1
|
Fakhri V, Su CH, Tavakoli Dare M, Bazmi M, Jafari A, Pirouzfar V. Harnessing the power of polyol-based polyesters for biomedical innovations: synthesis, properties, and biodegradation. J Mater Chem B 2023; 11:9597-9629. [PMID: 37740402 DOI: 10.1039/d3tb01186k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Polyesters based on polyols have emerged as promising biomaterials for various biomedical applications, such as tissue engineering, drug delivery systems, and regenerative medicine, due to their biocompatibility, biodegradability, and versatile physicochemical properties. This review article provides an overview of the synthesis methods, performance, and biodegradation mechanisms of polyol-based polyesters, highlighting their potential for use in a wide range of biomedical applications. The synthesis techniques, such as simple polycondensation and enzymatic polymerization, allow for the fine-tuning of polyester structure and molecular weight, thereby enabling the tailoring of material properties to specific application requirements. The physicochemical properties of polyol-based polyesters, such as hydrophilicity, crystallinity, and mechanical properties, can be altered by incorporating different polyols. The article highlights the influence of various factors, such as molecular weight, crosslinking density, and degradation medium, on the biodegradation behavior of these materials, and the importance of understanding these factors for controlling degradation rates. Future research directions include the development of novel polyesters with improved properties, optimization of degradation rates, and exploration of advanced processing techniques for fabricating scaffolds and drug delivery systems. Overall, polyol-based polyesters hold significant potential in the field of biomedical applications, paving the way for groundbreaking advancements and innovative solutions that could revolutionize patient care and treatment outcomes.
Collapse
Affiliation(s)
- Vafa Fakhri
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Masoud Tavakoli Dare
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Maryam Bazmi
- Department of Polymer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aliakbar Jafari
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - Vahid Pirouzfar
- Department of Chemical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
2
|
Analysis of model drug permeation through highly crosslinked and biodegradable polyethylene glycol membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Peters JT, Wechsler ME, Peppas NA. Advanced biomedical hydrogels: molecular architecture and its impact on medical applications. Regen Biomater 2021; 8:rbab060. [PMID: 34925879 PMCID: PMC8678442 DOI: 10.1093/rb/rbab060] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogels are cross-linked polymeric networks swollen in water, physiological aqueous solutions or biological fluids. They are synthesized by a wide range of polymerization methods that allow for the introduction of linear and branched units with specific molecular characteristics. In addition, they can be tuned to exhibit desirable chemical characteristics including hydrophilicity or hydrophobicity. The synthesized hydrogels can be anionic, cationic, or amphiphilic and can contain multifunctional cross-links, junctions or tie points. Beyond these characteristics, hydrogels exhibit compatibility with biological systems, and can be synthesized to render systems that swell or collapse in response to external stimuli. This versatility and compatibility have led to better understanding of how the hydrogel's molecular architecture will affect their physicochemical, mechanical and biological properties. We present a critical summary of the main methods to synthesize hydrogels, which define their architecture, and advanced structural characteristics for macromolecular/biological applications.
Collapse
Affiliation(s)
- Jonathan T Peters
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Nicholas A Peppas
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, 200 E. Dean Keeton, Austin, TX 78712, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, Austin, TX 78712, USA
- Department of Surgery and Perioperative Care, and Department of Pediatrics, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Bldg. B, Austin, TX 78712, USA
| |
Collapse
|
4
|
Wang L, Lu R, Hou J, Nan X, Xia Y, Guo Y, Meng K, Xu C, Wang X, Zhao B. Application of injectable silk fibroin/graphene oxide hydrogel combined with bone marrow mesenchymal stem cells in bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125318] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Tailoring the Physico-Chemical Properties of Poly(xylitol-dicarboxylate- co-butylene dicarboxylate) Polyesters by Adjusting the Cross-Linking Time. Polymers (Basel) 2020; 12:polym12071493. [PMID: 32635345 PMCID: PMC7408360 DOI: 10.3390/polym12071493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/25/2022] Open
Abstract
Determining the cross-linking time resulting in the best achievable properties in elastomers is a very important factor when considering their mass production. In this paper, five biodegradable polymers were synthesized-poly(xylitol-dicarboxylate-co-butylene dicarboxylate) polymers, based on xylitol obtained from renewable sources. Five different dicarboxylic acids with even numbers of carbon atoms in the aliphatic chain were used: succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Samples were taken directly after polycondensation (prepolymer samples) and at different stages of the cross-linking process. Physiochemical properties were determined by a gel fraction test, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), quasi-static tensile tests, nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and an in vitro biodegradation test. The best cross-linking time was determined to be 288h. Properties and degradation time can be tailored for specific applications by adjusting the dicarboxylic acid chain length.
Collapse
|
6
|
Piątek-Hnat M, Bomba K, Pęksiński J. Structure and Properties of Biodegradable Poly (Xylitol Sebacate-Co-Butylene Sebacate) Copolyester. Molecules 2020; 25:E1541. [PMID: 32231016 PMCID: PMC7180773 DOI: 10.3390/molecules25071541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 01/26/2023] Open
Abstract
In this work, a bio-based copolyester with good mechanical properties was synthesized and characterized in terms of structure, main properties and biodegradability Determining the chemical structure of such materials is important to understand their behavior and properties. Performing an extraction of insoluble cross-linked polymer using different solvents allowed us to analyze how the polymer behaves when subjected to different chemical environments, and to obtain soluble samples suitable for more in-depth analysis. Chemical structure of poly (xylitol sebacate-co-butylene sebacate) was determined by a 1H NMR and FTIR analysis of both prepolymer gel sample and samples obtained by extraction of cross-linked polymer using different solvents. Block structure of the copolymer was confirmed by both NMR and DSC. Gel fraction, swelling value, water contact angle, and mechanical properties were also analyzed. Biodegradability of this material was confirmed by performing enzymatic and hydrolytic degradation. Synthesizing sugar-alcohol based copolyester using three monomers leads to obtaining a material with interesting chemical structure and desirable mechanical properties comparable to conventional elastomers.
Collapse
Affiliation(s)
- Marta Piątek-Hnat
- West Pomeranian University of Technology, Szczecin, Science, Piastów Ave. 17, 70-310 Szczecin, Poland; (K.B.); (J.P.)
- Faculty of Chemical Technology and Engineering Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Kuba Bomba
- West Pomeranian University of Technology, Szczecin, Science, Piastów Ave. 17, 70-310 Szczecin, Poland; (K.B.); (J.P.)
- Faculty of Chemical Technology and Engineering Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Jakub Pęksiński
- West Pomeranian University of Technology, Szczecin, Science, Piastów Ave. 17, 70-310 Szczecin, Poland; (K.B.); (J.P.)
- Faculty of Electrical Engineering, Sikorskiego Ave. 37, 71-313 Szczecin, Poland
| |
Collapse
|
7
|
Synthesis and Selected Properties of Ester Elastomer Containing Sorbitol. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this work was synthesizing ester elastomers, using sorbitol as a monomer obtainable from renewable sources. Three polymers were synthesized, utilizing three different polycondensation times. Their mechanical and thermal properties were examined and compared. Poly(sorbitol sebacate-co-butylene sebacate) elastomers were synthesized as a result of polycondensation reaction, using sebacic acid, butylene glycol and sorbitol as monomers. Resulting materials had good mechanical properties and a cross-linked structure. Such elastomers are susceptible to hydrolytic degradation which has been confirmed in earlier studies. This paper shows that the material synthesized utilizing a 3.5 h polycondensation time has the most desirable mechanical and thermal properties, and the reaction is characterized by the highest degree of conversion of substrates.
Collapse
|
8
|
Zhao N, Yue Z, Cui J, Yao Y, Song X, Cui B, Qi X, Han Z, Han ZC, Guo Z, He ZX, Li Z. IGF-1C domain-modified hydrogel enhances therapeutic potential of mesenchymal stem cells for hindlimb ischemia. Stem Cell Res Ther 2019; 10:129. [PMID: 31036073 PMCID: PMC6489284 DOI: 10.1186/s13287-019-1230-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/03/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Poor cell engraftment and survival after transplantation limited the application of stem cell therapy. Synthetic biomaterials could provide an artificial microenvironment for stem cells, thereby improve cell survival and enhance the therapeutic efficiency of stem cells. METHODS We synthesized a hydrogel by conjugating C domain peptide of insulin-like growth factor-1 (IGF-1C) onto chitosan (CS-IGF-1C hydrogel). Human placenta-derived mesenchymal stem cells (hP-MSCs), which constitutively express a red fluorescent protein (RFP) and renilla luciferase (Rluc), were co-transplanted with CS-IGF-1C hydrogel into a murine hindlimb ischemia model. Transgenic mice expressing firefly luciferase (Fluc) under the promoter of vascular endothelial growth factor receptor 2 (VEGFR2-Luc) were used. Dual bioluminescence imaging (BLI) was applied for tracking the survival of hP-MSCs by Rluc imaging and the VEGFR2 signal pathway activation by Fluc imaging. To investigate the therapeutic mechanism of CS-IGF-1C hydrogel, angiographic, real-time PCR, and histological analysis were carried out. RESULTS CS-IGF-1C hydrogel could improve hP-MSCs survival as well as promote angiogenesis as confirmed by dual BLI. These results were consistent with accelerated skeletal muscle structural and functional recovery. Histology analysis confirmed that CS-IGF-1C hydrogel robustly prevented fibrosis as shown by reduced collagen deposition, along with increased angiogenesis. In addition, the protective effects of CS-IGF-1C hydrogel, such as inhibiting H2O2-induced apoptosis and reducing inflammatory responses, were proved by in vitro experiments. CONCLUSIONS Taken together, IGF-1Cs provides a conducive niche for hP-MSCs to exert pro-mitogenic, anti-apoptotic, and pro-angiogenic effects, as well as to inhibit fibrosis. Thus, the incorporation of functional peptide into bioscaffolds represents a safe and feasible approach to augment the therapeutic efficacy of stem cells.
Collapse
Affiliation(s)
- Nianhuan Zhao
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003 China
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
| | - Zhiwei Yue
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
| | - Jian Cui
- Department of Intensive Care Unit (ICU), People’s Hospital of Rizhao, Rizhao, 276826 Shandong China
| | - Yong Yao
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218 China
| | - Xianghe Song
- Department of Cardiology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800 Shandong China
| | - Bangping Cui
- Department of Nuclear Medicine, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003 China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Tianjin, 300121 China
| | - Zhibo Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001 Jiangxi China
| | - Zhong-Chao Han
- Jiangxi Engineering Research Center for Stem Cell, Shangrao, 334001 Jiangxi China
| | - Zhikun Guo
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
| | - Zuo-Xiang He
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102218 China
| | - Zongjin Li
- Nankai University School of Medicine, 94 Weijin Road, Tianjin, 300071 China
- The Key Laboratory of Bioactive Materials, Ministry of Education, The College of Life Science, Nankai University, Tianjin, 300071 China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, 453003 China
| |
Collapse
|
9
|
Firoozi N, Kang Y. A Highly Elastic and Autofluorescent Poly(xylitol-dodecanedioic Acid) for Tissue Engineering. ACS Biomater Sci Eng 2019; 5:1257-1267. [PMID: 33405644 DOI: 10.1021/acsbiomaterials.9b00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In spite of the vast research on developing a highly elastic polymer for tissue regeneration, using a renewable resource and a simple, environment-friendly synthesis route to synthesize an elastic polymer has not been successfully achieved yet. The objective of this study was to use a simple melt condensation polymerization method to develop an elastic polymer for tissue regeneration applications. A nature-derived renewable, nontoxic, and inexpensive monomer, xylitol, and a cross-linking agent, dodecanedioic acid, were used to synthesize the new polymer named poly(xylitol-dodecanedioic acid) (PXDDA). Its physicochemical and biological properties were fully characterized. Fourier transform infrared (FTIR) results confirmed the formation of ester bonding in the polymer structure, and thermal analysis results demonstrated that the polymer was completely amorphous. The polymer is highly elastic. Increasing the molar ratio of dodecanedioic acid resulted in lower elasticity, higher hydrophobicity, and lower glass transition temperature. Further, the polymer degradation rate and in vitro dye release from the polymer also became slower when the amount of dodecanedioic acid in the composite increased. Biocompatibility studies showed that both the polymeric materials and the degraded products of the polymer did not show any toxicity. Instead, this new polymer significantly promoted cell adhesion and proliferation, compared to a widely used polymer, poly(lactic acid), and tissue culture plates. Interestingly, the PXDDA polymer demonstrated autofluorescent properties. Overall, these results suggest that a new, elastic, biodegradable polymer has been successfully synthesized, and it holds great promise for biomedical applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Negar Firoozi
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.,Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States.,Integrative Biology Ph.D. Program, Department of Biological Science, Florida Atlantic University, 777 Glades Road, Boca Raton, Florida 33431, United States
| |
Collapse
|
10
|
Płowaś-Korus I, Buchner R. Structure, molecular dynamics, and interactions in aqueous xylitol solutions. Phys Chem Chem Phys 2019; 21:24061-24069. [DOI: 10.1039/c9cp04547c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broad-band dielectric relaxation studies of xylitol-water mixture show distinctly different dynamics for distal and central –OH of xylitol molecules and indicates the presence of loose xylitol aggregates.
Collapse
Affiliation(s)
- Iwona Płowaś-Korus
- Institute of Molecular Physics
- Polish Academy of Sciences
- 60-179 Poznań
- Poland
| | - Richard Buchner
- Institut für Physikalische und Theoretische Chemie
- Universität Regensburg
- 93040 Regensburg
- Germany
| |
Collapse
|
11
|
Bi B, Liu H, Kang W, Zhuo R, Jiang X. An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications. Colloids Surf B Biointerfaces 2018; 175:614-624. [PMID: 30583217 DOI: 10.1016/j.colsurfb.2018.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023]
Abstract
The in-situ forming injectable hydrogels have received much attention as scaffolds in the biomedical field, providing a minimally invasive surgical procedure to fill the damaged area. In the present work, carboxymethyl chitin (CMCH) synthesized homogenously was further functionalized with tyramine, resulted in a new injectable enzymatically crosslinked in-situ forming hydrogel under physiological conditions. This new tyramine-modified carboxymethyl chitin (CMCH-Tyr) hydrogel showed much better mechanical properties than those of the thermosensitive in-situ forming physical-crosslinking CMCH hydrogel. The CMCH-Tyr hydrogels remained stable under physiological conditions and could be degraded by lysozyme. The gelation time, strength and biodegradation rate of the CMCH-Tyr hydrogels can be adjusted by varying the concentrations of the horseradish peroxidase and H2O2 in the certain range. In vitro cytotoxicity assays and in vivo in-situ injection study showed non-toxicity, favorable gel formation, and good tissue biocompatibility of the enzyme-catalyzed CMCH-Tyr hydrogel. Thus, the biodegradable and biocompatible CMCH-Tyr hydrogels may hold great potential for three dimensional cell culture and tissue engineering.
Collapse
Affiliation(s)
- Bo Bi
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Hui Liu
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Wenting Kang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
12
|
Fu Y, Chen J, Bak KH, Lametsch R. Valorisation of protein hydrolysates from animal by‐products: perspectives on bitter taste and debittering methods: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Fu
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - Jingru Chen
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
- College of Food Science and Nutritional Engineering China Agricultural University No. 17 Qinghua East Road, Haidian District Beijing 100083 China
| | - Kathrine H. Bak
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| | - René Lametsch
- Department of Food Science Faculty of Science University of Copenhagen Rolighedsvej 26 Frederiksberg C 1958 Denmark
| |
Collapse
|
13
|
Christiani TR, Toomer K, Sheehan J, Nitzl A, Branda A, England E, Graney P, Iftode C, Vernengo AJ. Synthesis of Thermogelling Poly(N-isopropylacrylamide)-graft-chondroitin Sulfate Composites with Alginate Microparticles for Tissue Engineering. J Vis Exp 2016. [PMID: 27805604 DOI: 10.3791/53704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Injectable biomaterials are defined as implantable materials that can be introduced into the body as a liquid and solidify in situ. Such materials offer the clinical advantages of being implanted minimally invasively and easily forming space-filling solids in irregularly shaped defects. Injectable biomaterials have been widely investigated as scaffolds for tissue engineering. However, for the repair of certain load-bearing areas in the body, such as the intervertebral disc, scaffolds should possess adhesive properties. This will minimize the risk of dislocation during motion and ensure intimate contact with the surrounding tissue, providing adequate transmission of forces. Here, we describe the preparation and characterization of a scaffold composed of thermally sensitive poly(N-isopropylacrylamide)-graft-chondroitin sulfate (PNIPAAM-g-CS) and alginate microparticles. The PNIPAAm-g-CS copolymer forms a viscous solution in water at RT, into which alginate particles are suspended to enhance adhesion. Above the lower critical solution temperature (LCST), around 30 °C, the copolymer forms a solid gel around the microparticles. We have adapted standard biomaterials characterization procedures to take into account the reversible phase transition of PNIPAAm-g-CS. Results indicate that the incorporation of 50 or 75 mg/ml alginate particles into 5% (w/v) PNIPAAm-g-CS solutions quadruple the adhesive tensile strength of PNIPAAm-gCS alone (p<0.05). The incorporation of alginate microparticles also significantly increases swelling capacity of PNIPAAm-g-CS (p<0.05), helping to maintain a space-filling gel within tissue defects. Finally, results of the in vitro toxicology assay kit, 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) and Live/Dead viability assay indicate that the adhesive is capable of supporting the survival and proliferation of encapsulated Human Embryonic Kidney (HEK) 293 cells over 5 days.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pamela Graney
- Department of Biomedical Engineering, Drexel University
| | | | | |
Collapse
|
14
|
Wei W, Qi X, Li J, Zuo G, Sheng W, Zhang J, Dong W. Smart Macroporous Salecan/Poly( N, N-diethylacrylamide) Semi-IPN Hydrogel for Anti-Inflammatory Drug Delivery. ACS Biomater Sci Eng 2016; 2:1386-1394. [PMID: 33434992 DOI: 10.1021/acsbiomaterials.6b00318] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(N,N-diethylacrylamide) is not only a thermosensitive polymer, but also a good hydrogen bond acceptor. Therefore, drugs with carboxyl groups can serve as hydrogen bond donors and form interactions with the tertiary amide groups in N,N-diethylacrylamide. Herein, we report a novel drug delivery system for anionic drugs composed of poly(N,N-diethylacrylamide) and salecan. Salecan was used to improve the hydrophilicity and accelerate the responsive rate of this system. As expected, salecan-enriched hydrogels exhibited higher swelling ratios and were more sensitive to temperature. Moreover, scanning electron microscopy images showed that the hydrogels are superporous structures, with pore-sizes that increase with salecan concentration. The swelling ratios decreased continuously with the increase of temperature in the range 25-37 °C. MTT assay for cell viability and cell adhesion studies confirm the cell compatibility of the system. Delivery tests using diclofenac sodium, an anti-inflammatory drug, indicate that the thermosensitive property of this system is favorable for anionic drug delivery. Interestingly, the release rates of diclofenac sodium from the hydrogels were temperature dependent, with higher temperatures contributing toward faster release rate.
Collapse
Affiliation(s)
- Wei Wei
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaoliang Qi
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junjian Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Gancheng Zuo
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Sheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
15
|
Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:927-42. [DOI: 10.1016/j.msec.2016.01.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
16
|
Bian S, He M, Sui J, Cai H, Sun Y, Liang J, Fan Y, Zhang X. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloids Surf B Biointerfaces 2016; 140:392-402. [DOI: 10.1016/j.colsurfb.2016.01.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 01/10/2023]
|
17
|
Chee PL, Lakshmanan L, Jiang S, Ye H, Kai D, Loh XJ. An Injectable Double-Network Hydrogel for Cell Encapsulation. Aust J Chem 2016. [DOI: 10.1071/ch15659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Further developing on the technique originally intended for the purpose of forming tough hydrogels, we showed in this study that the double-network system can also be used to synthesize an injectable gel. The gel was made up of poly(ethylene glycol) methyl ether methacrylate, sodium alginic acid, and calcium chloride, and two networks, consisting of ionic and covalent networks, were found to co-exist in the gel. Additionally, the rheology studies showed that the mechanical properties of the gel only deteriorated under high strain, demonstrating the robustness of the gel upon injection. The results of a cell cytotoxicity test and a preliminary cell encapsulation study were promising, showing good cell compatibility and thus suggesting that the hydrogels could potentially be used for cell delivery.
Collapse
|
18
|
Liu J, Wang K, Luan J, Wen Z, Wang L, Liu Z, Wu G, Zhuo R. Visualization of in situ hydrogels by MRI in vivo. J Mater Chem B 2016; 4:1343-1353. [DOI: 10.1039/c5tb02459e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chitosan and PEG-based self-healable in situ hydrogel developed as a long-term MRI reporter.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Biomedical Polymers of the Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Ke Wang
- Medical Imaging Division
- Zhongnan Hospital of Wuhan University
- Wuhan 430072
- P. R. China
| | - Jie Luan
- Key Laboratory of Biomedical Polymers of the Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zhi Wen
- Medical Imaging Division
- Zhongnan Hospital of Wuhan University
- Wuhan 430072
- P. R. China
| | - Lei Wang
- Key Laboratory of Biomedical Polymers of the Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Zhilan Liu
- Key Laboratory of Biomedical Polymers of the Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Guangyao Wu
- Medical Imaging Division
- Zhongnan Hospital of Wuhan University
- Wuhan 430072
- P. R. China
| | - Renxi Zhuo
- Key Laboratory of Biomedical Polymers of the Ministry of Education & College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
19
|
Zhang M, Wu Y, Zhao X, Gao K, Ma PX, Guo B. Biocompatible degradable injectable hydrogels from methacrylated poly(ethylene glycol)-co-poly(xylitol sebacate) and cyclodextrins for release of hydrophilic and hydrophobic drugs. RSC Adv 2015. [DOI: 10.1039/c5ra11902b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An injectable photocurable composite hydrogel from methacrylated poly(ethylene glycol)-co-poly(xylitol sebacate) (PEGXS-M) and acrylamidomethyl-β-cyclodextrin (β-CD-NMA) for both hydrophilic and hydrophobic drug release.
Collapse
Affiliation(s)
- Mengyao Zhang
- Center for Biomedical Engineering and Regenerative Medicine
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Yaobin Wu
- Center for Biomedical Engineering and Regenerative Medicine
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Xin Zhao
- Center for Biomedical Engineering and Regenerative Medicine
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Kun Gao
- State Key Laboratory for Manufacturing Engineering
- Xi'an Jiaotong University
- Xi'an
- China
| | - Peter X. Ma
- Center for Biomedical Engineering and Regenerative Medicine
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| | - Baolin Guo
- Center for Biomedical Engineering and Regenerative Medicine
- Frontier Institute of Science and Technology
- Xi'an Jiaotong University
- Xi'an
- China
| |
Collapse
|