczyk S, Drabczyk A, Cylka K, Tyliszczak B. Studies on PVP-Based Hydrogel Polymers as Dressing Materials with Prolonged Anticancer Drug Delivery Function. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2468. [PMID: 36984346 PMCID: PMC10054093 DOI: 10.3390/ma16062468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Tamoxifen is a well-known active substance with anticancer activity. Currently, many investigations are performed on the development of carriers that provide its effective delivery. Particular attention is directed toward the formation of cyclodextrin-drug complexes to provide prolonged drug delivery. According to our knowledge, carriers in the form of polyvinylpyrrolidone (PVP)/gelatin-based hydrogels incorporated with β-cyclodextrin-tamoxifen complexes and additionally modified with nanogold have not been presented in the literature. In this work, two series of these materials have been synthesized-with tamoxifen and with its complex with β-cyclodextrin. The process of obtaining drug carrier systems consisted of several stages. Firstly, the nanogold suspension was obtained. Next, the hydrogels were prepared via photopolymerization. The size, dispersity and optical properties of nanogold as well as the swelling properties of hydrogels, their behavior in simulated physiological liquids and the impact of these liquids on their chemical structure were verified. The release profiles of tamoxifen from composites were also determined. The developed materials showed swelling capacity, stability in tested environments that did not affect their structure, and the ability to release drugs, while the release process was much more effective in acidic conditions than in alkaline ones. This is a benefit considering their use for anticancer drug delivery, due to the fact that near cancer cells, there is an acidic environment. In the case of the composites containing the drug-β-cyclodextrin complex, a prolonged release process was achieved compared to the drug release from materials with unbound tamoxifen. In terms of the properties and the composition, the developed materials show a great application potential as drug carriers, in particular as carriers of anticancer drugs such as tamoxifen.
Collapse
Affiliation(s)
- Agnieszka Sobczak-Kupiec
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karolina Cylka
- Institute of Inorganic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland
| | - Bozena Tyliszczak
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
8
|
Fernandez-Fernandez A, Manchanda R, Kumari M. Lipid-engineered nanotherapeutics for cancer management. Front Pharmacol 2023; 14:1125093. [PMID: 37033603 PMCID: PMC10076603 DOI: 10.3389/fphar.2023.1125093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes significant mortality and morbidity worldwide, but existing pharmacological treatments are greatly limited by the inherent heterogeneity of cancer as a disease, as well as the unsatisfactory efficacy and specificity of therapeutic drugs. Biopharmaceutical barriers such as low permeability and poor water solubility, along with the absence of active targeting capabilities, often result in suboptimal clinical results. The difficulty of successfully reaching and destroying tumor cells is also often compounded with undesirable impacts on healthy tissue, including off-target effects and high toxicity, which further impair the ability to effectively manage the disease and optimize patient outcomes. However, in the last few decades, the development of nanotherapeutics has allowed for the use of rational design in order to maximize therapeutic success. Advances in the fabrication of nano-sized delivery systems, coupled with a variety of surface engineering strategies to promote customization, have resulted in promising approaches for targeted, site-specific drug delivery with fewer unwanted effects and better therapeutic efficacy. These nano systems have been able to overcome some of the challenges of conventional drug delivery related to pharmacokinetics, biodistribution, and target specificity. In particular, lipid-based nanosystems have been extensively explored due to their high biocompatibility, versatility, and adaptability. Lipid-based approaches to cancer treatment are varied and diverse, including liposomal therapeutics, lipidic nanoemulsions, solid lipid nanoparticles, nanostructured lipidic carriers, lipid-polymer nanohybrids, and supramolecular nanolipidic structures. This review aims to provide an overview of the use of diverse formulations of lipid-engineered nanotherapeutics for cancer and current challenges in the field, as researchers attempt to successfully translate these approaches from bench to clinic.
Collapse
Affiliation(s)
- Alicia Fernandez-Fernandez
- College of Healthcare Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
- *Correspondence: Alicia Fernandez-Fernandez,
| | - Romila Manchanda
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Manisha Kumari
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
9
|
Wang J, Chen W, Du W, Zhang H, Ilmer M, Song L, Hu Y, Ma X. ROS Generative Black Phosphorus-Tamoxifen Nanosheets for Targeted Endocrine-Sonodynamic Synergistic Breast Cancer Therapy. Int J Nanomedicine 2023; 18:2389-2409. [PMID: 37192893 PMCID: PMC10182776 DOI: 10.2147/ijn.s406627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023] Open
Abstract
Introduction Tamoxifen (TAM) has proven to be a therapeutic breakthrough to reduce mortality and recurrence in estrogen receptor-positive (ER+) breast cancer patients. However, the application of TAM exhibits low bioavailability, off-target toxicity, instinct and acquired TAM resistance. Methods We utilized black phosphorus (BP) as a drug carrier and sonosensitizer, integrated with TAM and tumor-targeting ligand folic acid (FA) to construct TAM@BP-FA for synergistic endocrine and sonodynamic therapy (SDT) of breast cancer. The exfoliated BP nanosheets were modified through in situ polymerization of dopamine, followed by electrostatic adsorption of TAM and FA. The anticancer effect of TAM@BP-FA was evaluated through in vitro cytotoxicity and in vivo antitumor model. RNA-sequencing (RNA-seq), quantitative real-time PCR, Western blot analysis, flow cytometry analysis and peripheral blood mononuclear cells (PBMCs) analysis were performed for mechanism investigation. Results TAM@BP-FA had satisfactory drug loading capacity, the TAM release behavior can be controlled through pH microenvironment and ultrasonic stimulation. An amount of hydroxyl radical (∙OH) and singlet oxygen (1O2) were as expected generated under ultrasound stimulation. TAM@BP-FA nanoplatform showed excellent internalization in both TAM-sensitive MCF7 and TAM-resistant (TMR) cells. Using TMR cells, TAM@BP-FA displayed significantly enhanced antitumor ability in comparison with TAM (7.7% vs 69.6% viability at 5μg/mL), the additional SDT further caused 15% more cell death. RNA-seq unraveled the TAM@BP-FA antitumor mechanisms including effects on cell cycle, apoptosis and cell proliferation. Further analysis showed additional SDT successfully triggering reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) reduction. Moreover, PBMCs exposed to TAM@BP-FA induced an antitumor immune response by natural killer (NK) cell upregulation and immunosuppression macrophage reduction. Conclusion The novel BP-based strategy not only delivers TAM specifically to tumor cells but also exhibits satisfactory antitumor effects through targeted therapy, SDT, and immune cell modulation. The nanoplatform may provide a superior synergistic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Weijian Chen
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Wenxiang Du
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Hongjie Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Matthias Ilmer
- Department of General, Visceral, and Transplantation Surgery, Ludwig-Maximilians-University (LMU), Campus Grosshadern, Munich, 81377, Germany
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230026, People’s Republic of China
- Correspondence: Yuan Hu; Xiaopeng Ma, Email ;
| | - Xiaopeng Ma
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
10
|
Doxorubicin and tamoxifen loaded graphene oxide nanoparticle functionalized with chitosan and folic acid for anticancer drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Tok TT. Derivation of an anti-cancer drug nanocarrier using a malonic acid-based deep eutectic solvent as a functionalization agent. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Recent Overview of Resveratrol's Beneficial Effects and Its Nano-Delivery Systems. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165154. [PMID: 36014390 PMCID: PMC9414442 DOI: 10.3390/molecules27165154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Highlights Abstract Natural polyphenols have a wide variety of biological activities and are taken into account as healthcare materials. Resveratrol is one such natural polyphenol, belonging to a group known as stilbenoids (STBs). Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is mainly found in grapes, wine, nuts, and berries. A wide range of biological activities has been demonstrated by resveratrol, including antimicrobial, antioxidant, antiviral, antifungal, and antiaging effects, and many more are still under research. However, as with many other plant-based polyphenol products, resveratrol suffers from low bioavailability once administered in vivo due to its susceptibility to rapid enzyme degradation by the body’s innate immune system before it can exercise its therapeutic influence. Therefore, it is of the utmost importance to ensure the best use of resveratrol by creating a proper resveratrol delivery system. Nanomedicine and nanodelivery systems utilize nanoscale materials as diagnostic tools or to deliver therapeutic agents in a controlled manner to specifically targeted locations. After a brief introduction about polyphenols, this review overviews the physicochemical characteristics of resveratrol, its beneficial effects, and recent advances on novel nanotechnological approaches for its delivery according to the type of nanocarrier utilized. Furthermore, the article summarizes the different potential applications of resveratrol as, for example, a therapeutic and disease-preventing anticancer and antiviral agent.
Collapse
|
13
|
Nanocarriers: A Reliable Tool for the Delivery of Anticancer Drugs. Pharmaceutics 2022; 14:pharmaceutics14081566. [PMID: 36015192 PMCID: PMC9415391 DOI: 10.3390/pharmaceutics14081566] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/26/2022] Open
Abstract
Nanomedicines have gained popularity due to their potential therapeutic applications, especially cancer treatment. Targeted nanoparticles can deliver drugs directly to cancer cells and enable prolonged drug release, reducing off-target toxicity and increasing therapeutic efficacy. However, translating nanomedicines from preclinical to clinical settings has been difficult. Rapid advancements in nanotechnology promise to enhance cancer therapies. Nanomedicine offers advanced targeting and multifunctionality. Nanoparticles (NPs) have several uses nowadays. They have been studied as drug transporters, tumor gene delivery agents, and imaging contrast agents. Nanomaterials based on organic, inorganic, lipid, or glycan substances and synthetic polymers have been used to enhance cancer therapies. This review focuses on polymeric nanoparticle delivery strategies for anticancer nanomedicines.
Collapse
|
14
|
Truong TH, Alcantara KP, Bulatao BPI, Sorasitthiyanukarn FN, Muangnoi C, Nalinratana N, Vajragupta O, Rojsitthisak P, Rojsitthisak P. Chitosan-coated nanostructured lipid carriers for transdermal delivery of tetrahydrocurcumin for breast cancer therapy. Carbohydr Polym 2022; 288:119401. [PMID: 35450653 DOI: 10.1016/j.carbpol.2022.119401] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/28/2022] [Accepted: 03/20/2022] [Indexed: 01/05/2023]
Abstract
Chitosan (Ch)-coated nanostructured lipid carriers (NLCs) have great potential for transdermal delivery with high localization of chemotherapeutics in breast cancer. This study used tetrahydrocurcumin (THC), a primary metabolite of curcumin with enhanced antioxidant and anticancer properties, as a model compound to prepare NLCs. Response surface methodology was employed to optimize THC-loaded Ch-coated NLCs (THC-Ch-NLCs) fabricated by high-shear homogenization. The optimized THC-Ch-NLCs had particle size of 244 ± 18 nm, zeta potential of -17.5 ± 0.5 mV, entrapment efficiency of 76.6 ± 0.2% and drug loading of 0.28 ± 0.01%. In vitro release study of THC-Ch-NLCs showed sustained release following the Korsmeyer-Peppas model with Fickian and non-Fickian diffusion at pH 7.4 and 5.5, respectively. THC-Ch-NLCs demonstrated significantly enhanced in vitro skin permeation, cell uptake, and remarkable cytotoxicity toward MD-MBA-231 breast cancer cells compared to the unencapsulated THC, suggesting Ch-NLCs as potential transdermal nanocarriers of THC for triple-negative breast cancer treatment.
Collapse
Affiliation(s)
- Thien Hoang Truong
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Khent Primo Alcantara
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bryan Paul I Bulatao
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Feuangthit Niyamissara Sorasitthiyanukarn
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Nonthaneth Nalinratana
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Opa Vajragupta
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Molecular Probes for Imaging Research Network, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Pranee Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University, Bangkok 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
15
|
Zhang Y, Zuo R, Song X, Gong J, Wang J, Lin M, Yang F, Cheng X, Gao X, Peng L, Ji H, Chen X, Jiang S, Guo D. Optimization of Maduramicin Ammonium-Loaded Nanostructured Lipid Carriers Using Box–Behnken Design for Enhanced Anticoccidial Effect against Eimeria tenella in Broiler Chickens. Pharmaceutics 2022; 14:pharmaceutics14071330. [PMID: 35890226 PMCID: PMC9323563 DOI: 10.3390/pharmaceutics14071330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Maduramicin ammonium (MAD) is one of the most frequently used anticoccidial agents in broiler chickens. However, the high toxicity and low solubility of MAD limit its clinical application. In this study, MAD-loaded nanostructured lipid carriers (MAD–NLCs) were prepared to overcome the defects of MAD by using highly soluble nanostructured lipid carriers (NLCs). The formulation was optimized via a three-level, three-factor Box–Behnken response surface method. Then, the optimal MAD–NLCs were evaluated according to their hydrodynamic diameter (HD), zeta potential (ZP), crystal structure, encapsulation efficiency (EE), drug loading (DL), in vitro release, and anticoccidial effect. The optimal MAD–NLCs had an HD of 153.6 ± 3.044 nm and a ZP of −41.4 ± 1.10 mV. The X-ray diffraction and Fourier-transform infrared spectroscopy results indicated that the MAD was encapsulated in the NLCs in an amorphous state. The EE and DL were 90.49 ± 1.05% and 2.34 ± 0.04%, respectively, which indicated that the MAD was efficiently encapsulated in the NLCs. In the in vitro study, the MAD–NLCs demonstrated a slow and sustained drug release behavior. Notably, MAD–NLCs had an excellent anticoccidial effect against Eimeria tenella in broiler chickens. In summary, MAD–NLCs have huge potential to form a new preparation administered via drinking water with a powerful anticoccidial effect.
Collapse
Affiliation(s)
- Yan Zhang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Runan Zuo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Xinhao Song
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Junqi Wang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Mengjuan Lin
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Fengzhu Yang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Xingxing Cheng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Xia Chen
- College of Animal Science and Technolog, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China;
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; (Y.Z.); (R.Z.); (X.S.); (J.G.); (J.W.); (M.L.); (F.Y.); (X.C.); (X.G.); (L.P.); (H.J.); (S.J.)
- Correspondence:
| |
Collapse
|
16
|
Maulana RA, Fulyani F, Anjani G. Nanocarriers System for Vitamin D as Nutraceutical in Type 2 Diabetes: A Review. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Incidence of diabetes are common among population around the world. Diabetes may lead to other complication and increasing morbidity and mortality. Many ways have been done to treat and prevent the development of diabetes. In addition of conventional pharmacotherapy, therapeutic therapy shown good opportunity to maintain and improve diabetic conditions. Vitamin D3 is known as nutraceutical and has good opportunity to develop the medication of type 2 diabetes. In another way, vitamin D3 naturally easy to damage by environmental condition. To overcome this weakness, researcher around the world have developed the method for protecting unstable compound as vitamin D3 with encapsulation. Liprotide is one of the various materials which can be used for encapsulation. Combination of lipid and protein molecules is expected to be a carrier and protector of vitamin D3 in gastrointestinal system. Here we review the research advances of liprotide as nanocarriers and vitamin D3 as nutraceuticals to discuss in applied on type 2 diabetes.
Collapse
|
17
|
De R, Mahata MK, Kim K. Structure-Based Varieties of Polymeric Nanocarriers and Influences of Their Physicochemical Properties on Drug Delivery Profiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105373. [PMID: 35112798 PMCID: PMC8981462 DOI: 10.1002/advs.202105373] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Indexed: 05/04/2023]
Abstract
Carriers are equally important as drugs. They can substantially improve bioavailability of cargos and safeguard healthy cells from toxic effects of certain therapeutics. Recently, polymeric nanocarriers (PNCs) have achieved significant success in delivering drugs not only to cells but also to subcellular organelles. Variety of natural sources, availability of different synthetic routes, versatile molecular architectures, exploitable physicochemical properties, biocompatibility, and biodegradability have presented polymers as one of the most desired materials for nanocarrier design. Recent innovative concepts and advances in PNC-associated nanotechnology are providing unprecedented opportunities to engineer nanocarriers and their functions. The efficiency of therapeutic loading has got considerably increased. Structural design-based varieties of PNCs are widely employed for the delivery of small therapeutic molecules to genes, and proteins. PNCs have gained ever-increasing attention and certainly paves the way to develop advanced nanomedicines. This article presents a comprehensive investigation of structural design-based varieties of PNCs and the influences of their physicochemical properties on drug delivery profiles with perspectives highlighting the inevitability of incorporating both the multi-stimuli-responsive and multi-drug delivery properties in a single carrier to design intelligent PNCs as new and emerging research directions in this rapidly developing area.
Collapse
Affiliation(s)
- Ranjit De
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| | - Manoj Kumar Mahata
- Drittes Physikalisches Institut ‐ BiophysikGeorg‐August‐Universität GöttingenFriedrich‐Hund‐Platz 1Göttingen37077Germany
| | - Kyong‐Tai Kim
- Laboratory of Molecular NeurophysiologyDepartment of Life SciencesPohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
- Division of Integrative Biosciences and Biotechnology (IBB)Pohang University of Science and Technology (POSTECH)77 Cheongam‐RoPohangGyeongbuk37673South Korea
| |
Collapse
|
18
|
Nanoliposome Use to Improve the Stability of Phenylethyl Resorcinol and Serve as a Skin Penetration Enhancer for Skin Whitening. COATINGS 2022. [DOI: 10.3390/coatings12030362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phenylethyl resorcinol (PR) is a potent tyrosinase inhibitor and a cosmeceutical skin lightening agent. However, the application of PR is limited by photoinstability and poor solubility. In this study, we formulated and optimized phenylethyl resorcinol loaded nanoliposomes (PR-NLPs) to improve the stability and effective delivery of PR. PR-NLPs were prepared by the ethanol injection method and optimized by a single factor experimental and Box–Behnken design. In addition, Diethylamino Hydroxybenzoyl Hexyl Benzoate (DHHB) as the UBA absorber was added to PR-NLPs, which significantly improved the photostability of PR. The mean size, polydispersity index (PDI), and zeta potential of the optimized PR-NLPs were 130.1 ± 3.54 nm, 0.225 ± 0.02, and −43.9 ± 3.44 mV, respectively. The drug encapsulation efficiency (EE) and loading efficiency (LC) of PR-NLPs were 96.81 ± 3.46% and 8.82 ± 0.6%, respectively. These PR-NLPs showed good physicochemical stability for 3 months at 4 °C and 25 °C in the dark. They showed typical sustained and prolonged drug-release behavior in vitro. The in vitro cytotoxicity assay and cellular uptake demonstrated that the PR-NLPs had excellent biocompatibility and cell transport ability. It significantly inhibited tyrosinase activity and reduced melanin production in B16F10 cells at concentrations of 20 or 30 μg/mL. Moreover, the PR-NLPs enhanced the PR into the skin. These results indicate that PR-NLPs can be used as a nanocarrier to improve the transdermal delivery of PR.
Collapse
|
19
|
Hussein HA, Kassim MNI, Maulidiani M, Abas F, Abdullah MA. Cytotoxicity and 1H NMR metabolomics analyses of microalgal extracts for synergistic application with Tamoxifen on breast cancer cells with reduced toxicity against Vero cells. Heliyon 2022; 8:e09192. [PMID: 35846482 PMCID: PMC9280575 DOI: 10.1016/j.heliyon.2022.e09192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the cytotoxic activity of Tamoxifen (TMX), an anti-estrogen drug, with microalgal crude extracts (MCEs) in single and synergistic application (TMX-MCEs) on MCF-7 and 4T1 breast cancer cells, and non-cancerous Vero cells. The MCEs of Nannochloropsis oculata, Tetraselmis suecica and Chlorella sp. from five different solvents (methanol, MET; ethanol, ETH; water, W; chloroform, CHL; and hexane, HEX) were developed. The TMX-MCEs-ETH and W at the 1:2 and 1:3 ratios, attained IC50 of 15.84-29.51 μg/mL against MCF-7; 13.8-31.62 μg/mL against 4T1; and 24.54-85.11 μg/mL against Vero cells. Higher late apoptosis was exhibited against MCF-7 by the TMX-N. oculata-ETH (41.15 %); and by the TMX-T. suecica-ETH (65.69 %) against 4T1 cells. The TMX-T. suecica-ETH also showed higher ADP/ATP ratios, but comparable Caspase activities to control. For Vero cells, overall apoptotic effects were lowered with synergistic application, and only early apoptosis was higher with TMX-T. suecica-ETH but at lower levels (29.84 %). The MCEs-W showed the presence of alanine, oleic acid, linoleic acid, lactic acid, and fumaric acid. Based on Principal Component Analysis (PCA), the spectral signals for polar solvents such as MET and ETH, were found in the same cluster, while the non-polar solvent CHL was with HEX, suggesting similar chemical profiles clustered for the same polarity. The CHL and HEX were more effective with N. oculata and T. suecica which were of the marine origin, while the ETH and MET were more effective with Chlorella sp., which was of the freshwater origin. The synergistic application of microalgal bioactive compounds with TMX can maintain the cytotoxicity against breast cancer cells whilst reducing the toxicity against non-cancerous Vero cells. These findings will benefit the biopharmaceutical, and functional and healthy food industries.
Collapse
Affiliation(s)
- Hanaa Ali Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- College of Dentistry, University of Basrah, Basrah, Iraq
| | - Murni Nur Islamiah Kassim
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - M. Maulidiani
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- SIBCo Medical and Pharmaceuticals Sdn. Bhd., No. 2, Level 5, Jalan Tengku Ampuan Zabedah, D9/D, Seksyen 9, 40000 Shah Alam, Selangor, Malaysia
| |
Collapse
|
20
|
Kumar M, Tiwari A, Asdaq SMB, Nair AB, Bhatt S, Shinu P, Al Mouslem AK, Jacob S, Alamri AS, Alsanie WF, Alhomrani M, Tiwari V, Devi S, Pathania A, Sreeharsha N. Itraconazole loaded nano-structured lipid carrier for topical ocular delivery: Optimization and evaluation. Saudi J Biol Sci 2022; 29:1-10. [PMID: 35002390 PMCID: PMC8717166 DOI: 10.1016/j.sjbs.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & OBJECTIVES Low penetration efficiency and retention time are the main therapeutic concerns that make it difficult for most of the drugs to be delivered to the intraocular tissues. These challenging issues are often related to those drugs, which have low or poor solubility and low permeability. The goal of this study was designed to develop nanostructured lipid carriers (NLCs) loaded with itraconazole (ITZ) with the objective of enhancing topical ocular permeation and thereby improving clinical efficacy. MATERIALS AND METHODS ITZ-loaded NLCs were fabricated by a high-speed homogenization technique using surfactant (Poloxamer 407), and lipids (stearic acid and oleic acid). Optimization of formulations was performed by 3 level factorial design and the selected formulation (F6) was evaluated by differential scanning calorimetry and transmission electron microscopy. Antifungal activity was assessed by measuring the zone of inhibition and irritation potential using the HET-CAM test. RESULTS The independent variables (lipid ratio-X1 and percentage of emulsifier-X2) have a positive impact on percentage entrapment efficiency (Y2) and percentage release (Y3) but have a negative impact on particle size (Y1). Based on the better entrapment efficiency (94.65%), optimum particle size (150.67 nm), and percentage cumulative drug release (68.67%), batch F6 was selected for further evaluation. Electron microscopic images revealed that the prepared particles are spherical and have nano size. Antifungal studies demonstrated enhancement in the zone of inhibition by formulation F6 as compared to a commercial eye drop. The non-irritancy of optimized formulation (F6) was confirmed with a zero score. INTERPRETATION & CONCLUSION In summary, the optimized NLCs seem to be a potent carrier for the effective delivery of itraconazole in ocular therapy.
Collapse
Affiliation(s)
- Manish Kumar
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Abhishek Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (Udham Singh Nagar), Uttrakhand 263148 India
| | | | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shailendra Bhatt
- Department of Pharmacy, School of Medical and Allied Sciences, G.D. Goenka University, Gurugram, Haryana 122103, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabi
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Varsha Tiwari
- Department of Pharmacy, Devsthali Vidyapeeth College of Pharmacy, Lalpur, Rudrapur (Udham Singh Nagar), Uttrakhand 263148 India
| | - Sheetal Devi
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Ajay Pathania
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore, 560035, India
| |
Collapse
|
21
|
Izham MNM, Hussin Y, Rahim NFC, Aziz MNM, Yeap SK, Rahman HS, Masarudin MJ, Mohamad NE, Abdullah R, Alitheen NB. Physicochemical characterization, cytotoxic effect and toxicity evaluation of nanostructured lipid carrier loaded with eucalyptol. BMC Complement Med Ther 2021; 21:254. [PMID: 34620132 PMCID: PMC8496055 DOI: 10.1186/s12906-021-03422-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
Background Eucalyptol is an active compound of eucalyptus essential oil and was reported to have many medical attributes including cytotoxic effect on breast cancer cells. However, it has low solubility in aqueous solutions which limits its bioavailability and cytotoxic efficiency. In this study, nanostructured lipid carrier loaded with eucalyptol (NLC-Eu) was formulated and characterized and the cytotoxic effect of NLC-Eu towards breast cancer cell lines was determined. In addition, its toxicity in animal model, BALB/c mice was also incorporated into this study to validate the safety of NLC-Eu. Methods Eucalyptol, a monoterpene oxide active, was used to formulate the NLC-Eu by using high pressure homogenization technique. The physicochemical characterization of NLC-Eu was performed to assess its morphology, particle size, polydispersity index, and zeta potential. The in vitro cytotoxic effects of this encapsulated eucalyptol on human (MDA MB-231) and murine (4 T1) breast cancer cell lines were determined using the MTT assay. Additionally, acridine orange/propidium iodide assay was conducted on the NLC-Eu treated MDA MB-231 cells. The in vivo sub-chronic toxicity of the prepared NLC-Eu was investigated using an in vivo BALB/c mice model. Results As a result, the light, translucent, milky-colored NLC-Eu showed particle size of 71.800 ± 2.144 nm, poly-dispersity index of 0.258 ± 0.003, and zeta potential of − 2.927 ± 0.163 mV. Furthermore, the TEM results of NLC-Eu displayed irregular round to spherical morphology with narrow size distribution and relatively uniformed particles. The drug loading capacity and entrapment efficiency of NLC-Eu were 4.99 and 90.93%, respectively. Furthermore, NLC-Eu exhibited cytotoxic effects on both, human and mice, breast cancer cells with IC50 values of 10.00 ± 4.81 μg/mL and 17.70 ± 0.57 μg/mL, respectively at 72 h. NLC-Eu also induced apoptosis on the MDA MB-231 cells. In the sub-chronic toxicity study, all of the studied mice did not show any signs of toxicity, abnormality or mortality. Besides that, no significant changes were observed in the body weight, internal organ index, hepatic and renal histopathology, serum biochemistry, nitric oxide and malondialdehyde contents. Conclusions This study suggests that the well-characterized NLC-Eu offers a safe and promising carrier system which has cytotoxic effect on breast cancer cell lines.
Collapse
Affiliation(s)
- Mira Nadiah Mohd Izham
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yazmin Hussin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nurul Fattin Che Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Muhammad Nazirul Mubin Aziz
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900, Sepang, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaymaniyah, 0046, Republic of Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nurul Elyani Mohamad
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Rasedee Abdullah
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
22
|
Subramanian P. Lipid-Based Nanocarrier System for the Effective Delivery of Nutraceuticals. Molecules 2021; 26:5510. [PMID: 34576981 PMCID: PMC8468612 DOI: 10.3390/molecules26185510] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Nutraceuticals possess several health benefits and functions; however, most nutraceuticals are prone to degradation in the gastrointestinal environment and have poor bioavailability. Application of a novel carrier system is of increasing importance to overcome obstacles and provide efficient applicability. Lipid-based nanocarriers provide a large surface-to-mass ratio, enhanced intestinal absorption by solubilization in the intestinal milieu, intestinal lymphatic transport, and altering enterocyte-based transport. A critical overview of the current limitation, preparation, and application of lipid-based nanocarriers (liposomes and niosomes) and lipid nanoparticles (SLNs and NLCs) is discussed. Physical and gastrointestinal stability and bioavailability of nanoencapsulated nutraceuticals are considered as well.
Collapse
|
23
|
Sohail M, Guo W, Li Z, Xu H, Zhao F, Chen D, Fu F. Nanocarrier-based Drug Delivery System for Cancer Therapeutics: A Review of the Last Decade. Curr Med Chem 2021; 28:3753-3772. [PMID: 33019919 DOI: 10.2174/0929867327666201005111722] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 11/22/2022]
Abstract
In recent years, due to the shortcomings of conventional chemotherapy, such as poor bioavailability, low treatment index, and unclear side effects, the focus of cancer research has shifted to new nanocarriers of chemotherapeutic drugs. By using biodegradable materials, nanocarriers generally have the advantages of good biocompatibility, low side effects, targeting, controlled release profile, and improved efficacy. More to the point, nanocarrier based anti-cancer drug delivery systems clearly show the potential to overcome the problems associated with conventional chemotherapy. In order to promote the in-depth research and development in this field, we herein summarized and analyzed various nanocarrier based drug delivery systems for cancer therapy, including the concepts, types, characteristics, and preparation methods. The active and passive targeting mechanisms of cancer therapy were also included, along with a brief introduction of the research progress of nanocarriers used for anti-cancer drug delivery in the past decade.
Collapse
Affiliation(s)
- Muhammad Sohail
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Wenna Guo
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Zhiyong Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Hui Xu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Feng Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Daquan Chen
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Fenghua Fu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| |
Collapse
|
24
|
Exploring the therapeutic potential of nanostructured lipid carrier approaches to tackling the inherent lacuna of chemotherapeutics and herbal drugs against breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Saneinezhad S, Bamoharram FF, Pordel M, Baharara J. One pot and green ultrasonic catalytic synthesis of catenated nanocellulose by sodium 30-tungston pentaphosphate polyoxometalate as an interlocked surface stabilizer and its application for surface loading of l-ascorbic acid. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01296-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Preparation of magnetic nanoparticle integrated nanostructured lipid carriers for controlled delivery of ascorbyl palmitate. MethodsX 2020; 7:101147. [PMID: 33294400 PMCID: PMC7691729 DOI: 10.1016/j.mex.2020.101147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 11/25/2022] Open
Abstract
Most cancer treatments can cause vital side effects on healthy tissues. Ascorbic acid (AA) is a water-soluble antioxidant molecule and possesses a variety of functions such as prevention of tumor proliferation and treatment of cancer. However, AA, is very sensitive to air, heat and light. Its high hydrophilicity also makes the controlled delivery difficult. To overcome these problems, AA can be chemically-modified and made more hydrophobic by the esterification. Palmitic acid is one of the most common long-chain fatty acids that can be used for this purpose. It is known that Ascorbyl palmitate (AP) which is a lipopihilic derivative of AA, can inhibit cell proliferation and DNA synthesis in many types of cancer. Although AP has higher stability, its bioavailability and therapeutic effect is low due to its lipophilicity and low release capacity.In this study, nanostructured lipid carriers (NLC) which are colloidal nanoparticles with high biocompatibility, low crystallinity and high hydrophobic-drug encapsulation capacity was prepared to increase the bioavailability of AP. To provide triggered drug release via hyperthermia, magnetic nanoparticles (MNps) were integrated into the NLCs besides AP. The synthesis of biocompatible NLCs with controlled and triggered release ability, is successfully completed and controlled release of AP as an antitumor agent is achieved.
Collapse
|
27
|
Soni NK, Sonali LJ, Singh A, Mangla B, Neupane YR, Kohli K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. NANOTECHNOLOGY 2020; 31:475101. [PMID: 32886644 DOI: 10.1088/1361-6528/abaf81] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanotherapeutics in cancer treatment are dominating global science and research, and have been recognized as the pioneering medical care regimen. Raloxifene (RLN) has been used for its anti-proliferative action on mammary tissue, however, it suffers from poor oral bioavailability. This investigation gives an account of the design and development of RLN-loaded nanostructured lipid carriers (RLN-NLCs) using a simple and scalable ultrasonication method for improved oral efficacy and limited offsite toxicity using Compritol® 888 ATO as a solid lipid and Transcutol® HP as a liquid lipid. In addition, the optimized RLN-NLCs were in the nanometric range (121 nm) with high % entrapment efficiency (%EE) (81%) for RLN, and were further freeze-dried in the presence of mannitol to enhance the stability of RLN-NLCs in the dry state for long-term use. Morphological observation under a transmission electron microscope and scanning electron microscope revealed the spherical smooth surface nanometric size of RLN-NLCs. Powder x-ray diffraction confirmed the encapsulation of RLN into the RLN-NLC's matrix with reduced crystallinity of the drug. The in vitro release study showed a burst release for an initial 4 h, and sustained release for up to 24 h. Furthermore, the RLN-NLCs showed higher cytotoxicity towards MCF-7 cells in vitro in comparison to RLN suspension, and an ex vivo intestinal permeation study demonstrated improved intestinal permeability of RLN-NLCs. Moreover, the in vivo pharmacokinetic study in female Wistar rats showed a 4.79-fold increment in oral bioavailability of RLN from RLN-NLCs compared to RLN suspension. Taken together, our results pave the way for a new nanotherapeutic approach towards breast cancer treatment.
Collapse
Affiliation(s)
- Nimrit Kaur Soni
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | | | | | | | | | | |
Collapse
|
28
|
Zakarial Ansar FH, Latifah SY, Wan Kamal WHB, Khong KC, Ng Y, Foong JN, Gopalsamy B, Ng WK, How CW, Ong YS, Abdullah R, Aziz MY. Pharmacokinetics and Biodistribution of Thymoquinone-loaded Nanostructured Lipid Carrier After Oral and Intravenous Administration into Rats. Int J Nanomedicine 2020; 15:7703-7717. [PMID: 33116496 PMCID: PMC7553255 DOI: 10.2147/ijn.s262395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022] Open
Abstract
Background Thymoquinone (TQ), an active compound isolated from Nigella sativa, has been proven to exhibit various biological properties such as antioxidant. Although oral delivery of TQ is valuable, it is limited by poor oral bioavailability and low solubility. Recently, TQ-loaded nanostructured lipid carrier (TQ-NLC) was formulated with the aim of overcoming the limitations. TQ-NLC was successfully synthesized by the high-pressure homogenization method with remarkable physiochemical properties whereby the particle size is less than 100 nm, improved encapsulation efficiency and is stable up to 24 months of storage. Nevertheless, the pharmacokinetics and biodistribution of TQ-NLC have not been studied. This study determined the bioavailability of oral and intravenous administration of thymoquinone-loaded nanostructured lipid carrier (TQ-NLC) in rats and its distribution to organs. Materials and Methods TQ-NLC was radiolabeled with technetium-99m before the administration to the rats. The biodistribution and pharmacokinetics parameters were then evaluated at various time points. The rats were imaged at time intervals and the percentage of the injected dose/gram (%ID/g) in blood and each organ was analyzed. Results Oral administration of TQ-NLC exhibited greater relative bioavailability compared to intravenous administration. It is postulated that the movement of TQ-NLC through the intestinal lymphatic system bypasses the first metabolism and therefore enhances the relative bioavailability. However, oral administration has a slower absorption rate compared to intravenous administration where the AUC0-∞ was 4.539 times lower than the latter. Conclusion TQ-NLC had better absorption when administered intravenously compared to oral administration. However, oral administration showed greater bioavailability compared to the intravenous route. This study provides the pharmacokinetics and biodistribution profile of TQ-NLC in vivo which is useful to assist researchers in clinical use.
Collapse
Affiliation(s)
- Fatin Hannani Zakarial Ansar
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saiful Yazan Latifah
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Hamirul Bahrin Wan Kamal
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Khei Choong Khong
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Yen Ng
- Laboratory of Preclinical Study, Block 24, Medical Technology Division, Malaysian Nuclear Agency, Kajang, Selangor, Malaysia
| | - Jia Ning Foong
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Banulata Gopalsamy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wei Keat Ng
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Sze Ong
- Laboratory of Molecular Medicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Yusmaidie Aziz
- Advanced Medical and Dental Institute, University of Science Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| |
Collapse
|
29
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
30
|
Puig-Rigall J, Blanco-Prieto MJ, Radulescu A, Dreiss CA, González-Gaitano G. Morphology, gelation and cytotoxicity evaluation of D-α-Tocopheryl polyethylene glycol succinate (TPGS) - Tetronic mixed micelles. J Colloid Interface Sci 2020; 582:353-363. [PMID: 32858401 DOI: 10.1016/j.jcis.2020.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/22/2020] [Accepted: 08/02/2020] [Indexed: 01/01/2023]
Abstract
HYPOTHESIS The combination of polymeric surfactants into mixed micelles is expected to improve properties relevant to their use in drug delivery, such as micellar size, gelation, and toxicity. We investigated synergistic effects in mixtures of D-α-Tocopheryl polyethylene glycol succinate (TPGS), an FDA-approved PEGylated derivative of vitamin E, and Tetronic surfactants, pH-responsive and thermogelling polyethylene oxide (PEO)-polypropylene oxide (PPO) 4-arm block copolymers. We hypothesized that mixed micelles would form under specific conditions and provide a handle to tune formulation characteristics. EXPERIMENTS We examined the morphology of the self-assembled structures in mixtures of TPGS with two Tetronic: T1107 and T908, using a combination of dynamic light scattering (DLS), small-angle neutron scattering (SANS), NMR spectroscopy (NOESY and diffusion NMR) and oscillatory rheology, over a range of compositions, temperatures and pH. Cell viability was assessed in NIH/3T3 fibroblasts. FINDINGS The combination of TPGS with either of the two Tetronic produces spherical core-shell micelles that comprise both surfactants in their structure (mixed micelles). T1107 unimers incorporate into TPGS aggregates below the critical micelle temperature of the poloxamine, while mixed micelles only form under limited conditions with T908. At high concentration/temperature, small proportions of TPGS extend the gel phase, more markedly with T1107, with similar elastic moduli (30-50 kPa) and a BCC crystalline structure. Cell viability of NIH/3T3 fibroblasts grown in the hydrogels increases significantly when the poloxamine gels are doped with TPGS, making the combination of poloxamines and TPGS a promising platform for drug delivery.
Collapse
Affiliation(s)
- Joan Puig-Rigall
- Departamento de Química, Universidad de Navarra, 31080 Pamplona, Spain
| | - María J Blanco-Prieto
- Departamento de Tecnología y Química Farmacéutica, Universidad de Navarra, 31080 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra, IdiSNA, Irunlarrea 3, 31008 Pamplona, Spain.
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstraße 1, 85747 Garching, Germany
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
31
|
Abstract
The aim of this study was to evaluate the characterized hydration method to prepare nanoparticles using Soluplus, a block copolymer with amphipathic properties, and distearoyl phosphatidyl ethanolamine (DSPE)-PEG2000 owing to particle size distribution, zeta potential, particle stability, and transmission electron microscopy (TEM) observed and 31P-NMR spectra. The results showed that, in a suspension of DSPE-PEG2000 and Soluplus at a ratio of 1/1, the prepared microparticles were stable for five days in the dark and at 25 °C. It was also confirmed that the 1/1 suspension of DSPE-PEG2000/Soluplus was stable for five days under the same conditions with the magnesium chloride solution. TEM measurements confirmed the presence of micelle-like particles of 50 to 150 nm in the 1/1 ratio mix of DSPE-PEG2000/Soluplus. 31P-NMR spectral data confirmed that DPSE-PEG2000/Soluplus at mixing ratio of 1/1 has a strong intermolecular with the phosphate group, indicated by the fact that the peak shift and the full width at half maximum were the largest compared with DSPE-PEG2000 with the intermolecular interaction. On the basis of the findings of this study, we conclude that microparticles can be formed using DSPE-PEG2000 and Soluplus via the hydration method, and that the optimum weight ratio of DSPE-PEG2000 to Soluplus is 1/1.
Collapse
|
32
|
Nile Red-Poly(Methyl Methacrylate)/Silica Nanocomposite Particles Increase the Sensitivity of Cervical Cancer Cells to Tamoxifen. Polymers (Basel) 2020; 12:polym12071516. [PMID: 32650474 PMCID: PMC7408027 DOI: 10.3390/polym12071516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 12/02/2022] Open
Abstract
Tamoxifen (TAM) is a hormonal drug and is mainly used as an anti-estrogen in breast cancer patients. TAM binds to estrogen receptors (ERs), resulting in inhibition of estrogen signaling pathways and thus, a downregulation of cell proliferation. Cancer cells with negative or low ER expression will not uptake TAM and will show low response. Poly (methyl methacrylate) (PMMA) nanoparticles were prepared using surfactant-free emulsion polymerization, then were loaded with Nile red (NR), which resulted in PMMA-NR. To enhance TAM delivery to cervical cancer cells (HELA), which is considered ER-negative, we loaded TAM and polymethyl methacrylate nanoparticles-Nile-red into silica (PMMA-NR-Si-TAM). The uptake and intracellular distribution were visualized by confocal laser scanning microscopy, and the in vitro cytotoxic activity was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay using HELA and non-tumorigenic cell line HFF-1. The sensitivity of HELA (LC50: 207.31 µg/mL) and HFF-1 (LC50: 234.08 µg/mL) to free TAM was very low. However, after the encapsulation of TAM with PMMA-NR, the sensitivity significantly increased HELA (LC50: 71.83 µg/mL) and HFF-1 (LC50: 37.36 µg/mL). This indicates that TAM can be used for the treatment of ER-negative cervical cancer once conjugated to PMMA-NR nanoparticles. In addition, the PMMA-NR formulation appears to be highly suitable for cancer imaging and drug delivery.
Collapse
|
33
|
Poovi G, Damodharan N. Development of tamoxifen-loaded surface-modified nanostructured lipid carrier using experimental design: in vitro and ex vivo characterisation. IET Nanobiotechnol 2020; 14:261-274. [PMID: 32463016 DOI: 10.1049/iet-nbt.2019.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The present study aimed to develop a surface-modified biocompatible nanostructured lipid carrier (NLCs) system using polyoxyethylene (40) stearate (POE-40-S) to improve the oral bioavailability of poorly water-soluble Biopharmaceutics Classification System class-II drug like tamoxifen (TMX). Also aimed to screen the most influential factors affecting the particle size (PS) using Taguchi (L12 (211)) orthogonal array design (TgL12OA). Then, to optimize the TMX loaded POE-40-S (P) surface-modified NLCs (TMX-loaded-PEG-40-S coated NLC (PNLCs) or PNLCs) by central composite design (CCD) using a four-factor, five-level model. The most influential factors affecting the PS was screened and optimized. The in-vitro study showed that increased drug-loading (DL) and encapsulation efficiency (EE), decreased PS and charge, sustained drug release for the prolonged period of the time with good stability and suppressed protein adsorption. The Ex-vivo study showed that decreased mucous binding with five-fold enhanced permeability of PNLC formulation after surface modification with POE-40-S. The in-vitro cytotoxicity study showed that the blank carrier is biocompatible and cytotoxicity of the formulation was dependent on the concentration of the drug. Finally, it can be concluded that the surface-modified PNLCs formulation was an effective, biocompatible, stable formulation in the enhancement of dissolution rate, solubility, stability with reduced mucus adhesion and increased permeability thereby which indicates its enhanced oral bioavailability.
Collapse
Affiliation(s)
- Ganesan Poovi
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Narayanasamy Damodharan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
34
|
Nanostructured Lipid Carriers for Delivery of Chemotherapeutics: A Review. Pharmaceutics 2020; 12:pharmaceutics12030288. [PMID: 32210127 PMCID: PMC7151211 DOI: 10.3390/pharmaceutics12030288] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/07/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022] Open
Abstract
The efficacy of current standard chemotherapy is suboptimal due to the poor solubility and short half-lives of chemotherapeutic agents, as well as their high toxicity and lack of specificity which may result in severe side effects, noncompliance and patient inconvenience. The application of nanotechnology has revolutionized the pharmaceutical industry and attracted increasing attention as a significant means for optimizing the delivery of chemotherapeutic agents and enhancing their efficiency and safety profiles. Nanostructured lipid carriers (NLCs) are lipid-based formulations that have been broadly studied as drug delivery systems. They have a solid matrix at room temperature and are considered superior to many other traditional lipid-based nanocarriers such as nanoemulsions, liposomes and solid lipid nanoparticles (SLNs) due to their enhanced physical stability, improved drug loading capacity, and biocompatibility. This review focuses on the latest advances in the use of NLCs as drug delivery systems and their preparation and characterization techniques with special emphasis on their applications as delivery systems for chemotherapeutic agents and different strategies for their use in tumor targeting.
Collapse
|
35
|
Day CM, Hickey SM, Song Y, Plush SE, Garg S. Novel Tamoxifen Nanoformulations for Improving Breast Cancer Treatment: Old Wine in New Bottles. Molecules 2020; 25:E1182. [PMID: 32151063 PMCID: PMC7179425 DOI: 10.3390/molecules25051182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/01/2020] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of death from cancer in women; second only to lung cancer. Tamoxifen (TAM) is a hydrophobic anticancer agent and a selective estrogen modulator (SERM), approved by the FDA for hormone therapy of BC. Despite having striking efficacy in BC therapy, concerns regarding the dose-dependent carcinogenicity of TAM still persist, restricting its therapeutic applications. Nanotechnology has emerged as one of the most important strategies to solve the issue of TAM toxicity, owing to the ability of nano-enabled-formulations to deliver smaller concentrations of TAM to cancer cells, over a longer period of time. Various TAM-containing-nanosystems have been successfully fabricated to selectively deliver TAM to specific molecular targets found on tumour membranes, reducing unwanted toxic effects. This review begins with an outline of breast cancer, the current treatment options and a history of how TAM has been used as a combatant of BC. A detailed discussion of various nanoformulation strategies used to deliver lower doses of TAM selectively to breast tumours will then follow. Finally, a commentary on future perspectives of TAM being employed as a targeting vector, to guide the delivery of other therapeutic and diagnostic agents selectively to breast tumours will be presented.
Collapse
Affiliation(s)
- Candace M. Day
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Shane M. Hickey
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
| | - Sally E. Plush
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Cancer Research Institute, North Terrace, 5000 Adelaide, SA, Australia; (C.M.D.); (S.M.H.); (Y.S.)
- Future Industry Institute, University of South Australia, 5095 Mawson Lakes, SA, Australia
| |
Collapse
|
36
|
Zainal-Abidin M, Hayyan M, Ngoh GC, Wong WF. Doxorubicin Loading on Functional Graphene as a Promising Nanocarrier Using Ternary Deep Eutectic Solvent Systems. ACS OMEGA 2020; 5:1656-1668. [PMID: 32010840 PMCID: PMC6990633 DOI: 10.1021/acsomega.9b03709] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
Collapse
Affiliation(s)
- Mohamad
Hamdi Zainal-Abidin
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
- Chemical
Engineering Program, Faculty of Engineering & Technology, Muscat University, PO Box 550, Muscat P.C.130, Sultanate of Oman
| | - Gek Cheng Ngoh
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Won Fen Wong
- Department of Chemical
Engineering, Faculty of Engineering, University of Malaya
Centre for Ionic Liquids (UMCiL), Faculty of Engineering, Department of Medical
Microbiology, Faculty of Medicine, and Centre for Separation Science and
Technology (CSST), Department of Chemical Engineering, Faculty of
Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
37
|
Editorial of Special Issue "Surface-Functionalized Nanoparticles as Drug Carriers". Int J Mol Sci 2019; 20:ijms20246352. [PMID: 31861113 PMCID: PMC6941103 DOI: 10.3390/ijms20246352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
Safe and effective delivery of therapeutics at the target site is the key to successful therapy. Nanocarriers can offer significant advantages over conventional dosage forms. Over the decades, nanoparticles have been extensively used to increase bioavailability, improve solubility and stability, reduce toxicities, and facilitate the controlled release of therapeutics. Further, nanoparticles have often been surface-functionalized with a variety of ligands to enhance circulation half-life and increase target-specificity. Although nanotechnology has shown significant therapeutic benefits for multiple biomedical applications, limited nanoparticle-based formulations have progressed to clinical trials, and only a few have reached the pharmaceutical market. This editorial is an introduction to the special issue entitled Surface-Functionalized Nanoparticles as Drug Carriers. We outline the scope of the special issue, summarize the results and conclusions of the nine articles published in this issue, and provide perspective on the application of surface-functionalized nanoparticles in the drug delivery field.
Collapse
|
38
|
Preparation and Characterization of Self Nano-Emulsifying Drug Delivery System Loaded with Citraland Its Antiproliferative Effect on Colorectal Cells In Vitro. NANOMATERIALS 2019; 9:nano9071028. [PMID: 31323842 PMCID: PMC6669672 DOI: 10.3390/nano9071028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
Citral is an active compound naturally found in lemongrass, lemon, and lime. Although this pale-yellow liquid confers low water solubility, the compound has been reported to possess good therapeutic features including antiproliferative and anticancer modalities. The self nano-emulsifying drug delivery system (SNEDDS) is a type of liquid-lipid nanocarrier that is suitable for the loading of insolubilized oil-based compound such as Citral. This study reports the design and optimization of a SNEDDS formulation, synthesis and characterization as well as loading with Citral (CIT-SNEDDS). Further assessment of theantiproliferative effects of CIT-SNEDDS towards colorectal cancer cells was also conducted. SNEDDS composed of coconut oil, dimethyl sulfoxide (DMSO) and Tween 80. CIT-SNEDDS was prepared via gentle agitation of SNEDDS with 0.5% Citral for 72 h at room temperature. Physicochemical characterization was performed using several physicochemical analyses. The average particle size of CIT-SNEDDS was16.86 ± 0.15 nm, zeta potential of 0.58 ± 0.19 mV, and polydispersity index (PDI) of 0.23 ± 0.01. In vitro drug release of Citral from CIT-SNEDDS was 79.25% of release, and for Citral the release percentage was 93.56% over 72 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to determine the cytotoxicity effect of CIT-SNEDDS in human colorectal cancer cell lines HT29 and SW620. The half maximal inhibitory concentrations (IC50) for 72 hof CIT-SNEDDS and Citral on SW620 were 16.50 ± 0.87 µg/mL and 22.50 ± 2.50 µg/mL, respectively. The IC50 values of CIT-SNEDDS and Citral after 72 h of treatment on HT29 were 34.10 ± 0.30 µg/mL and 21.77 ± 0.23 µg/mL, respectively. This study strongly suggests that CIT-SNEDDS has permitted the sustained release of Citral and that CIT-SNEDDS constitutes a potential soluble drug nanocarrier that is effective against colorectal cancer cells.
Collapse
|
39
|
Beh CY, Rasedee A, Selvarajah GT, Yazan LS, Omar AR, Foong JN, How CW, Foo JB. Enhanced anti-mammary gland cancer activities of tamoxifen-loaded erythropoietin-coated drug delivery system. PLoS One 2019; 14:e0219285. [PMID: 31291309 PMCID: PMC6619690 DOI: 10.1371/journal.pone.0219285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/20/2019] [Indexed: 12/28/2022] Open
Abstract
Nanomedicine is an emerging area in the medical field, particularly in the treatment of cancers. Nanostructured lipid carrier (NLC) was shown to be a good nanoparticulated carrier for the delivery of tamoxifen (TAM). In this study, the tamoxifen-loaded erythropoietin-coated nanostructured lipid carriers (EPO-TAMNLC) were developed to enhance the anti-cancer properties and targetability of TAM, using EPO as the homing ligand for EPO receptors (EpoRs) on breast cancer tissue cells. Tamoxifen-loaded NLC (TAMNLC) was used for comparison. The LA7 cells and LA7 cell-induced rat mammary gland tumor were used as models in the study. Immunocytochemistry staining showed that LA7 cells express estrogen receptors (ERs) and EpoRs. EPO-TAMNLC and TAMNLC significantly (p<0.05) inhibited proliferation of LA7 in dose- and time-dependent manner. EPO-TAMNLC induced apoptosis and G0/G1 cell cycle arrest of LA7 cells. Both drug delivery systems showed anti-mammary gland tumor properties. At an intravenous dose of 5 mg kg-1 body weight, EPO-TAMNLC and TAMNLC were not toxic to rats, suggesting that both are safe therapeutic compounds. In conclusion, EPO-TAMNLC is not only a unique drug delivery system because of the dual drug-loading feature, but also potentially highly specific in the targeting of breast cancer tissues positive for ERs and EpoRs. The incorporation of TAM into NLC with and without EPO coat had significantly (p<0.05) improved specificity and safety of the drug carriers in the treatment of mammary gland tumors.
Collapse
Affiliation(s)
- Chaw Yee Beh
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | - Abdullah Rasedee
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail: , (AR); (CYB)
| | | | | | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Jia Ning Foong
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Chee Wun How
- Centre for Pre-University Studies, Faculty of Pharmacy, MAHSA University, Jenjarom, Kuala Langat, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Science, Taylor’s University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
40
|
Akimsheva E, Dolinina E, Parfenyuk E. Interactions of sol-gel encapsulated acyclovir with silica matrix. Colloids Surf B Biointerfaces 2019; 178:103-110. [DOI: 10.1016/j.colsurfb.2019.02.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/06/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
|
41
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
42
|
From nanoengineering to nanomedicine: A facile route to enhance biocompatibility of graphene as a potential nano-carrier for targeted drug delivery using natural deep eutectic solvents. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Soleimanian Y, Goli SAH, Varshosaz J, Maestrelli F. β-sitosterol Lipid Nano Carrier Based on Propolis Wax and Pomegranate Seed Oil: Effect of Thermal Processing, pH, and Ionic Strength on Stability and Structure. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yasamin Soleimanian
- Food Science and Technology Department, College of Agriculture, Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Sayed Amir Hossein Goli
- Food Science and Technology Department, College of Agriculture, Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Center, Isfahan University of Medical Sciences; Isfahan 81746-73461 Iran
| | - Francesca Maestrelli
- Department of Chemistry, University of Florence; via Schiff 6, Sesto Fiorentino 50019 Florence Italy
| |
Collapse
|
44
|
Saravanakumar K, Jeevithan E, Chelliah R, Kathiresan K, Wen-Hui W, Oh DH, Wang MH. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 2018; 119:1144-1153. [DOI: 10.1016/j.ijbiomac.2018.08.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/19/2022]
|
45
|
Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018; 13:3053-3067. [PMID: 29872293 PMCID: PMC5975599 DOI: 10.2147/ijn.s164905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorooctylbromide nanoparticles (PFOB NPs) are a type of multifunctional nanotechnology that has been studied for various medical applications. Commercial ultrasound contrast agents (UCAs) suffer from the following limitations: short half-lives in vivo, high background signal and restricted distribution in the vascular circulation due to their micrometer dimensions. PFOB NPs are new potential UCAs that persist for long periods in the circulatory system, possess a relatively stable echogenic response without increasing the background signal and exhibit lower acoustic attenuation than commercial UCAs. Furthermore, PFOB NPs may also serve as drug delivery vehicles in which drugs are dissolved in the outer lipid or polymer layer for subsequent delivery to target sites in site-targeted therapy. The use of PFOB NPs as carriers has the potential advantage of selectively delivering payloads to the target site while improving visualization of the site using ultrasound (US) imaging. Unfortunately, the application of PFOB NPs to the field of ultrasonography has been limited because of the low intensity of US reflection. Numerous researchers have realized the potential use of PFOB NPs as UCAs and thus have developed alternative approaches to apply PFOB NPs in ultrasonography. In this article, we review the latest approaches for using PFOB NPs to enhance US imaging in vivo. In addition, this article emphasizes the application of PFOB NPs as promising drug delivery carriers for cancer and atherosclerosis treatments, as PFOB NPs can transport different drug payloads for various applications with good efficacy. We also note the challenges and future study directions for the application of PFOB NPs as both a delivery system for therapeutic agents and a diagnostic agent for ultrasonography.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zhongguo Sui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fanbo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
46
|
Salem HF, Kharshoum RM, Abo El-Ela FI, F AG, Abdellatif KRA. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv Transl Res 2018; 8:633-644. [DOI: 10.1007/s13346-018-0499-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Nordin N, Yeap SK, Zamberi NR, Abu N, Mohamad NE, Rahman HS, How CW, Masarudin MJ, Abdullah R, Alitheen NB. Characterization and toxicity of citral incorporated with nanostructured lipid carrier. PeerJ 2018; 6:e3916. [PMID: 29312812 PMCID: PMC5756616 DOI: 10.7717/peerj.3916] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/21/2017] [Indexed: 12/31/2022] Open
Abstract
The nanoparticle as a cancer drug delivery vehicle is rapidly under investigation due to its promising applicability as a novel drug delivery system for anticancer agents. This study describes the development, characterization and toxicity studies of a nanostructured lipid carrier (NLC) system for citral. Citral was loaded into the NLC using high pressure homogenization methods. The characterizations of NLC-citral were then determined through various methods. Based on Transmission Electron Microscope (TEM) analysis, NLC-Citral showed a spherical shape with an average diameter size of 54.12 ± 0.30 nm and a polydipersity index of 0.224 ± 0.005. The zeta potential of NLC-Citral was −12.73 ± 0.34 mV with an entrapment efficiency of 98.9 ± 0.124%, and drug loading of 9.84 ± 0.041%. Safety profile of the formulation was examined via in vitro and in vivo routes to study its effects toward normal cells. NLC-Citral exhibited no toxic effects towards the proliferation of mice splenocytes. Moreover, no mortality and toxic signs were observed in the treated groups after 28 days of treatment. There were also no significant alterations in serum biochemical analysis for all treatments. Increase in immunomodulatory effects of treated NLC-Citral and Citral groups was verified from the increase in CD4/CD3 and CD8/CD3 T cell population in both NLC-citral and citral treated splenocytes. This study suggests that NLC is a promising drug delivery system for citral as it has the potential in sustaining drug release without inducing any toxicity.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Microbiology, Faculty of Veterinary Medicine, University of Sulaimanyah, Sulaimanyah, Kurdistan Region, Iraq
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
48
|
pH-responsive liposomes self-assembled from electrosprayed microparticles, and their drug release properties. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.09.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12:7291-7309. [PMID: 29042776 PMCID: PMC5634382 DOI: 10.2147/ijn.s146315] [Citation(s) in RCA: 719] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanotechnology has recently gained increased attention for its capability to effectively diagnose and treat various tumors. Nanocarriers have been used to circumvent the problems associated with conventional antitumor drug delivery systems, including their nonspecificity, severe side effects, burst release and damaging the normal cells. Nanocarriers improve the bioavailability and therapeutic efficiency of antitumor drugs, while providing preferential accumulation at the target site. A number of nanocarriers have been developed; however, only a few of them are clinically approved for the delivery of antitumor drugs for their intended actions at the targeted sites. The present review is divided into three main parts: first part presents introduction of various nanocarriers and their relevance in the delivery of anticancer drugs, second part encompasses targeting mechanisms and surface functionalization on nanocarriers and third part covers the description of selected tumors, including breast, lungs, colorectal and pancreatic tumors, and applications of relative nanocarriers in these tumors. This review increases the understanding of tumor treatment with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Fakhar ud Din
- Department of Pharmacy, Quaid-i-Azam University, Islamabad
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science and Technology, Kohat
| | - Izhar Ullah
- Department of Health and Medical Sciences, University of Poonch, Rawalakot, Azad Kashmir
| | | | | | - Shumaila Shafique
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
50
|
Safavi MS, Shojaosadati SA, Dorkoosh FA, Jo HJ, Kwon Y, Lee KC, Yang HG, Park EJ, Na DH. The synthesis of tamoxifen-loaded albumin nanoparticles by homogenizers: Optimization and in vitro characterization. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|