1
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
2
|
Recent advances in electrospun protein fibers/nanofibers for the food and biomedical applications. Adv Colloid Interface Sci 2023; 311:102827. [PMID: 36584601 DOI: 10.1016/j.cis.2022.102827] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Electrospinning (ES) is one of the most investigated processes for the convenient, adaptive, and scalable manufacturing of nano/micro/macro-fibers. With this technique, virgin and composite fibers may be made in different designs using a wide range of polymers (both natural and synthetic). Electrospun protein fibers (EPF) shave desirable capabilities such as biocompatibility, low toxicity, degradability, and solvolysis. However, issues with the proteins' processibility have limited their widespread utilization. This paper gives an overview of the features of protein-based biomaterials, which are already being employed and has the potential to be exploited for ES. State-of-the-art examples showcasing the usefulness of EPFs in the food and biomedical industries, including tissue engineering, wound dressings, and drug delivery, provided in the applications. The EPFs' future perspective and the challenge they pose are presented at the end. It is believed that protein and biopolymeric nanofibers will soon be manufactured on an industrial scale owing to the limitations of employing synthetic materials, as well as enormous potential of nanofibers in other fields, such as active food packaging, regenerative medicine, drug delivery, cosmetic, and filtration.
Collapse
|
3
|
Tomadoni B, Fabra MJ, Méndez DA, Martínez-Abad A, López-Rubio A. Electrosprayed Agar Nanocapsules as Edible Carriers of Bioactive Compounds. Foods 2022; 11:foods11142093. [PMID: 35885337 PMCID: PMC9319333 DOI: 10.3390/foods11142093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/15/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Electrosprayed agar nanocapsules were developed using an acetic acid solution as solvent. The role of solution properties (viscosity, surface tension, and conductivity) in the formation of agar particles was assessed, together with the effect of both agar and acetic acid concentrations on the size and morphology of the resulting particles. Agar solutions with a concentration below 10% w/v were not suitable for electrospraying. Furthermore, the agar–acetic acid ratio was also critical for the formation of agar nanostructures (with an optimum ratio of 1:2). A decrease in particle size was also observed when decreasing agar concentration, with particle diameter values ranging between 50 and 400 nm. Moreover, the suitability of the electrosprayed agar nanocapsules as carriers for a model bioactive compound, chlorophyllin sodium copper salt (CHL), was also evaluated. The release profile of encapsulated CHL, with an estimated encapsulation efficiency of around 40%, was carried out in food simulants with different hydrophilicity (10% v/v and 50% v/v ethanol). While the release of the bioactive was negligible in the hydrophilic food simulant, an initial burst release followed by a slower sustained release was observed when the capsules were immersed in 50% ethanol solution. The results open up a broad range of possibilities that deserve further exploration related to the use of these edible polysaccharide-based nanocapsules.
Collapse
Affiliation(s)
- Barbara Tomadoni
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, Mar del Plata 7600, Argentina;
| | - María José Fabra
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
| | - Daniel Alexander Méndez
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Grupo de Investigación Bioecono, Facultad de Ciencias Económicas y Administrativas, Universidad del Tolima, Tolima 730006, Colombia
| | - Antonio Martínez-Abad
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
| | - Amparo López-Rubio
- Packaging Group, Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA-CSIC), Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.J.F.); (D.A.M.); (A.M.-A.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 26006 Madrid, Spain
- Correspondence:
| |
Collapse
|
4
|
Chai Z, Soko WC, Xie J, Bi H. Microchip coupled with MALDI-TOF MS for the investigation of bacterial contamination of fish muscle products. Food Chem 2022; 396:133658. [PMID: 35841680 DOI: 10.1016/j.foodchem.2022.133658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Bacterial contamination is a significant concern in food safety. Traditional methods, though being a gold standard for bacterial detection, are time-consuming. In this work, we managed to establish a simple and versatile magnetic-assisted microfluidic method for rapid bacterial detection of fish muscle products, by manipulating anti-human IgG functionalized magnetic beads in a zig-zag shaped microfluidic channel, increasing the probability for bacteria capture. The captured bacteria were characterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). This method is capable of isolating Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae from 5 μL of sablefish sarcoplasmic protein sample, and detecting Escherichia coli in the range of 6.0 to 6.0×104 CFU/mL with a detection limit of 6 CFU/mL. Bacterial growth on salmon sashimi during its period of storage was successfully monitored. The current protocol holds great potential for pathogen detection and microbial control in the food industry.
Collapse
Affiliation(s)
- Zhaoliang Chai
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| | - Winnie C Soko
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China.
| | - Hongyan Bi
- College of Food Science and Engineering, Shanghai Ocean University, Hucheng Ring Road 999, Pudong New District, Shanghai 201306, China.
| |
Collapse
|
5
|
Tomadoni B, Fabra MJ, López-Rubio A. Electrohydrodynamic processing of phycocolloids for food-related applications: Recent advances and future prospects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
7
|
Chai Z, Bi H. Capture and identification of bacteria from fish muscle based on immunomagnetic beads and MALDI-TOF MS. Food Chem X 2022; 13:100225. [PMID: 35498980 PMCID: PMC9039919 DOI: 10.1016/j.fochx.2022.100225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/02/2022] [Accepted: 01/20/2022] [Indexed: 11/12/2022] Open
Abstract
A protocol for the bacterial analysis in fish muscle was developed. Anti-bacterial antibodies modified magnetic beads (MBs) were used to capture bacteria. The bacterial identification accuracy from different complex food matrices was good. The presence of 10 CFU/mL E. coli is still detectable. It is promising to be applied in bacterial analysis to ensure muscle food safety.
In the present study, E. coli was taken as a model bacterium, anti-E. coli functionalized magnetic beads were constructed and used to capture E. coli from aqueous extracts of fish sarcoplasmic protein (FSP) and fish muscle protein of sablefish. The excellency of the reproducibility of the present protocol was demonstrated by capturing E. coli from sablefish FSP extracts. The presence of 10 CFU/mL E. coli is still detectable. A microbial safety test on the surface of fish muscle was successfully performed. The bacterial identification accuracy from samples with different matrices was found to be excellent with RSD = 3%. High specific detection of target bacteria in complex biological samples was testified by spiking Staphylococcus aureus and Klebsiella pneumoniae in samples as interference. Ten biomarker ions were discovered for E. coli’s recognition. It is promising to apply the present protocol in bacterial analysis in muscle food samples to ensure their safety.
Collapse
|
8
|
Fabrication and characterization of electrospun nanofibers of
Hypophthalmichthys molitrix
sarcoplasmic protein recovered by acid‐chitosan flocculation coupling treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.51472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Physicochemical and Antioxidant Properties Based on Fish Sarcoplasmic Protein/Chitosan Composite Films Containing Ginger Essential Oil Nanoemulsion. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02564-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Mendes AC, Saldarini E, Chronakis IS. Electrohydrodynamic Processing of Potato Protein into Particles and Fibers. Molecules 2020; 25:E5968. [PMID: 33339397 PMCID: PMC7766494 DOI: 10.3390/molecules25245968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
Potato protein particles and fibers were produced using electrohydrodynamic processing (electrospray and electrospinning). The effect of different solvents and protein concentration on the morphology of the potato protein particles and fibers was investigated. Electrosprayed particles with average diameters ranging from 0.3 to 1.4 µm could be obtained using water and mixtures of water: ethanol (9:1) and water:glycerol (9:1). Electrosprayed particles were also obtained using the solvent hexafluoro-2-propanol (HFIP) at a protein concentration of 5% wt/v. For protein concentrations above 10% wt/v, using HFIP, electrospun fibers were produced. The release of vitamin B12, as a model bioactive compound, from potato protein electrospun fibers, was also investigated, demonstrating their potential to be utilized as encapsulation and delivery systems.
Collapse
Affiliation(s)
- Ana C. Mendes
- DTU-Food, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark;
| | | | - Ioannis S. Chronakis
- DTU-Food, Technical University of Denmark, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark;
| |
Collapse
|
11
|
Cai L, Wang Y, Cao A. The physiochemical and preservation properties of fish sarcoplasmic protein/chitosan composite films containing ginger essential oil emulsions. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luyun Cai
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Yaru Wang
- National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering Bohai University Jinzhou China
| | - Ailing Cao
- Zhejiang Academy of Science & Technology for Inspection and Quarantine Hangzhou Customs District Hangzhou China
| |
Collapse
|
12
|
The application of biomacromolecules to improve oral absorption by enhanced intestinal permeability: A mini-review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Jacobsen C, García-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS. Use of Electrohydrodynamic Processing for Encapsulation of Sensitive Bioactive Compounds and Applications in Food. Annu Rev Food Sci Technol 2019; 9:525-549. [PMID: 29400995 DOI: 10.1146/annurev-food-030117-012348] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of vitamins, polyphenolic antioxidants, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics for the fortification of foods is increasing. However, these bioactive compounds have low stability and need to be protected to avoid deterioration in the food system itself or in the gastrointestinal tract. For that purpose, efficient encapsulation of the compounds may be required. Spray drying is one of the most commonly used encapsulation techniques in the food industry, but it uses high temperature, which can lead to decomposition of the bioactive compounds. Recently, alternative technologies such as electrospraying and electrospinning have received increasing attention. This review presents the principles of electrohydrodynamic processes for the production of nano-microstructures (NMSs) containing bioactive compounds. It provides an overview of the current use of this technology for encapsulation of bioactive compounds and discusses the future potential of the technology. Finally, the review discusses advanced microscopy techniques to study the morphology of NMSs.
Collapse
Affiliation(s)
- Charlotte Jacobsen
- Research Group for Bioactives-Analysis and Application, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark;
| | - Pedro J García-Moreno
- Research Group for Bioactives-Analysis and Application, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark;
| | - Ana C Mendes
- Nano-Bio Science Research Group, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Ramona V Mateiu
- Center for Electron Nanoscopy, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-Bio Science Research Group, National Food Institute, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Sena S, Sumeyra KN, Ulkugul G, Sema A, Betul K, Muge SB, Sayip EM, Muhammet U, Cevriye K, Mahir M, Titu MA, Ficai D, Ficai A, Gunduz O. Controlled Release of Metformin Hydrochloride from Core-Shell Nanofibers with Fish Sarcoplasmic Protein. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E682. [PMID: 31658758 PMCID: PMC6843546 DOI: 10.3390/medicina55100682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 01/13/2023]
Abstract
Background and Objectives: A coaxial electrospinning technique was used to produce core/shell nanofibers of a polylactic acid (PLA) as a shell and a polyvinyl alcohol (PVA) containing metformin hydrochloride (MH) as a core. Materials and Methods: Fish sarcoplasmic protein (FSP) was extracted from fresh bonito and incorporated into nanofiber at various concentrations to investigate the influence on properties of the coaxial nanofibers. The morphology, chemical structure and thermal properties of the nanofibers were studied. Results: The results show that uniform and bead-free structured nanofibers with diameters ranging from 621 nm to 681 nm were obtained. A differential scanning calorimetry (DSC) analysis shows that FSP had a reducing effect on the crystallinity of the nanofibers. Furthermore, the drug release profile of electrospun fibers was analyzed using the spectrophotometric method. Conclusions: The nanofibers showed prolonged and sustained release and the first order kinetic seems to be more suitable to describe the release. MTT assay suggests that the produced drug and protein loaded coaxial nanofibers are non-toxic and enhance cell attachment. Thus, these results demonstrate that the produced nanofibers had the potential to be used for diabetic wound healing applications.
Collapse
Affiliation(s)
- Su Sena
- Center for Nanotechnology & Biomaterials Application and Research, Marmara University, 34722 Istanbul, Turkey.
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey.
| | - Korkmaz Nalan Sumeyra
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey.
| | - Guven Ulkugul
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755 Istanbul, Turkey.
| | - Arslan Sema
- Department of Biochemistry, Marmara University, 34854 Istanbul, Turkey.
| | - Karademir Betul
- Department of Biochemistry, Marmara University, 34854 Istanbul, Turkey.
| | - Sennaroglu Bostan Muge
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey.
| | - Eroglu Mehmet Sayip
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey.
| | - Uzun Muhammet
- Department of Textile Engineering, Faculty of Technology, Marmara University 34722 Istanbul, Turkey.
| | - Kalkandelen Cevriye
- Department of Biomedical Devices Technology, Vocational School of Technical Sciences, Istanbul University-Cerrahpasa, 34500 Istanbul, Turkey.
| | - Mahirogullari Mahir
- Nanortopedi Industry and Trade Inc., Sanayi Mahallesi Teknopark Bulvari, Teknopark Istanbul, 34906 Istanbul, Turkey.
| | - Mihail Aurel Titu
- Department of Industrial Engineering and Management, "Lucian Blaga" University of Sibiu, Faculty of Engineering, RO-550025 Sibiu, Romania.
- Academy of Romanian Scientists, 54 Splaiul Independentei, Sector 5, 50085 Bucharest, Romania.
| | - Denisa Ficai
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, 54 Splaiul Independentei, Sector 5, 50085 Bucharest, Romania.
- Department of Science and Engineering of Oxidic Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania.
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research, Marmara University, 34722 Istanbul, Turkey.
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey.
| |
Collapse
|
15
|
Lim LT, Mendes AC, Chronakis IS. Electrospinning and electrospraying technologies for food applications. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:167-234. [PMID: 31151724 DOI: 10.1016/bs.afnr.2019.02.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electrospinning and electrospraying are versatile techniques for the production of nano- to micro-scale fibers and particles. Over the past 2 decades, significant progresses have been made to advance the fundamental understandings of these electrohydrodynamic processes. Researchers have investigated different polymeric and non-polymeric substrates for producing submicron electrospun/electrosprayed materials of unique morphologies and physicochemical properties. This chapter provides an overview on the basic principles of electrospinning and electrospraying, highlighting the effects of key processing and solution parameters. Electrohydrodynamic phenomena of edible substrates, including polysaccharides (xanthan, alginate, starch, cyclodextrin, pullulan, dextran, modified celluloses, and chitosan), proteins (zein, what gluten, whey protein, soy protein, gelatin, etc.), and phospholipids are reviewed. Selected examples are presented on how ultrafine fibers and particles derived from these substrates are being exploited for food and nutraceutical applications. Finally, the challenges and opportunities of the electrostatic methods are discussed.
Collapse
Affiliation(s)
- Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| | - Ana C Mendes
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| | - Ioannis S Chronakis
- Nano-BioScience Research Group, DTU-Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
Vieira S, Franco AR, Fernandes EM, Amorim S, Ferreira H, Pires RA, Reis RL, Martins A, Neves NM. Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids Surf B Biointerfaces 2018; 167:310-317. [PMID: 29679807 DOI: 10.1016/j.colsurfb.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 04/01/2018] [Indexed: 01/01/2023]
Abstract
Fish sarcoplasmic proteins (FSP) constitute around 25-30% of the total fish muscle protein. As the FSP are water soluble, FSP were isolated from fresh cod (Gadus morhua) by centrifugation. By SDS-PAGE, it was possible to determine the composition of FSP extracts (FSP-E). The FSP-E undergo denaturation at 44.12 ± 2.34° C, as characterized by differential scanning calorimetry thermograms (DSC). The secondary structure of FSP-E is mainly composed by α-helix structure, as determined by circular dichroism. The cytocompatibility of FSP-E, at concentrations ranging from 5 to 20 mg/mL, was investigated. Concentrations lower than 10 mg/mL have no cytotoxicity cultures of fibroblasts over 72 h. Further on, FSP membranes (FSP-M) were produced by spin coating to evaluate its properties. FSP-M shown having uniform surface as analyzed by Scanning Electron Microscopy (SEM). The relative amount of α-helix structures is higher when compared with the FSP-E. The FSP-M have higher temperature stability than the FSP-E, since they presented a denaturation temperature of 58.88 ± 3.36° C, according to the DSC analysis. FSP-M shown distinctive mechanical properties, with a stiffness of 16.57 ± 3.95 MPa and a yield strength of 23.85 ± 5.97 MPa. Human lung fibroblasts cell lines (MRC-5) were cultured in direct contact with FSP-M, demonstrating its cytocompatibility for 48 h. Based on these results, FSP can be considered a potential biomaterial recovered from nature, for wound dressing applications.
Collapse
Affiliation(s)
- Sara Vieira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Albina R Franco
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Sara Amorim
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Helena Ferreira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno M Neves
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
17
|
|
18
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
19
|
|
20
|
Liu M, Duan XP, Li YM, Yang DP, Long YZ. Electrospun nanofibers for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1413-1423. [PMID: 28482508 DOI: 10.1016/j.msec.2017.03.034] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022]
Abstract
Electrospinning has been widely used as a nanofiber fabrication technique. Its simple process, cost effectiveness and versatility have appealed to materials scientists globally. Pristine polymeric nanofibers or composite nanofibers with dissimilar morphologies and multidimensional assemblies ranging from one dimension (1D) to three dimensions (3D) can be obtained from electrospinning. Critically, these as-prepared nanofibers possessing high surface area to volume ratio, tunable porosity and facile surface functionalization present numerous possibilities for applications, particularly in biomedical field. This review gives us an overview of some recent advances of electrospinning-based nanomaterials in biomedical applications such as antibacterial mats, patches for rapid hemostasis, wound dressings, drug delivery systems, as well as tissue engineering. We further highlight the current challenges and future perspectives of electrospinning-based nanomaterials in the field of biomedicine.
Collapse
Affiliation(s)
- Minghuan Liu
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China
| | - Xiao-Peng Duan
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China; Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Ye-Ming Li
- Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Da-Peng Yang
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China.
| | - Yun-Ze Long
- College of Chemical Engineering & Materials Science, Quanzhou Normal University, Quanzhou, China; Collaborative Innovation Center for Nanomaterials & Optoelectronic Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
21
|
Sharifi F, Sooriyarachchi AC, Altural H, Montazami R, Rylander MN, Hashemi N. Fiber Based Approaches as Medicine Delivery Systems. ACS Biomater Sci Eng 2016; 2:1411-1431. [DOI: 10.1021/acsbiomaterials.6b00281] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Farrokh Sharifi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | | | - Hayriye Altural
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| | - Marissa Nichole Rylander
- Department
of Mechanical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Nastaran Hashemi
- Department
of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Center
of Advanced Host Defense Immunobiotics and Translational Medicine, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
22
|
García-Moreno PJ, Stephansen K, van der Kruijs J, Guadix A, Guadix EM, Chronakis IS, Jacobsen C. Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.03.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
|
24
|
Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4648287. [PMID: 26981531 PMCID: PMC4769747 DOI: 10.1155/2016/4648287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/29/2023]
Abstract
Antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anticancer activities of propolis and its ability to stimulate the immune system and promote wound healing make it a proper component for wound dressing materials. Silver nanoparticles are recognized to demonstrate strong antiseptic and antimicrobial activity; thus, it also could be considered in the development of products for wound healing. Combining propolis and silver nanoparticles can result in improved characteristics of products designed for wound healing and care. The aim of this study was to formulate electrospun fast dissolving mats for wound dressing containing propolis ethanolic extract and silver nanoparticles. Produced electrospun nano/microfiber mats were evaluated studying their structure, dissolution rate, release of propolis phenolic compounds and silver nanoparticles, and antimicrobial activity. Biopharmaceutical characterization of electrospun mats demonstrated fast release of propolis phenolic compounds and silver nanoparticles. Evaluation of antimicrobial activity on Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Bacillus cereus, and Candida albicans strains confirmed the ability of electrospun mats to inhibit the growth of the tested microorganisms.
Collapse
|
25
|
Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen HM. Interactions between Surfactants in Solution and Electrospun Protein Fibers: Effects on Release Behavior and Fiber Properties. Mol Pharm 2016; 13:748-55. [DOI: 10.1021/acs.molpharmaceut.5b00614] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Karen Stephansen
- National Food Institute, Technical University of
Denmark, Søltofts
Plads 227, DK-2800 Kongens Lyngby, Denmark
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - María García-Díaz
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Jessen
- National Food Institute, Technical University of
Denmark, Søltofts
Plads 227, DK-2800 Kongens Lyngby, Denmark
| | - Ioannis S. Chronakis
- National Food Institute, Technical University of
Denmark, Søltofts
Plads 227, DK-2800 Kongens Lyngby, Denmark
| | - Hanne M. Nielsen
- Department
of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int J Pharm 2015; 494:516-30. [DOI: 10.1016/j.ijpharm.2015.08.054] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022]
|
27
|
Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. Int J Pharm 2015; 495:58-66. [PMID: 26320547 DOI: 10.1016/j.ijpharm.2015.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/29/2022]
Abstract
Proteins originating from natural sources may constitute a novel type of material for use in drug delivery. However, thorough understanding of the behavior and effects of such a material when processed into a matrix together with a drug is crucial prior to further development into a drug product. In the present study the potential of using bioactive electrospun fish sarcoplasmic proteins (FSP) as a carrier matrix for small therapeutic proteins was demonstrated in relation to the interactions with biological components of the intestinal tract. The inherent structural and chemical properties of FSP as a biomaterial facilitated interactions with cells and enzymes found in the gastrointestinal tract and displayed excellent biocompatibility. More specifically, insulin was efficiently encapsulated into FSP fibers maintaining its conformation, and subsequent controlled release was obtained in simulated intestinal fluid. The encapsulation of insulin into FSP fibers provided protection against chymotrypsin degradation, and resulted in an increase in insulin transport to around 12% without compromising the cellular viability. This increased transport was driven by interactions upon contact between the nanofibers and the Caco-2 cell monolayer leading to the opening of the tight junction proteins. Overall, electrospun FSP may constitute a novel material for oral delivery of biopharmaceuticals.
Collapse
|
28
|
Stephansen K, Mattebjerg M, Wattjes J, Milisavljevic A, Jessen F, Qvortrup K, Goycoolea FM, Chronakis IS. Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes. Int J Biol Macromol 2015; 76:146-52. [PMID: 25709012 DOI: 10.1016/j.ijbiomac.2015.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/03/2015] [Accepted: 02/10/2015] [Indexed: 01/11/2023]
Abstract
Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 ± 3 nm, and the zeta potential was -42 ± 0.3 mV. The NCXs were stable in water, gastric buffer, intestinal buffer and HEPES buffered glycose, and at all pH values from 2 to 9 except pH 3, where they aggregated. When proteolytic enzymes were present in the buffer, the NCXs were degraded. Only at high concentrations the NCXs caused a decreased viability in HeLa and U2OS cell lines. The simple processing procedure and the high stability of the NCXs, makes them excellent candidates for use in the food and pharmaceutical industry.
Collapse
Affiliation(s)
- Karen Stephansen
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark.
| | - Maria Mattebjerg
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark
| | - Jasper Wattjes
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark; IBBP, Westfälische Wilhelms-Universität Münster Schlossgarten 3, 48149 - Münster, Germany
| | - Ana Milisavljevic
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark
| | - Flemming Jessen
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark
| | - Klaus Qvortrup
- University of Copenhagen, Department of Biomedical Sciences, The Panum Institute, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Francisco M Goycoolea
- IBBP, Westfälische Wilhelms-Universität Münster Schlossgarten 3, 48149 - Münster, Germany.
| | - Ioannis S Chronakis
- Technical University of Denmark, DTU-Food, Søltofts Plads 227, DK-2800 Kgs Lyngby, Denmark.
| |
Collapse
|
29
|
Jørgensen L, Qvortrup K, Chronakis IS. Phospholipid electrospun nanofibers: effect of solvents and co-axial processing on morphology and fiber diameter. RSC Adv 2015. [DOI: 10.1039/c5ra10498j] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Asolectin phospholipid nano-microfibers were prepared using electrospinning processing. The lowest average fiber diameter of 0.38 ± 0.14 μm was achieved.
Collapse
Affiliation(s)
- Lars Jørgensen
- Technical University of Denmark
- DTU-Food
- Nano-BioScience Research Group
- Lyngby
- Denmark
| | - Klaus Qvortrup
- University of Copenhagen
- Faculty of Health and Medical Sciences
- Department of Biomedical Sciences
- Panum Institute
- Copenhagen N
| | - Ioannis S. Chronakis
- Technical University of Denmark
- DTU-Food
- Nano-BioScience Research Group
- Lyngby
- Denmark
| |
Collapse
|