1
|
Chen L, Wu F, Xiang M, Zhang W, Wu Q, Lu Y, Fu J, Chen M, Li S, Chen Y, Du X. Encapsulation of tea polyphenols into high amylose corn starch composite nanofibrous film for active antimicrobial packaging. Int J Biol Macromol 2023:125245. [PMID: 37330086 DOI: 10.1016/j.ijbiomac.2023.125245] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
Starch-based composite nanofibrous films loaded with tea polyphenols (TP) were successfully fabricated through electrospinning high amylose corn starch (HACS) with aid of polyvinyl alcohol (PVA), referred as HACS/PVA@TP. With the addition of 15 % TP, HACS/PVA@TP nanofibrous films exhibited enhanced mechanical properties and water vapor barrier capability, and their hydrogen bonding interactions were further evidenced. TP was slowly released from the nanofibrous film and followed Fickian diffusion mechanism, which achieved the controlled sustained release of TP. Interesting, HACS/PVA@TP nanofibrous films effectively improved antimicrobial activities against Staphylococcus aureus (S. aureus) and prolonged the shelf life of strawberry. HACS/PVA@TP nanofibrous films showed superior antibacterial function by by destroying cell wall and cytomembrane, and degrading existing DNA fragments, stimulating excessive intracellular reactive oxygen species (ROS) generation. Our study demonstrated that the functional electrospun Starch-based nanofibrous films with enhanced mechanical properties and superior antimicrobial activities were potential for the application in active food packaging and relative areas.
Collapse
Affiliation(s)
- Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Fen Wu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Ming Xiang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Wenna Zhang
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Qingxi Wu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yongming Lu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Jiajun Fu
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Meilu Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yan Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China.
| | - Xianfeng Du
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Rajamohan R, Subramania A, Lee YR. Polymer-mediated electrospun nanofibrous mats on supramolecular assembly of nortriptyline in the β-cyclodextrin medium for antibacterial study. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1256-1268. [PMID: 35263238 DOI: 10.1080/09205063.2022.2048453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
With the thought and strong hope of uniqueness and challenging characteristic highlights and importance of nanofibrous mats (NFMs) along with cyclodextrins (CDs) that having a significant opportunity, chances and handling a vital role in hostile to bacterial activities. For the most part, CDs are utilized to upgrade the antibacterial activity through the improvement of solubility, stability, and etc., to any molecule which can bring inside the CDs cavity via the formation of inclusion complexes. Polymer-mediated electrospun nanofibrous mats (PAN NFMs) are utilized as a nanocarrier for antibacterial activity in this article, utilizing nortriptyline (NP) as a reference molecule. As a result, NP forms an inclusion complex with β-Cyclodextrin (β-CD). As a result, the PAN NFMs are able to absorb it, thereby consolidating the complex NP on the nanofibrous surface. Additionally, the soaking of PAN NFMs in NP solution without β-CD was performed for comparison. To characterize the nanofibrous mats of NP/PAN and NP:β-CD-ICs/PAN NFMs, UV absorption, FTIR, Raman, XRD, and SEM techniques were used. The antibacterial activity of NP and NP:β-CD-ICs have been tried against positive control antibiotics by the disc diffusion method. Thus, the action has been improved for NP:β-CD-ICs/PAN NFMs over NP/PAN NFMs because of the solubility upgraded for the NP by the complexation of β-CD.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| | - Angaiah Subramania
- Electro-Materials Research Laboratory, Centre for Nanoscience and Technology, Pondicherry University, Puducherry, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongson, Republic of Korea
| |
Collapse
|
3
|
Core-Sheath Electrospun Nanofibers Based on Chitosan and Cyclodextrin Polymer for the Prolonged Release of Triclosan. Polymers (Basel) 2022; 14:polym14101955. [PMID: 35631838 PMCID: PMC9147127 DOI: 10.3390/polym14101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 01/27/2023] Open
Abstract
This work focuses on the manufacture of core-sheath nanofibers (NFs) based on chitosan (CHT) as sheath and cyclodextrin polymer (PCD) as core and loaded with triclosan (TCL). In parallel, monolithic NFs consisting of blended CHT-PCD and TCL were prepared. Nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier Transform Infrared spectroscopy (FTIR). SEM displayed the morphology of NFs and the structure of the nanowebs, while TEM evidenced the core-sheath structure of NFs prepared by coaxial electrospinning. The core diameters and sheath thicknesses were found dependent on respective flow rates of both precursor solutions. Nanofibers stability and TCL release in aqueous medium were studied and correlated with the antibacterial activity against Staphylococcus aureus and Escherichia coli. Results showed that the release profiles of TCL and therefore the antibacterial activity were directly related to the type of nanofibers. In the case of monolithic nanofibers, the NFs matrix was composed of polyelectrolyte complex (PEC formed between CHT and PCD) and resulted in a prolonged release of TCL and a sustained antibacterial effect. In the case of core-sheath NFs, the PEC was formed only at the core-sheath interface, leading to less stable NFs and therefore to a faster release of TCL, and to a less extended antibacterial activity compared to monolithic ones.
Collapse
|
4
|
Han WH, Li X, Yu GF, Wang BC, Huang LP, Wang J, Long YZ. Recent Advances in the Food Application of Electrospun Nanofibers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Zaitoon A, Luo X, Lim LT. Triggered and controlled release of active gaseous/volatile compounds for active packaging applications of agri-food products: A review. Compr Rev Food Sci Food Saf 2021; 21:541-579. [PMID: 34913248 DOI: 10.1111/1541-4337.12874] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 12/22/2022]
Abstract
Gaseous and volatile active compounds are versatile to enhance safety and preserve quality of agri-food products during storage and distribution. However, the use of these compounds is limited by their high vapor pressure and/or chemical instability, especially in active packaging (AP) applications. Various approaches for stabilizing and controlling the release of active gaseous/volatile compounds have been developed, including encapsulation (e.g., into supramolecular matrices, polymer-based films, electrospun nonwovens) and triggered release systems involving precursor technology, thereby allowing their safe and effective use in AP applications. In this review, encapsulation technologies of gases (e.g., CO2 , ClO2 , SO2 , ethylene, 1-methylcyclopropene) and volatiles (e.g., ethanol, ethyl formate, essential oils and their constituents) into different solid matrices, polymeric films, and electrospun nonwovens are reviewed, especially with regard to encapsulation mechanisms and controlled release properties. Recent developments on utilizing precursor compounds of bioactive gases/volatiles to enhance their storage stability and better control their release profiles are discussed. The potential applications of these controlled release systems in AP of agri-food products are presented as well.
Collapse
Affiliation(s)
- Amr Zaitoon
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.,Department of Agricultural and Biosystems Engineering, Alexandria University, Alexandria, 21545, Egypt
| | - Xiaoyu Luo
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, 519087, China
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
6
|
Bahmid NA, Dekker M, Fogliano V, Heising J. Development of a moisture-activated antimicrobial film containing ground mustard seeds and its application on meat in active packaging system. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100753] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Dodero A, Schlatter G, Hébraud A, Vicini S, Castellano M. Polymer-free cyclodextrin and natural polymer-cyclodextrin electrospun nanofibers: A comprehensive review on current applications and future perspectives. Carbohydr Polym 2021; 264:118042. [PMID: 33910745 DOI: 10.1016/j.carbpol.2021.118042] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023]
Abstract
The present review discusses the use of cyclodextrins and their derivatives to prepare electrospun nanofibers with specific features. Cyclodextrins, owing to their unique capability to form inclusion complexes with hydrophobic and volatile molecules, can indeed facilitate the encapsulation of bioactive compounds in electrospun nanofibers allowing fast-dissolving products for food, biomedical, and pharmaceutical purposes, filtering materials for wastewater and air purification, as well as a variety of other technological applications. Additionally, cyclodextrins can improve the processability of naturally occurring biopolymers helping the fabrication of "green" materials with a strong industrial relevance. Hence, this review provides a comprehensive state-of-the-art of different cyclodextrins-based nanofibers including those made of pure cyclodextrins, of polycyclodextrins, and those made of natural biopolymer functionalized with cyclodextrins. To this end, the advantages and disadvantages of such approaches and their possible applications are investigated along with the current limitations in the exploitation of electrospinning at the industrial level.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Guy Schlatter
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France.
| | - Anne Hébraud
- Institute of Chemistry and Processes for Energy, Environment and Health (ICPEES), CNRS UMR 7515, ECPM - University of Strasbourg, 25 Rue Becquerel, Strasbourg, 67087, France
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, Genoa, 16146, Italy.
| |
Collapse
|
8
|
Vasile C, Baican M. Progresses in Food Packaging, Food Quality, and Safety-Controlled-Release Antioxidant and/or Antimicrobial Packaging. Molecules 2021; 26:1263. [PMID: 33652755 PMCID: PMC7956554 DOI: 10.3390/molecules26051263] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Food packaging is designed to protect foods, to provide required information about the food, and to make food handling convenient for distribution to consumers. Packaging has a crucial role in the process of food quality, safety, and shelf-life extension. Possible interactions between food and packaging are important in what is concerning food quality and safety. This review tries to offer a picture of the most important types of active packaging emphasizing the controlled/target release antimicrobial and/or antioxidant packaging including system design, different methods of polymer matrix modification, and processing. The testing methods for the appreciation of the performance of active food packaging, as well as mechanisms and kinetics implied in active compounds release, are summarized. During the last years, many fast advancements in packaging technology appeared, including intelligent or smart packaging (IOSP), (i.e., time-temperature indicators (TTIs), gas indicators, radiofrequency identification (RFID), and others). Legislation is also discussed.
Collapse
Affiliation(s)
- Cornelia Vasile
- “P. Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 70487 Iasi, Romania
| | - Mihaela Baican
- “Grigore T. Popa” Medicine and Pharmacy University, 16 University Street, 700115 Iaşi, Romania;
| |
Collapse
|
9
|
Patiño Vidal C, López de Dicastillo C, Rodríguez-Mercado F, Guarda A, Galotto MJ, Muñoz-Shugulí C. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Crit Rev Food Sci Nutr 2021; 62:5495-5510. [PMID: 33605809 DOI: 10.1080/10408398.2021.1886038] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review was focused on describing the combination of electrospinning and cyclodextrin inclusion complexes as one of the newest alternatives for the development of food packaging materials with antimicrobial and/or antioxidant properties. The advantages of this technological combination, the routes to design the active materials, the characterization and application of such materials were reviewed. Electrospinning has allowed developing active packaging materials composed by fibrillary structures with a high ratio surface-to-volume. On the other hand, cyclodextrin inclusion complexes have maintained the properties of active compounds when they have been incorporated in packaging materials. Both methods have been recently combined and novel active food packaging materials have been obtained through three different routes. Polymeric solutions containing preformed (route 1) or in-situ formed (route 2) cyclodextrin inclusion complexes have been electrospun to obtain packaging materials. Furthermore, cyclodextrin inclusion complexes solutions have been directly electrospun (route 3) in order to produce those materials. The developed packaging materials have exhibited a high active compound loading with a long lasting release. Therefore, the protection of different foodstuff against microbial growth, oxidation and quality decay as well as the maintenance of their physical and sensory properties have been achieved when those materials were applied as active packaging.
Collapse
Affiliation(s)
- Cristian Patiño Vidal
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Carol López de Dicastillo
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Francisco Rodríguez-Mercado
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Abel Guarda
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - María José Galotto
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristina Muñoz-Shugulí
- Packaging Innovation Center (LABEN), University of Santiago of Chile (USACH), Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), University of Santiago of Chile (USACH), Santiago, Chile.,Faculty of Technology, Department of Food Science and Technology, University of Santiago of Chile (USACH), Santiago, Chile
| |
Collapse
|
10
|
Teaima MH, Abdelnaby FA, Fadel M, El-Nabarawi MA, Shoueir KR. Synthesis of Biocompatible and Environmentally Nanofibrous Mats Loaded with Moxifloxacin as a Model Drug for Biomedical Applications. Pharmaceutics 2020; 12:E1029. [PMID: 33126627 PMCID: PMC7693921 DOI: 10.3390/pharmaceutics12111029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Biopolymeric chitosan structure (Cs) is rationally investigated owing to its potentiality in pharmaceutical applications. The synthetic routes of biomimetic Cs-based blend electrospun nanofibers were studied. Herein, biocompatible crosslinked electrospun polyvinyl alcohol (PVA)/Cs-reduced gold nanoparticles (Cs(Rg))/β-CD (beta-cyclodextrin) in pure water were fabricated. To this end, supportive PVA as a carrier, Cs bio modifier, and gold reductant and β-CD as smoother, inclusion guest molecule, and capping agent exhibit efficient entrapment of moxifloxacin (Mox) and consequently accelerate release. Besides, PVA/Cs(Rg)/β-CD paves towards controlled drug encapsulation-release affinity, antimicrobial, and for wound dressing. Without losing the nanofiber structure, the webs prolonged stability for particle size and release content up to 96.4%. The synergistic effect of the nanoformulation PVA/Cs(Rg)/β-CD against pathogenic bacteria, fungus, and yeast, including Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger, posed clear zones up to 53 φmm. Furthermore, a certain combination of PVA/Cs (Rg)/β-CD showed a total antioxidant capacity of 311.10 ± 2.86 mg AAE/g sample. In vitro cytotoxicity assay of HePG2 and MCF-7 NF6 can eradicate 34.8 and 29.3 µg/mL against selected cells.
Collapse
Affiliation(s)
- Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Fatma A. Abdelnaby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Maha Fadel
- Pharmaceutical Nano-Technology Lab., National Institute of Laser Enhanced Sciences, Cairo University, Cairo 11562, Egypt;
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; (F.A.A.); (M.A.E.-N.)
| | - Kamel R. Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
11
|
Almasi H, Jahanbakhsh Oskouie M, Saleh A. A review on techniques utilized for design of controlled release food active packaging. Crit Rev Food Sci Nutr 2020; 61:2601-2621. [PMID: 32588646 DOI: 10.1080/10408398.2020.1783199] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Active packaging (AP) is a new class of innovative food packaging, containing bioactive compounds, is able to maintain the quality of food and extend its shelf life by releasing active agent during storage. The main challenge in designing the AP system is slowing the release rate of active compounds for its prolonged activity. Controlled-release active packaging (CRP) is an innovative technology that provides control in the release of active compounds during storage. Various approaches have been proposed to design CRP. The purpose of this review was to gather and present the strategies utilized for release controlling of active compounds from food AP systems. The chemical modification of polymers, the preparation of multilayer films and the use of cross-linking agents are some methods tried in the last decades. Other approaches use molecular complexes and irradiation treatments. Micro- or nano-encapsulation of active compounds and using nano-structured materials in the AP film matrix are the newest techniques used for the preparation of CRP systems. The action mechanism for each technique was described and an effort was made to highlight representative published papers about each release controlling approach. This review will benefit future prospects of exploring other innovative release controlling methods in food CRP.
Collapse
Affiliation(s)
- Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Ayda Saleh
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, Urmia, Iran
| |
Collapse
|
12
|
Hierarchical porous nanofibers containing thymol/beta-cyclodextrin: Physico-chemical characterization and potential biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111155. [PMID: 32600736 DOI: 10.1016/j.msec.2020.111155] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 01/14/2023]
Abstract
As an effective natural antibacterial component, the low water solubility of thymol (THY) has stemmed its potential in biomedical application. Here, β-cyclodextrin (β-CD) and THY were self-assembled to form water-soluble inclusion complex (IC). The successful formation of IC was confirmed via 1H NMR. As an antibacterial agent, the resultant IC was then incorporated into cellulose acetate (CA) fibrous matrix with hierarchical structure (nanopores on porous fibrous webs) via electrospinning (CA/THY/β-CD), and the pure THY was also encapsulated into CA for comparison (CA/THY). In vitro dissolution tests demonstrated that CA/THY/β-CD fibrous membrane exhibited sustained drug release, which abided by non-Fickian diffusion. Besides, the CA/THY/β-CD fibrous membrane exhibited more effective and long-lasting antibacterial activity against S. aureus. Furthermore, the combination of hierarchical porous structure with sustained drug release endowed the CA/THY/β-CD fibrous membrane with good cytocompatibility. Taken together, the CA/THY/β-CD fibrous membrane could be an attractive candidate for wound dressing material.
Collapse
|
13
|
Topuz F, Uyar T. Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 2020; 130:108927. [DOI: 10.1016/j.foodres.2019.108927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/07/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
14
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
15
|
Mastuo T, Miyata Y, Yuno T, Mukae Y, Otsubo A, Mitsunari K, Ohba K, Sakai H. Molecular Mechanisms of the Anti-Cancer Effects of Isothiocyanates from Cruciferous Vegetables in Bladder Cancer. Molecules 2020; 25:molecules25030575. [PMID: 32013065 PMCID: PMC7037050 DOI: 10.3390/molecules25030575] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022] Open
Abstract
Bladder cancer (BC) is a representative of urological cancer with a high recurrence and metastasis potential. Currently, cisplatin-based chemotherapy and immune checkpoint inhibitors are used as standard therapy in patients with advanced/metastatic BC. However, these therapies often show severe adverse events, and prolongation of survival is unsatisfactory. Therefore, a treatment strategy using natural compounds is of great interest. In this review, we focused on the anti-cancer effects of isothiocyanates (ITCs) derived from cruciferous vegetables, which are widely cultivated and consumed in many regions worldwide. Specifically, we discuss the anti-cancer effects of four ITC compounds—allyl isothiocyanate, benzyl isothiocyanate, sulforaphane, and phenethyl isothiocyanate—in BC; the molecular mechanisms underlying their anti-cancer effects; current trends and future direction of ITC-based treatment strategies; and the carcinogenic potential of ITCs. We also discuss the advantages and limitations of each ITC in BC treatment, furthering the consideration of ITCs in treatment strategies and for improving the prognosis of patients with BC.
Collapse
|
16
|
Rezvani MA, Khandan S, Sabahi N, Saeidian H. Deep oxidative desulfurization of gas oil based on sandwich-type polysilicotungstate supported β-cyclodextrin composite as an efficient heterogeneous catalyst. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Maleki Dizaj S, Sharifi S, Jahangiri A. Electrospun nanofibers as versatile platform in antimicrobial delivery: current state and perspectives. Pharm Dev Technol 2019; 24:1187-1199. [PMID: 31424308 DOI: 10.1080/10837450.2019.1656238] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology has attracted increasing interest in different aspects of biotechnology. The fabrication of electrospun nanofibers (NFs) containing antibacterial agents for antimicrobial applications has been significantly enhanced in recent years. In the current review, various electrospun NFs with antimicrobial properties were introduced and evaluated. The main focus was on the recent developments and applications of antimicrobial electrospun NFs incorporated with different antimicrobial agents, including metal nanoparticles (NPs), antibiotics, quaternized ammonium compounds, triclosan, herbal extracts, carbon nanomaterials, and antimicrobial biopolymers with inherent antimicrobial properties. The search results revealed that antimicrobial containing electrospun NFs had enhanced antimicrobial performance with various biomedical applications compared to the traditional antimicrobial materials. According to the reported results, most of the studies were of an investigative nature and were mostly based on in vitro tests. Hence, further examination on in vivo clinical performance of these antimicrobial NFs seems necessary. However, these antimicrobial NFs appear to have the potential to achieve clinical usefulness and commercial production in the near future.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Azin Jahangiri
- Department of Pharmaceutics, School of Pharmacy, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
18
|
Wang L, Kang Y, Xing CY, Guo K, Zhang XQ, Ding LS, Zhang S, Li BJ. β-Cyclodextrin based air filter for high-efficiency filtration of pollution sources. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:197-203. [PMID: 30921570 DOI: 10.1016/j.jhazmat.2019.03.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Airborne particulate matter (PM) pollution has become a serious environmental problem. Thus, there is a need for the development of air filters with satisfactory overall performance. In this paper, we develop a kind of β-cyclodextrin (β-CD) based air filter with high strength, which has not only high filtration efficiency (about 99%) but also good air permeability (the pressure drop is only 45Pa). Especially after long-term application, the pression drop of β-cyclodextrin based was less than half of the commercial air-filter. Additionally, the material can capture the toxic gasous chemicals (e.g. formaldehyde and SO2). The introduction of β-CD is supposed to be the key factor for improvement of air filter.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu, 610041, China
| | - Cheng-Yuan Xing
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu, 610041, China
| | - Kun Guo
- College of Life Science and Technology, Southwest Minzu University, Chengdu, 610041, China
| | - Xiao-Qin Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Sichuan University, Chengdu, 610065, China
| | - Li-Sheng Ding
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu, 610041, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University Sichuan University, Chengdu, 610065, China.
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
19
|
Aytac Z, Ipek S, Erol I, Durgun E, Uyar T. Fast-dissolving electrospun gelatin nanofibers encapsulating ciprofloxacin/cyclodextrin inclusion complex. Colloids Surf B Biointerfaces 2019; 178:129-136. [DOI: 10.1016/j.colsurfb.2019.02.059] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/02/2019] [Accepted: 02/28/2019] [Indexed: 11/24/2022]
|
20
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
21
|
Topuz F, Uyar T. Electrospinning of Cyclodextrin Functional Nanofibers for Drug Delivery Applications. Pharmaceutics 2018; 11:E6. [PMID: 30586876 PMCID: PMC6358759 DOI: 10.3390/pharmaceutics11010006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022] Open
Abstract
Electrospun nanofibers have sparked tremendous attention in drug delivery since they can offer high specific surface area, tailored release of drugs, controlled surface chemistry for preferred protein adsorption, and tunable porosity. Several functional motifs were incorporated into electrospun nanofibers to greatly expand their drug loading capacity or to provide the sustained release of the embedded drug molecules. In this regard, cyclodextrins (CyD) are considered as ideal drug carrier molecules as they are natural, edible, and biocompatible compounds with a truncated cone-shape with a relatively hydrophobic cavity interior for complexation with hydrophobic drugs and a hydrophilic exterior to increase the water-solubility of drugs. Further, the formation of CyD-drug inclusion complexes can protect drug molecules from physiological degradation, or elimination and thus increases the stability and bioavailability of drugs, of which the release takes place with time, accompanied by fiber degradation. In this review, we summarize studies related to CyD-functional electrospun nanofibers for drug delivery applications. The review begins with an introductory description of electrospinning; the structure, properties, and toxicology of CyD; and CyD-drug complexation. Thereafter, the release of various drug molecules from CyD-functional electrospun nanofibers is provided in subsequent sections. The review concludes with a summary and outlook on material strategies.
Collapse
Affiliation(s)
- Fuat Topuz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey.
| |
Collapse
|
22
|
Rasouli R, Barhoum A, Bechelany M, Dufresne A. Nanofibers for Biomedical and Healthcare Applications. Macromol Biosci 2018; 19:e1800256. [DOI: 10.1002/mabi.201800256] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rahimeh Rasouli
- Department of Medical NanotechnologyTehran University of Medical Sciences—International Campus 14177‐43373 Tehran Iran
| | - Ahmed Barhoum
- Faculty of ScienceChemistry DepartmentHelwan University 11795 Helwan Cairo Egypt
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM UMR 5635)ENSCMCNRSUniversity of Montpellier 34090 Montpellier France
| | - Alain Dufresne
- LGP2, Grenoble INP, CNRSUniversité Grenoble Alpes F‐38000 Grenoble France
| |
Collapse
|
23
|
Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydr Polym 2018; 200:137-143. [DOI: 10.1016/j.carbpol.2018.07.096] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
|
24
|
Efficient Encapsulation of Citral in Fast-Dissolving Polymer-Free Electrospun Nanofibers of Cyclodextrin Inclusion Complexes: High Thermal Stability, Longer Shelf-Life, and Enhanced Water Solubility of Citral. NANOMATERIALS 2018; 8:nano8100793. [PMID: 30301193 PMCID: PMC6215197 DOI: 10.3390/nano8100793] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023]
Abstract
Here, we report a facile production of citral/cyclodextrin (CD) inclusion complex (IC) nanofibers (NFs) from three types of CDs (hydroxypropyl-beta-cyclodextrin (HPβCD), hydroxypropyl-gamma-cyclodextrin (HPγCD), and methylated-beta-cyclodextrin (MβCD)) by an electrospinning technique without the need of any polymeric carrier matrix. Self-standing nanofibrous webs of citral/CD-IC nanofibers (citral/CD-IC-NF) with uniform fiber morphology have been successfully electrospun from aqueous solutions of citral/CD-IC. Thanks to the inclusion complex formed with CDs, the efficient preservation of citral (up to ~80%) in citral/CD-IC-NFs was observed. In addition, the citral/CD-IC-NFs have shown ~50% preservation of citral for 15 days at room temperature even though citral has a highly volatile nature. The enhanced thermal stability of citral (~100–300°C) in citral/CD-IC-NFs compared to pure citral (~50–165°C) has been observed. Moreover, citral/CD-IC-NFs tended to disintegrate in water very quickly. To summarize, citral was efficiently encapsulated in citral/CD-IC-NFs, and these citral/CD-IC-NFs have been shown to be fast dissolving. In citral/CD-IC-NFs, citral/CD-ICs have enhanced water solubility of citral along with high-temperature stability and a longer shelf-life.
Collapse
|
25
|
Aruchamy K, Mahto A, Nataraj S. Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
|
27
|
Chen X, Chen M, Xu C, Yam KL. Critical review of controlled release packaging to improve food safety and quality. Crit Rev Food Sci Nutr 2018; 59:2386-2399. [PMID: 29553807 DOI: 10.1080/10408398.2018.1453778] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Controlled release packaging (CRP) is an innovative technology that uses the package to release active compounds in a controlled manner to improve safety and quality for a wide range of food products during storage. This paper provides a critical review of the uniqueness, design considerations, and research gaps of CRP, with a focus on the kinetics and mechanism of active compounds releasing from the package. Literature data and practical examples are presented to illustrate how CRP controls what active compounds to release, when and how to release, how much and how fast to release, in order to improve food safety and quality.
Collapse
Affiliation(s)
- Xi Chen
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Mo Chen
- b College of Engineering, QuFu Normal University , Rizhao , Shangdong , China
| | - Chenyi Xu
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| | - Kit L Yam
- a Department of Food Science, Rutgers, the State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
28
|
Liu F, Türker Saricaoglu F, Avena-Bustillos RJ, Bridges DF, Takeoka GR, Wu VCH, Chiou BS, Wood DF, McHugh TH, Zhong F. Preparation of Fish Skin Gelatin-Based Nanofibers Incorporating Cinnamaldehyde by Solution Blow Spinning. Int J Mol Sci 2018; 19:E618. [PMID: 29470390 PMCID: PMC5855840 DOI: 10.3390/ijms19020618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/14/2022] Open
Abstract
Cinnamaldehyde, a natural preservative that can non-specifically deactivate foodborne pathogens, was successfully incorporated into fish skin gelatin (FSG) solutions and blow spun into uniform nanofibers. The effects of cinnamaldehyde ratios (5-30%, w/w FSG) on physicochemical properties of fiber-forming emulsions (FFEs) and their nanofibers were investigated. Higher ratios resulted in higher values in particle size and viscosity of FFEs, as well as higher values in diameter of nanofibers. Loss of cinnamaldehyde was observed during solution blow spinning (SBS) process and cinnamaldehyde was mainly located on the surface of resultant nanofibers. Nanofibers all showed antibacterial activity by direct diffusion and vapor release against Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes. Inhibition zones increased as cinnamaldehyde ratio increased. Nanofibers showed larger inhibition effects than films prepared by casting method when S. typhimurium was exposed to the released cinnamaldehyde vapor, although films had higher remaining cinnamaldehyde than nanofibers after preparation. Lower temperature was favorable for cinnamaldehyde retention, and nanofibers added with 10% cinnamaldehyde ratio showed the highest retention over eight-weeks of storage. Results suggest that FSG nanofibers can be prepared by SBS as carriers for antimicrobials.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | - David F Bridges
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Gary R Takeoka
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Vivian C H Wu
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Delilah F Wood
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Tara H McHugh
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Celebioglu A, Kayaci-Senirmak F, İpek S, Durgun E, Uyar T. Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 2018; 7:3141-53. [PMID: 27353870 DOI: 10.1039/c6fo00569a] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vanillin/cyclodextrin inclusion complex nanofibers (vanillin/CD-IC NFs) were successfully obtained from three modified CD types (HPβCD, HPγCD and MβCD) in three different solvent systems (water, DMF and DMAc) via an electrospinning technique without using a carrier polymeric matrix. Vanillin/CD-IC NFs with uniform and bead-free fiber morphology were successfully produced and their free-standing nanofibrous webs were obtained. The polymer-free CD/vanillin-IC-NFs allow us to accomplish a much higher vanillin loading (∼12%, w/w) when compared to electrospun polymeric nanofibers containing CD/vanillin-IC (∼5%, w/w). Vanillin has a volatile nature yet, after electrospinning, a significant amount of vanillin was preserved due to complex formation depending on the CD types. Maximum preservation of vanillin was observed for vanillin/MβCD-IC NFs which is up to ∼85% w/w, besides, a considerable amount of vanillin (∼75% w/w) was also preserved for vanillin/HPβCD-IC NFs and vanillin/HPγCD-IC NFs. Phase solubility studies suggested a 1 : 1 molar complexation tendency between guest vanillin and host CD molecules. Molecular modelling studies and experimental findings revealed that vanillin : CD complexation was strongest for MβCD when compared to HPβCD and HPγCD in vanillin/CD-IC NFs. For vanillin/CD-IC NFs, water solubility and the antioxidant property of vanillin was improved significantly owing to inclusion complexation. In brief, polymer-free vanillin/CD-IC NFs are capable of incorporating a much higher loading of vanillin and effectively preserve volatile vanillin. Hence, encapsulation of volatile active agents such as flavor, fragrance and essential oils in electrospun polymer-free CD-IC NFs may have potential for food related applications by integrating the particularly large surface area of NFs with the non-toxic nature of CD and inclusion complexation benefits, such as high temperature stability, improved water solubility and an enhanced antioxidant property, etc.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Semran İpek
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey and Department of Engineering Physics, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University, Ankara, 06800, Turkey. and UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
30
|
Celebioglu A, Yildiz ZI, Uyar T. Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:457-466. [PMID: 29251511 DOI: 10.1021/acs.jafc.7b04312] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, inclusion complexes (IC) of three cyclodextrin derivatives (HP-β-CD, HP-γ-CD, and M-β-CD) with eugenol (essential oil compound) were formed in highly concentrated aqueous solutions and then transformed into self-standing functional nanofibrous webs by electrospinning. The improved aqueous solubility of eugenol was confirmed by phase solubility diagrams, in addition, the phase solubility tests also revealed 1:1 molar ratio complexation between host:guest molecules; CD:eugenol. Even though eugenol has a volatile nature, a large amount of eugenol (∼70-95%) was preserved in eugenol/cyclodextrin inclusion complex nanofibrous webs (eugenol/CD/IC-NW). Moreover, enhanced thermal stability of eugenol was recorded for eugenol/CD/IC-NW (up to ∼310 °C) when compared to pure form of eugenol (up to ∼200 °C). The eugenol/CD/IC-NW exhibited fast dissolving behavior in water, contrary to poorly water-soluble eugenol. It was observed that the complexation between M-β-CD and eugenol was the strongest when compared to other two host CD molecules (HP-β-CD and HP-γ-CD) for eugenol/CD/IC-NW samples. The electrospun eugenol/CD/IC-NW samples have shown enhanced antioxidant activity compared to pure form of eugenol. In summary, cyclodextrin inclusion complexes of essential oil compounds, such as eugenol, in the form of self-standing nanofibrous webs may have potentials for food and oral-care applications due to their particularly large surface area along with fast-dissolving character, improved water solubility, high temperature stability, and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
31
|
Thymol/cyclodextrin inclusion complex nanofibrous webs: Enhanced water solubility, high thermal stability and antioxidant property of thymol. Food Res Int 2017; 106:280-290. [PMID: 29579928 DOI: 10.1016/j.foodres.2017.12.062] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/11/2017] [Accepted: 12/24/2017] [Indexed: 12/27/2022]
Abstract
The development of novel nanomaterials that provide an efficient encapsulation and protection for the active food additives is one of the main focuses of current research efforts at food application areas. From this point of view, in this study, nanofibrous webs from inclusion complexes (IC) of modified cyclodextrins (hydroxypropyl-β-cyclodextrin (HPβCD), hydroxypropyl-γ-cyclodextrin (HPγCD) and methyl-β-cyclodextrin (MβCD)) and essential oils compound (i.e. thymol) was produced through electrospinning technique. While pure thymol has a highly volatile nature, the volatility of thymol was effectively suppressed by the inclusion complexation and ~88-100% (w/w) of thymol was preserved in electrospun thymol/cyclodextrin inclusion complex nanofibers (Thymol/CD-IC NF). The aqueous solubility enhancement for hydrophobic thymol was demonstrated by phase solubility diagram which also suggested the 1:1M inclusion complexation between thymol and CD molecules. Besides, Thymol/CD-IC NF displayed quite fast disintegration in water compared to poorly water soluble thymol. By inclusion complexation, high temperature stability for volatile thymol was achieved for Thymol/CD-IC NF samples. The loading of thymol in Thymol/CD-IC NF conferred DPPH radical scavenging ability to these nanofibrous webs. So, the Thymol/CD-IC NF have shown antioxidant activity along with enhanced water solubility and high thermal stability of thymol. In brief, encapsulation of essential oil compounds such as thymol in electrospun CD-IC nanofibers can promote its potential application in food and oral-care products by associating the large surface area of nanofibrous webs along with CD inclusion complexation which provides enhanced water solubility and antioxidant property, and high temperature stability for thymol.
Collapse
|
32
|
Wen P, Zong MH, Linhardt RJ, Feng K, Wu H. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
34
|
Wang J, Qiu C, Narsimhan G, Jin Z. Preparation and Characterization of Ternary Antimicrobial Films of β-Cyclodextrin/Allyl Isothiocyanate/Polylactic Acid for the Enhancement of Long-Term Controlled Release. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1210. [PMID: 29053573 PMCID: PMC5667016 DOI: 10.3390/ma10101210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/16/2022]
Abstract
Allyl isothiocyanate (AITC) are natural essential oil components that have outstanding antimicrobial activities. However, low water solubility, high volatility, and easy degradation by heat, restricting their application in food packing industry. Development of the inclusion complex of β-cyclodextrin/AITC (β-CD/AITC) is a promising solution. Furthermore, the incorporation of β-CD/AITC complex into polylactic acid (PLA) films would be an attractive method to develop food antimicrobial materials. The aim of this study was to evaluate the enhancement in physicochemical properties, antimicrobial activities, and controlled release of β-CD/AITC from such films. The addition of β-CD/AITC significantly increased the flexibility and thermal stability of films. The Fourier transform infrared (FTIR) results revealed that the interactions between β-CD/AITC and PLA films occurred. The controlled release of AITC encapsulated in β-CD was significantly affected by relative humidity and temperature. The PLA films containing β-CD/AITC can be applied as an effective antimicrobial packing material for food and non-food applications.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China.
| | - Ganesan Narsimhan
- Department of Agricultural and Biological Engineering, 225 South University Street, Purdue University, West Lafayette, IN 47907, USA.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
35
|
Celebioglu A, Yildiz ZI, Uyar T. Electrospun nanofibers from cyclodextrin inclusion complexes with cineole and
p
‐cymene: enhanced water solubility and thermal stability. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13564] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology UNAM‐National Nanotechnology Research Center Bilkent University Ankara 06800 Turkey
| |
Collapse
|
36
|
Abarca RL, Rodríguez FJ, Guarda A, Galotto MJ, Bruna JE, Fávaro Perez MA, Ramos Souza Felipe F, Padula M. Application of β-Cyclodextrin/2-Nonanone Inclusion Complex as Active Agent to Design of Antimicrobial Packaging Films for Control of Botrytis cinerea. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1926-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Aytac Z, Ipek S, Durgun E, Tekinay T, Uyar T. Antibacterial electrospun zein nanofibrous web encapsulating thymol/cyclodextrin-inclusion complex for food packaging. Food Chem 2017; 233:117-124. [PMID: 28530556 DOI: 10.1016/j.foodchem.2017.04.095] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
Thymol (THY)/γ-Cyclodextrin(γ-CD) inclusion complex (IC) encapsulated electrospun zein nanofibrous webs (zein-THY/γ-CD-IC-NF) were fabricated as a food packaging material. The formation of THY/γ-CD-IC (1:1 and 2:1) was proved by experimental (X-ray diffraction (XRD), thermal gravimetric analysis (TGA), 1H NMR) and computational techniques. THY/γ-CD-IC (2:1) exhibited higher preservation rate and stability than THY/γ-CD-IC (1:1). It is worth mentioning that zein-THY/γ-CD-IC-NF (2:1) preserved much more THY as observed in TGA and stability of THY/γ-CD-IC (2:1) was higher, as shown by a modelling study. Therefore, much more THY was released from zein-THY/γ-CD-IC-NF (2:1) than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). Similarly, antibacterial activity of zein-THY/γ-CD-IC-NF (2:1) was higher than zein-THY-NF and zein-THY/γ-CD-IC-NF (1:1). It was demonstrated that zein-THY/γ-CD-IC-NF (2:1) was most effective in inhibiting the growth of bacteria on meat samples. These webs show potential application as an antibacterial food packaging material.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Semran Ipek
- Department of Engineering Physics, Istanbul Medeniyet University, Istanbul 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Faculty of Medicine, Department of Medical Biology and Genetics, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
38
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Tekinay T, Uyar T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem 2017; 231:192-201. [PMID: 28449997 DOI: 10.1016/j.foodchem.2017.03.113] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/09/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The volatility and limited water solubility of linalool is a critical issue to be solved. Here, we demonstrated the electrospinning of polymer-free nanofibrous webs of cyclodextrin/linalool-inclusion complex (CD/linalool-IC-NFs). Three types of modified cyclodextrin (HPβCD, MβCD, and HPγCD) were used to electrospin CD/linalool-IC-NFs. Free-standing CD/linalool-IC-NFs facilitate maximum loading of linalool up to 12% (w/w). A significant amount of linalool (45-89%) was preserved in CD/linalool-IC-NFs, due to enhancement in the thermal stability of linalool by cyclodextrin inclusion complexation. Remarkably, CD/linalool-IC-NFs have shown fast-dissolving characteristics in which these nanofibrous webs dissolved in water within two seconds. Furthermore, linalool release from CD/linalool-IC-NFs inhibited growth of model Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria to a great extent. Briefly, characteristics of liquid linalool have been preserved in a solid nanofiber form and designed CD/linalool-IC-NFs confer high loading capacity, enhanced shelf life and strong antibacterial activity of linalool.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University, Ankara 06830, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey.
| |
Collapse
|
39
|
Yao J, Zhang S, Lim LT, Chen X. Investigation of isothiocyanate release from electrospun modified poly(L-lactic acid)/mustard powder composite fibers. Polym J 2017. [DOI: 10.1038/pj.2017.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Calamak S, Shahbazi R, Eroglu I, Gultekinoglu M, Ulubayram K. An overview of nanofiber-based antibacterial drug design. Expert Opin Drug Discov 2017; 12:391-406. [DOI: 10.1080/17460441.2017.1290603] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Semih Calamak
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Reza Shahbazi
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Ipek Eroglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
| | - Merve Gultekinoglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
| | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Department of Nanotechnology and Nanomedicine, Hacettepe University, Institute for Graduate Studies in Science Engineering, Ankara, Turkey
- Department of Bioengineering, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
- Department of Polymer Sciences and Technology, Hacettepe University, Institute for Graduate Studies in Science & Engineering, Ankara, Turkey
| |
Collapse
|
41
|
Electrospun Fibers of Cyclodextrins and Poly(cyclodextrins). Molecules 2017; 22:molecules22020230. [PMID: 28165381 PMCID: PMC6155744 DOI: 10.3390/molecules22020230] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/21/2017] [Accepted: 01/30/2017] [Indexed: 11/28/2022] Open
Abstract
Cyclodextrins (CDs) can endow electrospun fibers with outstanding performance characteristics that rely on their ability to form inclusion complexes. The inclusion complexes can be blended with electrospinnable polymers or used themselves as main components of electrospun nanofibers. In general, the presence of CDs promotes drug release in aqueous media, but they may also play other roles such as protection of the drug against adverse agents during and after electrospinning, and retention of volatile fragrances or therapeutic agents to be slowly released to the environment. Moreover, fibers prepared with empty CDs appear particularly suitable for affinity separation. The interest for CD-containing nanofibers is exponentially increasing as the scope of applications is widening. The aim of this review is to provide an overview of the state-of-the-art on CD-containing electrospun mats. The information has been classified into three main sections: (i) fibers of mixtures of CDs and polymers, including polypseudorotaxanes and post-functionalization; (ii) fibers of polymer-free CDs; and (iii) fibers of CD-based polymers (namely, polycyclodextrins). Processing conditions and applications are analyzed, including possibilities of development of stimuli-responsive fibers.
Collapse
|
42
|
High throughput electro-hydrodynamic processing in food encapsulation and food packaging applications: Viewpoint. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Aytac Z, Uyar T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int J Pharm 2017; 518:177-184. [DOI: 10.1016/j.ijpharm.2016.12.061] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/24/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
|
44
|
Feng K, Wen P, Yang H, Li N, Lou WY, Zong MH, Wu H. Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme. RSC Adv 2017. [DOI: 10.1039/c6ra25977d] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The antimicrobial activity of cinnamon essential oil-based electrospun nanofilm is enhanced by the combination of lysozyme.
Collapse
Affiliation(s)
- Kun Feng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Peng Wen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Huan Yang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Ning Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Wen Y. Lou
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Min H. Zong
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Hong Wu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
| |
Collapse
|
45
|
Ouerghemmi S, Degoutin S, Tabary N, Cazaux F, Maton M, Gaucher V, Janus L, Neut C, Chai F, Blanchemain N, Martel B. Triclosan loaded electrospun nanofibers based on a cyclodextrin polymer and chitosan polyelectrolyte complex. Int J Pharm 2016; 513:483-495. [DOI: 10.1016/j.ijpharm.2016.09.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 11/25/2022]
|
46
|
Aytac Z, Yildiz ZI, Kayaci-Senirmak F, San Keskin NO, Kusku SI, Durgun E, Tekinay T, Uyar T. Fast-Dissolving, Prolonged Release, and Antibacterial Cyclodextrin/Limonene-Inclusion Complex Nanofibrous Webs via Polymer-Free Electrospinning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7325-7334. [PMID: 27616160 DOI: 10.1021/acs.jafc.6b02632] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have proposed a new strategy for preparing free-standing nanofibrous webs from an inclusion complex (IC) of a well-known flavor/fragrance compound (limonene) with three modified cyclodextrins (HPβCD, MβCD, and HPγCD) via electrospinning (CD/limonene-IC-NFs) without using a polymeric matrix. The experimental and computational modeling studies proved that the stoichiometry of the complexes was 1:1 for CD/limonene systems. MβCD/limonene-IC-NF released much more limonene at 37, 50, and 75 °C than HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF because of the greater amount of preserved limonene. Moreover, MβCD/limonene-IC-NF has released only 25% (w/w) of its limonene, whereas HPβCD/limonene-IC-NF and HPγCD/limonene-IC-NF released 51 and 88% (w/w) of their limonene in 100 days, respectively. CD/limonene-IC-NFs exhibited high antibacterial activity against E. coli and S. aureus. The water solubility of limonene increased significantly and CD/limonene-IC-NFs were dissolved in water in a few seconds. In brief, CD/limonene-IC-NFs with fast-dissolving character enhanced the thermal stability and prolonged the shelf life along with antibacterial properties could be quite applicable in food and oral care applications.
Collapse
Affiliation(s)
- Zeynep Aytac
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Fatma Kayaci-Senirmak
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Nalan Oya San Keskin
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
- Department of Biology, Polatlı Faculty of Literature and Science, Gazi University , Ankara 06900, Turkey
- Life Sciences Application and Research Center, Gazi University , Ankara 06830, Turkey
| | - Semran Ipek Kusku
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
- Department of Engineering Physics, Istanbul Medeniyet University , Istanbul 34700, Turkey
| | - Engin Durgun
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Turgay Tekinay
- Life Sciences Application and Research Center, Gazi University , Ankara 06830, Turkey
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University , Ankara 06560, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, Bilkent University , Ankara 06800, Turkey
- UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
47
|
Costoya A, Ballarin FM, Llovo J, Concheiro A, Abraham GA, Alvarez-Lorenzo C. HMDSO-plasma coated electrospun fibers of poly(cyclodextrin)s for antifungal dressings. Int J Pharm 2016; 513:518-527. [PMID: 27667755 DOI: 10.1016/j.ijpharm.2016.09.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 11/19/2022]
Abstract
Electrospun mats containing cyclodextrin polymers (poly-αCD or poly-βCD) were developed to act as wound dressings showing tunable release rate of the antifungal agent fluconazole incorporated forming inclusion complexes. Poly-αCD and poly-βCD were prepared via cross-linking with epichlorohydrin (EPI) as water-soluble large molecular weight polymers. Then, polyCDs forming complexes with fluconazole were mixed with poly-(ε-caprolactone) (PCL) or poly(N-vinylpyrrolidone) (PVP) for electrospinning. Obtained bead-free fibers showed a random distribution, diameters in the 350-850nm range, and a variety of physical stability behaviors in aqueous environment. Mats were coated by hexamethyldisiloxane (HMDSO) plasma polymerization to create a hydrophobic layer that prevented rapid drug diffusion. HMDSO coating was evidenced by the Si content of mat surface (EDX analysis) and by the increase in the water contact angle (up to 130°). In physiological-mimicking medium, non-treated mats showed burst release of fluconazole, whereas HMDSO-coated mats sustained the release and delayed disintegration of PVP-based mats. Antifungal tests evidenced that both coated and non-coated mats efficiently inhibited the growth of Candida albicans.
Collapse
Affiliation(s)
- Alejandro Costoya
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Florencia Montini Ballarin
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Jose Llovo
- Servicio de Microbiología y Parasitología, Complejo Hospitalario Universitario de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Gustavo A Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| |
Collapse
|
48
|
Antioxidant activity and photostability of α-tocopherol/β-cyclodextrin inclusion complex encapsulated electrospun polycaprolactone nanofibers. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Aytac Z, Kusku SI, Durgun E, Uyar T. Quercetin/β-cyclodextrin inclusion complex embedded nanofibres: Slow release and high solubility. Food Chem 2016; 197:864-71. [DOI: 10.1016/j.foodchem.2015.11.051] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/30/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
|
50
|
Wang J, Vermerris W. Antimicrobial Nanomaterials Derived from Natural Products-A Review. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E255. [PMID: 28773379 PMCID: PMC5502919 DOI: 10.3390/ma9040255] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/18/2016] [Accepted: 03/23/2016] [Indexed: 01/21/2023]
Abstract
Modern medicine has relied heavily on the availability of effective antibiotics to manage infections and enable invasive surgery. With the emergence of antibiotic-resistant bacteria, novel approaches are necessary to prevent the formation of biofilms on sensitive surfaces such as medical implants. Advances in nanotechnology have resulted in novel materials and the ability to create novel surface topographies. This review article provides an overview of advances in the fabrication of antimicrobial nanomaterials that are derived from biological polymers or that rely on the incorporation of natural compounds with antimicrobial activity in nanofibers made from synthetic materials. The availability of these novel materials will contribute to ensuring that the current level of medical care can be maintained as more bacteria are expected to develop resistance against existing antibiotics.
Collapse
Affiliation(s)
- Ji Wang
- Department of Microbiology & Cell Science, IFAS, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, IFAS, University of Florida, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, FL 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|