1
|
Tang Y, Lei L, Yang D, Zheng J, Zeng Q, Xiao H, Zhou Z. Calcium release-mediated adsorption and lubrication of salivary proteins on resin-based dental composites. J Mech Behav Biomed Mater 2022; 135:105437. [DOI: 10.1016/j.jmbbm.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
|
2
|
Ma D, Qian S, Zhou S, Bian D. Fabrication and Characterization of Polyelectrolyte Coatings by Polymerization and Co-Deposition of Acrylic Acid Using the Dopamine in Weak Acid Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10256-10264. [PMID: 35951557 DOI: 10.1021/acs.langmuir.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Existing medical materials (such as silicone rubber, glass slides, etc.) fail to meet the functional requirements of biosensing, cell culture, and drug delivery due to their poor wettability. The preparation of polyelectrolyte coatings with excellent wettability and protein adsorption helps broaden the application of medical materials. Poly(acrylic acid) (PAA) is a common polyelectrolyte with stronger protein adsorption, but the existing methods for obtaining PAA coating have certain shortcomings to limit their industrial applications. In this study, dopamine (DA) was used to polymerize and co-deposit acrylic acid (AA) in weak acid solution to functionalize the surface of materials, and the effects of different mass ratios of DA/AA on the wettability and protein adsorption of the coating were deeply investigated. The results demonstrate that PDA/PAA coating is successfully prepared on the surface of four substrates and greatly reduces the water contact angle of these surfaces. Moreover, these coatings show excellent protein adsorption, and the amount of adsorbed protein on the coated QCM chip is increased by 57.74% than the uncoated QCM chip. In addition, the coating has a certain pH responsiveness, and its wettability and protein adsorption are closely related to the pH of the solution. The preparation strategy proposed is simple and substrate-independent, which provides valuable insights into the application of the one-step polymerization and co-deposition strategy under weak acid conditions.
Collapse
Affiliation(s)
- Deke Ma
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shanhua Qian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuaishuai Zhou
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Da Bian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Chong PH, Chen J, Yin D, Qin L. Tea compound-saliva interactions and their correlations with sweet aftertaste. NPJ Sci Food 2022; 6:13. [PMID: 35140228 PMCID: PMC8828886 DOI: 10.1038/s41538-022-00123-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
Huigan is an important sensory attribute which is commonly used as a quality indicator evaluation of tea products. Previous studies showed a strong correlation between the lubrication behavior of saliva-tea compound mixture and the sensory perception of Huigan from trained panelists. This work was further designed to investigate how the effect of tea consumption on the rate of saliva secretion and its functional properties including total protein content of saliva (TPC), salivary α-amylase (AMY) and lipase activity (LP). A quartz crystal microbalance with dissipation monitoring (QCM-D) was applied to reveal the adsorption behavior of human whole saliva and how the salivary film is affected by the presence of tea compounds. Results showed a significant positive correlation among TPC, LP and Huigan intensity for subjects who are Huigan-sensitive. Compared to the desorption of salivary film, the desorption of saliva-EC/EGC (epicatechin/epigallocatechin) mixture from the gold surface by QCM-D observation showed a significant effect on Huigan intensity in sensitive group when comparing to the salivary layer (blank).
Collapse
Affiliation(s)
- Pik Han Chong
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Jianshe Chen
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China.
| | - Danting Yin
- Firmenich Aromatics (China) Co., Ltd., No. 3901, Jindu Road, Minhang District, 201108, Shanghai, China
| | - Lanxi Qin
- Lab of Food Oral Processing, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
4
|
|
5
|
Fischer NG, Aparicio C. The salivary pellicle on dental biomaterials. Colloids Surf B Biointerfaces 2021; 200:111570. [PMID: 33460965 PMCID: PMC8005451 DOI: 10.1016/j.colsurfb.2021.111570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
The salivary pellicle, an adlayer formed by adsorption of salivary components on teeth and dental biomaterials, has direct consequences on basic outcomes of dentistry. Here, we provide an overview of salivary pellicle formation processes with a critical focus on dental biomaterials. We describe and critique the array of salivary pellicle measurement techniques. We also discuss factors that may affect salivary pellicle formation and the heterogeneity of the published literature describing salivary pellicle formation on dental biomaterials. Finally, we survey the many effects salivary pellicles have on dental biomaterials and highlight its implications on design criteria for dental biomaterials. Future investigations may lead to rationally designed dental biomaterials to control the salivary pellicle and enhance material function and patient outcomes.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota, 55455, USA.
| |
Collapse
|
6
|
Zembyla M, Liamas E, Andablo-Reyes E, Gu K, Krop EM, Kew B, Sarkar A. Surface adsorption and lubrication properties of plant and dairy proteins: A comparative study. Food Hydrocoll 2021; 111:106364. [PMID: 33536697 PMCID: PMC7607376 DOI: 10.1016/j.foodhyd.2020.106364] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this work was to compare the surface adsorption and lubrication properties of plant and dairy proteins. Whey protein isolate (WPI) and pea protein isolate (PPI) were chosen as model animal and plant proteins, respectively, and various protein concentrations (0.1-100 mg/mL) were studied with/without heat treatment (90 °C/60 min). Quartz crystal microbalance with dissipation monitoring (QCM-D) experiments were performed on hydrophilic (gold) and hydrophobic polydimethylsiloxane (PDMS) sensors, with or without a mucin coating, latter was used to mimic the oral surface. Soft tribology using PDMS tribopairs in addition to wettability measurements, physicochemical characterization (size, charge, solubility) and gel electrophoresis were performed. Soluble fractions of PPI adsorbed to significantly larger extent on PDMS surfaces, forming more viscous films as compared to WPI regardless of heat treatment. Introducing a mucin coating on a PDMS surface led to a decrease in binding of the subsequent dietary protein layers, with PPI still adsorbing to a larger extent than WPI. Such large hydrated mass of PPI resulted in superior lubrication performance at lower protein concentration (≤10 mg/mL) as compared to WPI. However, at 100 mg/mL, WPI was a better lubricant than PPI, with the former showing the onset of elastohydrodynamic lubrication. Enhanced lubricity upon heat treatment was attributed to the increase in apparent viscosity. Fundamental insights from this study reveal that pea protein at higher concentrations demonstrates inferior lubricity than whey protein and could result in unpleasant mouthfeel, and thus may inform future replacement strategies when designing sustainable food products.
Collapse
Affiliation(s)
- Morfo Zembyla
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Evangelos Liamas
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Efren Andablo-Reyes
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Kewei Gu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Emma M Krop
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Ben Kew
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
7
|
Hu J, Andablo-Reyes E, Mighell A, Pavitt S, Sarkar A. Dry mouth diagnosis and saliva substitutes-A review from a textural perspective. J Texture Stud 2020; 52:141-156. [PMID: 33274753 DOI: 10.1111/jtxs.12575] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
The aim of this review is to assess the objective and subjective diagnosis, as well as symptomatic topical treatment of dry mouth conditions with a clear focus on textural perspective. We critically examine both the current practices as well as outline emerging possibilities in dry mouth diagnosis and treatment, including a patent scan for saliva substitutes. For diagnosis, salivary flow rates and patient-completed questionnaires have proven to be useful tools in clinical practice. To date, objective measurements of changes in mechanical properties of saliva via rheological, adsorption, and tribological measurements and biochemical properties of saliva such as assessing protein, mucins (MUC5B) are seldom incorporated into clinical diagnostics; these robust diagnostic tools have been largely restricted to application in non-clinical settings. As for symptomatic treatments of dry mouth, four key agents including lubricating, thickening, adhesive, and moisturizing agents have been identified covering the overall landscape of commercial saliva substitutes. Although thickening agents such as modified celluloses, polysaccharide gum, polyethylene glycol, and so forth are most commonly employed saliva substitutes, they offer short-lived relief from dry mouth and generally do not provide boundary lubrication properties of real human saliva. Innovative technologies such as self-assembly, emulsion, liposomes, and microgels are emerging as novel saliva substitutes hold promise for alternative approaches for efficient moistening and lubrication of the oral mucosa. Their adoption into clinical practice will depend on their efficacies, duration of relief, and ease of application by the practitioners and patient compliance.
Collapse
Affiliation(s)
- Jing Hu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Efren Andablo-Reyes
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Alan Mighell
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sue Pavitt
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
Mutahar M, Bartlett D, Carpenter G, Moazzez R. Proteins from whole mouth saliva mediate greater protection against severe erosive tooth wear than proteins from parotid saliva using an in vitro model. J Dent 2020; 95:103319. [DOI: 10.1016/j.jdent.2020.103319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/25/2022] Open
|
9
|
Sang T, Ye Z, Fischer NG, Skoe EP, Echeverría C, Wu J, Aparicio C. Physical-chemical interactions between dental materials surface, salivary pellicle and Streptococcus gordonii. Colloids Surf B Biointerfaces 2020; 190:110938. [PMID: 32172164 DOI: 10.1016/j.colsurfb.2020.110938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 11/18/2022]
Abstract
Dental materials are susceptible to dental plaque formation, which increases the risk of biofilm-associated oral diseases. Physical-chemical properties of dental material surfaces can affect salivary pellicle formation and bacteria attachment, but relationships between these properties have been understudied. We aimed to assess the effects of surface properties and adsorbed salivary pellicle on Streptococcus gordonii adhesion to traditional dental materials. Adsorption of salivary pellicle from one donor on gold, stainless steel, alumina and zirconia was monitored with a quartz crystal microbalance with dissipation monitoring (QCM-D). Surfaces were characterized by X-ray photoelectron spectroscopy, atomic force microscopy and water contact angles measurement before and after pellicle adsorption. Visualization and quantification of Live/Dead stained bacteria and scanning electron microscopy were used to study S. gordonii attachment to materials with and without pellicle. The work of adhesion between surfaces and bacteria was also determined. Adsorption kinetics and the final thickness of pellicle formed on the four materials were similar. Pellicle deposition on all materials increased surface hydrophilicity, surface energy and work of adhesion with bacteria. Surfaces with pellicle had significantly more attached bacteria than surfaces without pellicle, but the physical-chemical properties of the dental material did not significantly alter bacteria attachment. Our findings suggested that the critical factor increasing S. gordonii attachment was the salivary pellicle formed on dental materials. This is attributed to increased work of adhesion between bacteria and substrates with pellicle. New dental materials should be designed for controlling bacteria attachment by tuning thickness, composition and structure of the adsorbed salivary pellicle.
Collapse
Affiliation(s)
- Ting Sang
- The Affiliated Stomatological Hospital of Nanchang University & The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, China; MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nicholas G Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik P Skoe
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Constanza Echeverría
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA; Cariology Unit, Department of Oral Rehabilitation, University of Talca, Talca, 3460000, Chile
| | - Jun Wu
- The Affiliated Stomatological Hospital of Nanchang University & The Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi Province, 330006, China.
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Ma L, Pang D, Deng C. Competitive adsorption of bovine serum albumin and lysozyme on a beta-tricalcium phosphate nanocoating. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Glumac M, Ritzoulis C, Chen J. Surface properties of adsorbed salivary components at a solid hydrophobic surface using a quartz crystal microbalance with dissipation (QCM–D). Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.105195] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Sarkar A, Xu F, Lee S. Human saliva and model saliva at bulk to adsorbed phases - similarities and differences. Adv Colloid Interface Sci 2019; 273:102034. [PMID: 31518820 DOI: 10.1016/j.cis.2019.102034] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/04/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Human saliva, a seemingly simple aqueous fluid, is, in fact, an extraordinarily complex biocolloid that is not fully understood, despite many decades of study. Salivary lubrication is widely believed to be a signature of good oral health and is also crucial for speech, food oral processing and swallowing. However, saliva has been often neglected in food colloid research, primarily due to its high intra- to inter-individual variability and altering material properties upon collection and storage, when used as an ex vivo research material. In the last few decades, colloid scientists have attempted designing model (i.e. 'saliva mimicking fluid') salivary formulations to understand saliva-food colloid interactions in an in vitro set up and its contribution on microstructural aspects, lubrication properties and sensory perception. In this Review, we critically examine the current state of knowledge on bulk and interfacial properties of model saliva in comparison to real human saliva and highlight how far such model salivary formulations can match the properties of real human saliva. Many, if not most, of these model saliva formulations share similarities with real human saliva in terms of biochemical compositions, including electrolytes, pH and concentrations of salivary proteins, such as α-amylase and highly glycosylated mucins. This, together with similarities between model and real saliva in terms of surface charge, has led to significant advancement in decoding various colloidal interactions (bridging, depletion) of charged emulsion droplets and associated sensory perception in the oral phase. However, model saliva represents significant dissimilarity to real saliva in terms of lubricating properties. Based on in-depth examination of properties of mucins derived from animal sources (e.g. pig gastric mucins (PGM) or bovine submaxillary mucin (BSM)), we can recommend that BSM is currently the most optimal commercially available mucin source when attempting to replicate saliva based on surface adsorption and lubrication properties. Even though purification via dialysis or chromatographic techniques may influence various physicochemical properties of BSM, such as structure and surface adsorption, the lubricating properties of model saliva formulations based on BSM are generally superior and more reliable than the PGM counterpart at orally relevant pH. Comparison of mucin-containing model saliva with ex vivo human salivary conditioning films suggests that mucin alone cannot replicate the lubricity of real human salivary pellicle. Mucin-based multi-layers containing mucin and oppositely charged polyelectrolytes may offer promising avenues in the future for engineering biomimetic salivary pellicle, however, this has not been explored in oral tribology experiments to date. Hence, there is a strong need for systematic studies with employment of model saliva formulations containing mucins with and without polycationic additives before a consensus on a standardized model salivary formulation can be achieved. Overall, this review provides the first comprehensive framework on simulating saliva for a particular bulk or surface property when doing food oral processing experiments.
Collapse
|
13
|
Hakobyan S, Roohpour N, Gautrot JE. Modes of adsorption of polyelectrolytes to model substrates of hydroxyapatite. J Colloid Interface Sci 2019; 543:237-246. [DOI: 10.1016/j.jcis.2019.02.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 01/03/2023]
|
14
|
Chen J, Zhu Y, Xiong M, Hu G, Zhan J, Li T, Wang L, Wang Y. Antimicrobial Titanium Surface via Click-Immobilization of Peptide and Its in Vitro/Vivo Activity. ACS Biomater Sci Eng 2018; 5:1034-1044. [PMID: 33405794 DOI: 10.1021/acsbiomaterials.8b01046] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of antimicrobial peptides (AMPs)-functionalized titanium implants is an efficient method for preventing bacterial infection. However, the attachment of AMPs to the surface of titanium implants remains a challenge. In this study, a "clickable" titanium surface was developed by using a silane coupling agent with an alkynyl group. The antimicrobial titanium implant was then constructed through the reaction between the "clickable" surface and azido-AMPs (PEG-HHC36:N3-PEG12-KRWWKWWRR) via click chemistry of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). Such an antimicrobial titanium implant, with an AMP density of 897.4 ± 67.3 ng/cm2 (2.5 ± 0.2 molecules per nm2) on the surface, exhibited good and stable antimicrobial activity, inhibited 90.2% of Staphylococcus aureus and 88.1% of Escherichia coli after 2.5 h of incubation, and even inhibited 69.5% of Staphylococcus aureus after 4 days of degradation. The CCK-8 assay indicated that the antimicrobial titanium implant exhibited negligible cytotoxicity to mouse bone mesenchymal stem cells. In vivo assay illustrated that this implant could kill 78.8% of Staphylococcus aureus after 7 days. This method has great potential for the preparation of antimicrobial titanium implants and the prevention of infections in the clinic.
Collapse
Affiliation(s)
- Junjian Chen
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Yuchen Zhu
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Menghua Xiong
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Guansong Hu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Jiezhao Zhan
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| | - Tianjie Li
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China
| | - Lin Wang
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China
| | - Yingjun Wang
- School of Biomedical Science and Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Wushan Road, Tianhe, Guangzhou 510641, China.,Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Higher Education Mega Center, Panyu, Guangzhou 510006, China
| |
Collapse
|
15
|
Zimmermann R, Delius J, Friedrichs J, Stehl S, Hofmann T, Hannig C, Rehage M, Werner C, Hannig M. Impact of oral astringent stimuli on surface charge and morphology of the protein-rich pellicle at the tooth-saliva interphase. Colloids Surf B Biointerfaces 2018; 174:451-458. [PMID: 30497006 DOI: 10.1016/j.colsurfb.2018.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/26/2022]
Abstract
The proteinaceous pellicle layer, which develops upon contact with saliva on the surface of teeth, is important for the formation of oral biofilms and for the protection of teeth from abrasion and chemically induced erosion. Astringent food ingredients comprising polyphenols, cationic macromolecules, and multivalent metal salts are known to interact with the pellicle. However, astringent-induced changes in the physicochemical properties of the tooth-saliva interphase are not yet completely understood. Here we provide comprehensive insights into interfacial charging, ultrastructure, thickness, and surface roughness of the pellicles formed on the model substrates silicon oxide (SiO2), Teflon® AF, and hydroxyapatite, as well as on bovine enamel before and after incubation with the astringents epigallocatechin gallate, tannic acid, iron(III) salt, lysozyme, and chitosan. Quartz crystal microbalance with dissipation monitoring demonstrated viscous behavior of untreated pellicles formed in vitro on the different materials. Electrokinetic (streaming current) measurements revealed that cationic astringents reverse the charge of native pellicles, whereas polyphenols did not change the charge under physiological pH condition. In addition, transmission electron microscopy and atomic force microscopy showed a concentration-dependent increase in average film thickness and pellicle surface roughness as induced by astringents. These multifaceted alterations of the salivary pellicle may come along with an increase in roughness perceived on the teeth, which is part of the complex sensations of oral astringency.
Collapse
Affiliation(s)
- Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany.
| | - Judith Delius
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany.
| | - Jens Friedrichs
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Susanne Stehl
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany; Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Christian Hannig
- Clinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, D-01307 Dresden, Germany
| | - Melanie Rehage
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421 Homburg/Saar, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany; Technische Universität Dresden, Center for Regenerative Therapies Dresden, Tatzberg 47, 01307 Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, University Hospital, Saarland University, Building 73, 66421 Homburg/Saar, Germany
| |
Collapse
|
16
|
Pang D, He L, Wei L, Zheng H, Deng C. Preparation of a beta-tricalcium phosphate nanocoating and its protein adsorption behaviour by quartz crystal microbalance with dissipation technique. Colloids Surf B Biointerfaces 2018; 162:1-7. [DOI: 10.1016/j.colsurfb.2017.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
17
|
Zhou ZR, Gong W, Zheng J. Bionic design perspectives based on the formation mechanism of dental anti-wear function. BIOSURFACE AND BIOTRIBOLOGY 2017. [DOI: 10.1016/j.bsbt.2017.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
18
|
Effect of alcohol stimulation on salivary pellicle formation on human tooth enamel surface and its lubricating performance. J Mech Behav Biomed Mater 2017; 75:567-573. [DOI: 10.1016/j.jmbbm.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 11/21/2022]
|
19
|
Weber F, Barrantes A. Real-time formation of salivary films onto polymeric materials for dental applications: Differences between unstimulated and stimulated saliva. Colloids Surf B Biointerfaces 2017; 154:203-209. [PMID: 28343118 DOI: 10.1016/j.colsurfb.2017.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/01/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
The formation of salivary films onto oral prostheses materials is of central importance for understanding their performance and interaction with oral tissue and flora. The aim of this work was to study and compare the salivary films formed from unstimulated and stimulated whole saliva on two common polymeric materials, polycarbonate and poly(methyl methacrylate). Irradiating these materials with UV light is a simple way to modify their wettability, roughness and ζ-potential. Therefore, the effect of UV exposure of polycarbonate and poly(methyl methacrylate) on saliva adsorption was also investigated. For this purpose a quartz crystal microbalance with dissipation and SDS-PAGE have been combined in order to associate the thicknesses and viscoelastic properties of the salivary films with their protein composition. SDS-PAGE results suggest that a larger diversity of proteins is involved in the formation of stimulated saliva pellicles. Furthermore, according to QCM-D, pellicles formed from stimulated saliva are thinner and stiffer than the ones formed from unstimulated saliva if the polymeric materials have not been exposed to UV light although both types of saliva form a biphasic layer. For UV-treated materials, the same is applied to polycarbonate but not to poly(methyl methacrylate) where stimulated saliva yields thicker and softer films than unstimulated saliva being the adsorption process of a multiphasic nature. These results highlight the importance of choosing the appropriate sample depending on the type of study to be performed.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. box 1109 Blindern, 0317 Oslo, Norway; Technical University of Munich, Munich, Germany.
| | - Alejandro Barrantes
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, P.O. box 1109 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
20
|
Chen J, Zhu Y, Song Y, Wang L, Zhan J, He J, Zheng J, Zhong C, Shi X, Liu S, Ren L, Wang Y. Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity. J Mater Chem B 2017; 5:2407-2415. [DOI: 10.1039/c6tb03337g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The designed antimicrobial peptide has surface binding activity onto titanium, gold, polymethyl methacrylate and hydroxyapatite substrates.
Collapse
Affiliation(s)
- Junjian Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Yuchen Zhu
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Yancheng Song
- The Third Affiliated Hospital of Southern Medical University
- Guangzhou 510630
- China
| | - Lin Wang
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Jiezhao Zhan
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Jingcai He
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Jian Zheng
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Chunting Zhong
- Guangdong Province Key Laboratory of Biomedical Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Sa Liu
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Li Ren
- National Engineering Research Centre for Tissue Restoration & Reconstruction
- Guangzhou 510006
- China
| | - Yingjun Wang
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
21
|
Connelly C, Cicuto T, Leavitt J, Petty A, Litman A, Margolis HC, Gerdon AE. Dynamic interactions of amelogenin with hydroxyapatite surfaces are dependent on protein phosphorylation and solution pH. Colloids Surf B Biointerfaces 2016; 148:377-384. [PMID: 27632699 DOI: 10.1016/j.colsurfb.2016.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/03/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
Abstract
Amelogenin, the predominant extracellular matrix protein secreted by ameloblasts, has been shown to be essential for proper tooth enamel formation. In this study, amelogenin adsorption to hydroxyapatite (HAP) surfaces, a prototype for enamel mineral, has been studied using a quartz crystal microbalance (QCM) to interrogate effects of protein phosphorylation and solution pH. Dynamic flow-based experiments were conducted at pH 7.4 and 8.0 using native phosphorylated porcine amelogenin (P173) and recombinant non-phosphorylated porcine amelogenin (rP172). Loading capacities (μmol/m2) on HAP surfaces were calculated under all conditions and adsorption affinities (Kad) were calculated when Langmuir isotherm conditions appeared to be met. At pH 8.0, binding characteristics were remarkably similar for the two proteins. However, at pH 7.4 a higher affinity and lower surface loading for the phosphorylated P173 was found compared to any other set of conditions. This suggests that phosphorylated P173 adopts a more extended conformation than non-phosphorylated full-length amelogenin, occupying a larger footprint on the HAP surface. This surface-induced structural difference may help explain why P173 is a more effective inhibitor of spontaneous HAP formation in vitro than rP172. Differences in the viscoelastic properties of P173 and rP172 in the adsorbed state were also observed, consistent with noted differences in HAP binding. These collective findings provide new insight into the important role of amelogenin phosphorylation in the mechanism by which amelogenin regulates enamel crystal formation.
Collapse
Affiliation(s)
| | - Thomas Cicuto
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Jason Leavitt
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Alexander Petty
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA
| | - Amy Litman
- The Forsyth Institute, Center for Biomineralization, Department of Applied Oral Sciences, Cambridge, MA 02142, USA
| | - Henry C Margolis
- The Forsyth Institute, Center for Biomineralization, Department of Applied Oral Sciences, Cambridge, MA 02142, USA
| | - Aren E Gerdon
- Emmanuel College, Department of Chemistry and Physics, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Ash A, Wilde PJ, Bradshaw DJ, King SP, Pratten JR. Structural modifications of the salivary conditioning film upon exposure to sodium bicarbonate: implications for oral lubrication and mouthfeel. SOFT MATTER 2016; 12:2794-2801. [PMID: 26883483 DOI: 10.1039/c5sm01936b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The salivary conditioning film (SCF) that forms on all surfaces in the mouth plays a key role in lubricating the oral cavity. As this film acts as an interface between tongue, enamel and oral mucosa, it is likely that any perturbations to its structure could potentially lead to a change in mouthfeel perception. This is often experienced after exposure to oral hygiene products. For example, consumers that use dentifrice that contain a high concentration of sodium bicarbonate (SB) often report a clean mouth feel after use; an attribute that is clearly desirable for oral hygiene products. However, the mechanisms by which SB interacts with the SCF to alter lubrication in the mouth is unknown. Therefore, saliva and the SCF was exposed to high ionic strength and alkaline solutions to elucidate whether the interactions observed were a direct result of SB, its high alkalinity or its ionic strength. Characteristics including bulk viscosity of saliva and the viscoelasticity of the interfacial salivary films that form at both the air/saliva and hydroxyapatite/saliva interfaces were tested. It was hypothesised that SB interacts with the SCF in two ways. Firstly, the ionic strength of SB shields electrostatic charges of salivary proteins, thus preventing protein crosslinking within the film and secondly; the alkaline pH (≈8.3) of SB reduces the gel-like structure of mucins present in the pellicle by disrupting disulphide bridging of the mucins via the ionization of their cysteine's thiol group, which has an isoelectric point of ≈8.3.
Collapse
Affiliation(s)
- A Ash
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
23
|
Escorihuela J, González-Martínez MÁ, López-Paz JL, Puchades R, Maquieira Á, Gimenez-Romero D. Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chem Rev 2014; 115:265-94. [DOI: 10.1021/cr5002063] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jorge Escorihuela
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Miguel Ángel González-Martínez
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - José Luis López-Paz
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Rosa Puchades
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - Ángel Maquieira
- Department
of Chemistry, Institute of Molecular Recognition and Technological
Development, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
| | - David Gimenez-Romero
- Physical
Chemistry Department, Faculty of Chemistry, Universitat de València, Avenida Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
24
|
Ash A, Mulholland F, Burnett GR, Wilde PJ. Structural and compositional changes in the salivary pellicle induced upon exposure to SDS and STP. BIOFOULING 2014; 30:1183-1197. [PMID: 25397690 PMCID: PMC4270408 DOI: 10.1080/08927014.2014.977268] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 10/10/2014] [Indexed: 06/04/2023]
Abstract
Sodium dodecyl sulphate (SDS) and sodium tripolyphosphate (STP) act to remove stained pellicle from dentition and loosen deposits on tooth surfaces that may become cariogenic over time. This study investigated how SDS and STP impact the salivary pellicle adsorbed onto hydroxyapatite and silica sensors using a dual polarisation interferometer and a quartz-crystal microbalance with dissipation. After the pellicle was exposed to SDS and STP the remaining pellicle, although weaker, due to the loss of material, became less dense but with a higher elastic component; suggesting that the viscous component of the pellicle was being removed. This would imply a structural transformation from a soft but dense structured pellicle, to a more diffuse pellicle. In addition, the majority of proteins displaced by both SDS and STP were identified as being acidic in nature; implying that the negatively charged groups of SDS and STP may be responsible for the displacement of the pellicle proteins observed.
Collapse
Affiliation(s)
- Anthony Ash
- Institute of Food Research, Colney, Norwich, UK
| | | | | | | |
Collapse
|