1
|
Darwish WM, Bayoumi NA, El-Shershaby HM, Moustafa KA. A novel gold-polymer-antibody conjugate for targeted (radio-photothermal) treatment of HepG2 cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:53-71. [PMID: 35929853 DOI: 10.1080/09205063.2022.2110479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Localization of the near-infrared (NIR) plasmonic nanoparticles at the tumor sites is essential for safe and efficient photothermal therapy of cancer. In this work, two biocompatible polymers: modified poly(ethylene glycol) (PEG) and branched polyethyleneimine (bPEI) were used to bind plasmonic hollow gold nanospheres (HAuNS) to the tumor-specific antibody, atezolizumab (ATZ). The photo-immunoconjugate (HAuNS-PEI-PEG-ATZ) was prepared via a simple and cost-effective procedure. The conjugate was also prepared with the radioiodinated antibody (ATZ-131I) to combine the targeted radio- and photothermal cytotoxic actions against human hepatoma (HepG2) cells. In vitro study revealed that attachment to the antibody and the use of cellular internalizing polymers enhanced the cellular localization of both gold and the radiotherapeutic Iodine-131. Compared to bare gold nanoparticles, (HAuNS-PEI-PEG-ATZ) conjugate exhibited a significantly enhanced photothermal ablation of HepG2 cells after laser irradiation (0.4 W cm-2, 5 min). Laser irradiation of the cells treated with the radiolabeled conjugate (HAuNS-PEI-PEG-ATZ-131I) exhibited the highest cytotoxicity against HepG2 cells due to the combinatorial cytotoxic effects.
Collapse
Affiliation(s)
- Wael M Darwish
- Department of Polymers and Pigments, National Research Centre, Dokki, Egypt
| | - Noha A Bayoumi
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hanan M El-Shershaby
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Kamel A Moustafa
- Department of Radiolabelled Compounds, Hot Lab Centre, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022; 14:pharmaceutics14102182. [PMID: 36297620 PMCID: PMC9609291 DOI: 10.3390/pharmaceutics14102182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.
Collapse
|
3
|
Significance of Capping Agents of Colloidal Nanoparticles from the Perspective of Drug and Gene Delivery, Bioimaging, and Biosensing: An Insight. Int J Mol Sci 2022; 23:ijms231810521. [PMID: 36142435 PMCID: PMC9505579 DOI: 10.3390/ijms231810521] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The over-growth and coagulation of nanoparticles is prevented using capping agents by the production of stearic effect that plays a pivotal role in stabilizing the interface. This strategy of coating the nanoparticles’ surface with capping agents is an emerging trend in assembling multipurpose nanoparticles that is beneficial for improving their physicochemical and biological behavior. The enhancement of reactivity and negligible toxicity is the outcome. In this review article, an attempt has been made to introduce the significance of different capping agents in the preparation of nanoparticles. Most importantly, we have highlighted the recent progress, existing roadblocks, and upcoming opportunities of using surface modified nanoparticles in nanomedicine from the drug and gene delivery, bioimaging, and biosensing perspectives.
Collapse
|
4
|
Li Q, Zhu M, Li Y, Tang H, Wang Z, Zhang Y, Xie Y, Lv Z, Bao H, Li Y, Liu R, Shen Y, Zheng Y, Miao D, Guo X, Pei J. Estrone-targeted PEGylated Liposomal Nanoparticles for Cisplatin (DDP) Delivery in Cervical Cancer. Eur J Pharm Sci 2022; 174:106187. [PMID: 35430381 DOI: 10.1016/j.ejps.2022.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
|
5
|
Yang Y, Guo J, Huang L. Tackling TAMs for Cancer Immunotherapy: It's Nano Time. Trends Pharmacol Sci 2021; 41:701-714. [PMID: 32946772 DOI: 10.1016/j.tips.2020.08.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is a highly complex environment that surrounds tumors. Interactions between cancer cells/non-cancerous cells and cells/non-cell components in the TME support tumor initiation, development, and metastasis. Of the cell types in the TME, tumor-associated macrophages (TAMs) have gained attention owing to their crucial roles in supporting tumors and conferring therapy resistance. Recent developments in nanotechnology raise opportunities for the application of nano targeted drug-delivery systems (Nano-TDDS) in cancer therapy. We focus our discussion on current knowledge of TAMs, and describe recent examples of Nano-TDDS-based TAM modulation, highlighting strategies to overcome in vivo delivery barriers associated with the TME and their potential for clinical translation.
Collapse
Affiliation(s)
- Yishun Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Experiment Centre of Teaching and Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Guo
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Zou Y, Xiao F, Song L, Sun B, Sun D, Chu D, Wang L, Han S, Yu Z, O'Driscoll CM, Guo J. A folate-targeted PEGylated cyclodextrin-based nanoformulation achieves co-delivery of docetaxel and siRNA for colorectal cancer. Int J Pharm 2021; 606:120888. [PMID: 34271152 DOI: 10.1016/j.ijpharm.2021.120888] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/22/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic agent used for a range of cancers, but it has little activity against colorectal cancer (CRC). However, combination therapy with other therapeutic agents is a potential strategy to enhance the efficacy of DTX in CRC treatment. The nuclear factor-κB (NF-κB) signaling pathway is implicated in a variety of malignancies (e.g., CRC), and the blockade of NF-κB may increase the sensitivity of cancer cells to chemotherapy. The application of small interference RNA (siRNA) to inhibit the translation of complementary mRNA has demonstrated the potential for cancer gene therapy. In this study, an amphiphilic cationic cyclodextrin (CD) nanoparticle modified with PEGylated folate (FA; a ligand to target folate receptor on CRC) has been developed for co-delivery of DTX and siRNA (against the RelA, a subunit of NF-κB) in the treatment of CRC. The resultant co-formulation (CD.DTX.siRelA.PEG-FA) achieved cell-specific uptake indicating the function of the folate targeting ligand. The CD.DTX.siRelA.PEG-FA nanoparticle enhanced the apoptotic effect of DTX with the downregulation of RelA expression, which significantly retarded the growth of CRC in mice, without causing significant toxicity. These results suggest that the FA-targeted PEGylated CD-based co-formulation provides a promising strategy for combining DTX and siRNA in treating CRC.
Collapse
Affiliation(s)
- Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fang Xiao
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun 130041, China
| | - Liu Song
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Bingxue Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Di Chu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- Department of Pharmacy, the General Hospital of FAW, Changchun 130011, China
| | - Shulan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland.
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
7
|
Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of Protamine in Nanopharmaceuticals-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1508. [PMID: 34200384 PMCID: PMC8230241 DOI: 10.3390/nano11061508] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022]
Abstract
Macromolecular biomolecules are currently dethroning classical small molecule therapeutics because of their improved targeting and delivery properties. Protamine-a small polycationic peptide-represents a promising candidate. In nature, it binds and protects DNA against degradation during spermatogenesis due to electrostatic interactions between the negatively charged DNA-phosphate backbone and the positively charged protamine. Researchers are mimicking this technique to develop innovative nanopharmaceutical drug delivery systems, incorporating protamine as a carrier for biologically active components such as DNA or RNA. The first part of this review highlights ongoing investigations in the field of protamine-associated nanotechnology, discussing the self-assembling manufacturing process and nanoparticle engineering. Immune-modulating properties of protamine are those that lead to the second key part, which is protamine in novel vaccine technologies. Protamine-based RNA delivery systems in vaccines (some belong to the new class of mRNA-vaccines) against infectious disease and their use in cancer treatment are reviewed, and we provide an update on the current state of latest developments with protamine as pharmaceutical excipient for vaccines.
Collapse
Affiliation(s)
| | | | | | - Andreas Zimmer
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, Karl-Franzens-University Graz, Universitätsplatz 1, 8010 Graz, Austria; (I.R.); (K.F.); (C.P.)
| |
Collapse
|
8
|
Pędziwiatr-Werbicka E, Gorzkiewicz M, Horodecka K, Lach D, Barrios-Gumiel A, Sánchez-Nieves J, Gómez R, de la Mata FJ, Bryszewska M. PEGylation of Dendronized Gold Nanoparticles Affects Their Interaction with Thrombin and siRNA. J Phys Chem B 2021; 125:1196-1206. [PMID: 33481607 DOI: 10.1021/acs.jpcb.0c10177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of nonviral carriers based on nanomaterials is a promising strategy for modern gene therapy aimed at protecting the genetic material against degradation and enabling its efficient cellular uptake. To improve the effectiveness of nanocarriers in vivo, they are often modified with poly(ethylene glycol) (PEG) to reduce their toxicity, limit nonspecific binding by proteins in the bloodstream, and extend blood half-life. Thus, the selection of an appropriate degree of surface PEGylation is crucial to preserve the interaction of nanoparticles with the genetic material and to ensure its efficient transport to the site of action. Our research focuses on the use of innovative gold nanoparticles (AuNPs) coated with cationic carbosilane dendrons as carriers of siRNA. In this study, using dynamic light scattering and zeta potential measurements, circular dichroism, and gel electrophoresis, we investigated dendronized AuNPs modified to varying degrees with PEG in terms of their interactions with siRNA and thrombin to select the most promising PEGylated carrier for further research.
Collapse
Affiliation(s)
- Elżbieta Pędziwiatr-Werbicka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Michał Gorzkiewicz
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Katarzyna Horodecka
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Dominika Lach
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| | - Andrea Barrios-Gumiel
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Javier Sánchez-Nieves
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Francisco Javier de la Mata
- Department of Organic and Inorganic Chemistry and Research Chemistry Institute "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain.,Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.,Institute "Ramón y Cajal" for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland
| |
Collapse
|
9
|
Golubeva TS, Cherenko VA, Orishchenko KE. Recent Advances in the Development of Exogenous dsRNA for the Induction of RNA Interference in Cancer Therapy. Molecules 2021; 26:701. [PMID: 33572762 PMCID: PMC7865971 DOI: 10.3390/molecules26030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 11/17/2022] Open
Abstract
Selective regulation of gene expression by means of RNA interference has revolutionized molecular biology. This approach is not only used in fundamental studies on the roles of particular genes in the functioning of various organisms, but also possesses practical applications. A variety of methods are being developed based on gene silencing using dsRNA-for protecting agricultural plants from various pathogens, controlling insect reproduction, and therapeutic techniques related to the oncological disease treatment. One of the main problems in this research area is the successful delivery of exogenous dsRNA into cells, as this can be greatly affected by the localization or origin of tumor. This overview is dedicated to describing the latest advances in the development of various transport agents for the delivery of dsRNA fragments for gene silencing, with an emphasis on cancer treatment.
Collapse
Affiliation(s)
- Tatiana S. Golubeva
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk 630090, Russia; (V.A.C.); (K.E.O.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Viktoria A. Cherenko
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk 630090, Russia; (V.A.C.); (K.E.O.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Konstantin E. Orishchenko
- Department of Genetic Technologies, Novosibirsk State University, Novosibirsk 630090, Russia; (V.A.C.); (K.E.O.)
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
10
|
Grafals-Ruiz N, Rios-Vicil CI, Lozada-Delgado EL, Quiñones-Díaz BI, Noriega-Rivera RA, Martínez-Zayas G, Santana-Rivera Y, Santiago-Sánchez GS, Valiyeva F, Vivas-Mejía PE. Brain Targeted Gold Liposomes Improve RNAi Delivery for Glioblastoma. Int J Nanomedicine 2020; 15:2809-2828. [PMID: 32368056 PMCID: PMC7185647 DOI: 10.2147/ijn.s241055] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Glioblastoma (GBM) is the most common and lethal of the central nervous system (CNS) malignancies. The initiation, progression, and infiltration ability of GBMs are attributed in part to the dysregulation of microRNAs (miRNAs). Thus, targeting dysregulated miRNAs with RNA oligonucleotides (RNA interference, RNAi) has been proposed for GBM treatment. Despite promising results in the laboratory, RNA oligonucleotides have clinical limitations that include poor RNA stability and off-target effects. RNAi therapies against GBM confront an additional obstacle, as they need to cross the blood-brain barrier (BBB). METHODS Here, we developed gold-liposome nanoparticles conjugated with the brain targeting peptides apolipoprotein E (ApoE) and rabies virus glycoprotein (RVG). First, we functionalized gold nanoparticles with oligonucleotide miRNA inhibitors (OMIs), creating spherical nucleic acids (SNAs). Next, we encapsulated SNAs into ApoE, or RVG-conjugated liposomes, to obtain SNA-Liposome-ApoE and SNA-Liposome-RVG, respectively. We characterized each nanoparticle in terms of their size, charge, encapsulation efficiency, and delivery efficiency into U87 GBM cells in vitro. Then, they were administered intravenously (iv) in GBM syngeneic mice to evaluate their delivery efficiency to brain tumor tissue. RESULTS SNA-Liposomes of about 30-50 nm in diameter internalized U87 GBM cells and inhibited the expression of miRNA-92b, an aberrantly overexpressed miRNA in GBM cell lines and GBM tumors. Conjugating SNA-Liposomes with ApoE or RVG peptides increased their systemic delivery to the brain tumors of GBM syngeneic mice. SNA-Liposome-ApoE demonstrated to accumulate at higher extension in brain tumor tissues, when compared with non-treated controls, SNA-Liposomes, or SNA-Liposome-RVG. DISCUSSION SNA-Liposome-ApoE has the potential to advance the translation of miRNA-based therapies for GBM as well as other CNS disorders.
Collapse
Affiliation(s)
- Nilmary Grafals-Ruiz
- Department of Physiology, University of Puerto Rico, San Juan, Puerto Rico
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Christian I Rios-Vicil
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Neurosurgery, University of Puerto Rico, San Juan, Puerto Rico
| | - Eunice L Lozada-Delgado
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biology, University of Puerto Rico, San Juan, Puerto Rico
| | - Blanca I Quiñones-Díaz
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Ricardo A Noriega-Rivera
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Gabriel Martínez-Zayas
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Ginette S Santiago-Sánchez
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| | - Fatma Valiyeva
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
- Department of Biochemistry, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
11
|
Gupta D, Mukesh C, Pant KK. Topotactic transformation of homogeneous phosphotungastomolybdic acid materials to heterogeneous solid acid catalyst for carbohydrate conversion to alkyl methylfurfural and alkyl levulinate. RSC Adv 2020; 10:705-718. [PMID: 35494434 PMCID: PMC9048189 DOI: 10.1039/c9ra03300a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/18/2019] [Indexed: 01/30/2023] Open
Abstract
The strong interaction of higher transition metal oxides with inorganic non-metals can be promising for generating highly acidic three-dimensional materials by design. A comprehensive controlled acidity of heteropolyacid-like catalyst and interpretation of the microstructure and mechanism of the formation of a versatile heterogeneous solid acid catalyst, HPW4Mo10Ox has been heterogenized by biomass-derived cystine as organic linkers to control the acidity of as-synthesized materials, which have greater acidity and complexity in separation from the reaction mixture. The new and unique results obtained in catalysis done in biphasic reaction. Cystine binds to the surface of HPW4Mo10Ox, and the topotactic transition occurred, change the morphology and lattice parameter. We described here a sustainable transformation of highly acidic (0.84 mmol g−1) heteropoly acid (HPW4Mo10Ox) to cystine anchored on the active surface of the heteropoly acid and controlled the acidity (0.63 mmol g−1) and heterogenized the materials. As synthesized materials have been showing that for the direct formation of alkyl levulinate and furanics intermediate from carbohydrates. HPW4Mo10Ox and HPW4Mo10Ox-Cys, act as acidic catalyst, and catalyse the mono- and disaccharides that are dissolved in primary and secondary alcohols to alkyl levulinate (AL) and alkyl methylfurfural at 170 °C under microwave irradiation with glucose as the substrate, AL yield reaches 62% with 84.95% selectivity. The catalyst can be easily recovered by filtration and minimum five times reused after calcination without any substantial change in the product selectivity. The analytical analysis of as-synthesis materials done by NH3-TPD, BET, XRD, FESEM, TEM, HRTEM, FTIR, ATR, TGA, DTA to stabilized the morphology and acidity controlled mechanism. The strong interaction of higher transition metal oxides with inorganic non-metals can be promising for generating highly acidic three-dimensional materials by design.![]()
Collapse
Affiliation(s)
- Dinesh Gupta
- Chemical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | - Chandrakant Mukesh
- Chemical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| | - Kamal K. Pant
- Chemical Engineering
- Indian Institute of Technology Delhi
- New Delhi 110 016
- India
| |
Collapse
|
12
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
13
|
Wu R, Xing X, Corredig M, Meng B, Griffiths MW. Concentration of hepatitis A virus in milk using protamine-coated iron oxide (Fe 3O 4) magnetic nanoparticles. Food Microbiol 2019; 84:103236. [PMID: 31421754 DOI: 10.1016/j.fm.2019.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Hepatitis A virus (HAV) continues to be the leading cause of viral hepatitis. HAV outbreaks have been linked to the consumption of milk, but methods for HAV detection in milk are very limited. We developed a method to concentrate HAV in milk using protamine-coated iron oxide (Fe3O4) magnetic nanoparticles (PMNPs). In this study, protamine was covalently coated on the surface of the MNPs (20-30 nm) by a three-step chemical reaction. The successful linkage of protamine to the MNPs was confirmed by Fourier transform infrared spectroscopy (FTIR), zeta potential, and transmission electron microscopy (TEM). When used for concentrating HAV from 40 mL of milk, 50 μL of PMNPs were added to the sample and mixed for 20 min by gentle rotation, followed by a magnet capture for 30 min. The captured PMNPs were washed with glycine buffer (0.05 M glycine, 0.14 M NaCl, 0.2% (v/v) Tween 20, pH 9.0) and HAV RNA was extracted using the QIAamp MinElute Virus Spin Kit and quantified by real-time RT-PCR. The method showed a detection limit of 8.3 × 100 PFU of HAV in milk. The whole concentration procedure could be completed in approximately 50 min. The developed method was simple, inexpensive, and easy-to-perform.
Collapse
Affiliation(s)
- Ruiqin Wu
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada
| | - Xiaohui Xing
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Milena Corredig
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Mansel W Griffiths
- Department of Food Science, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada; Canadian Research Institute for Food Safety, 43 McGilvray Street, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
14
|
Luo Z, Xu Y, Ye E, Li Z, Wu YL. Recent Progress in Macromolecule-Anchored Hybrid Gold Nanomaterials for Biomedical Applications. Macromol Rapid Commun 2019; 40:e1800029. [PMID: 29869424 DOI: 10.1002/marc.201800029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 12/16/2022]
Abstract
Gold nanoparticles (AuNPs), with elegant thermal, optical, or chemical properties due to quantum size effects, may serve as unique species for therapeutic or diagnostic applications. It is worth mentioning that their small size also results in high surface activity, leading to significantly impaired stability, which greatly hinders their biomedical utilizations. To overcome this problem, various types of macromolecular materials are utilized to anchor AuNPs so as to achieve advanced synergistic effect by dispersing, protecting, and stabilizing the AuNPs in polymeric-Au hybrid self-assemblies. In this review, the most recent development of polymer-AuNP hybrid systems, including AuNPs@polymeric nanoparticles, AuNPs@polymeric micelle, AuNPs@polymeric film, and AuNPs@polymeric hydrogel are discussed with respect to their different synthetic strategies. These sophisticated materials with diverse functions, oriented toward biomedical applications, are further summarized into several active domains in the areas of drug delivery, gene delivery, photothermal therapy, antibacterials, bioimaging, etc. Finally, the possible approaches for future design of multifunctional polymer-AuNP hybrids by combining hybrid chemistry with biological interface science are proposed.
Collapse
Affiliation(s)
- Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Yang Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
15
|
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, Xu H, Yang L, Ding P. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. Acta Biomater 2019; 86:15-40. [PMID: 30590184 DOI: 10.1016/j.actbio.2018.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/22/2018] [Accepted: 12/21/2018] [Indexed: 01/13/2023]
Abstract
In recent years, substantial advances have been achieved in the design and synthesis of nonviral gene vectors. However, lack of effective and biocompatible vectors still remains a major challenge that hinders their application in clinical settings. In the past decade, there has been a rapid expansion of cationic antimicrobial polymers, due to their potent, rapid, and broad-spectrum biocidal activity against resistant microbes, and biocompatible features. Given that antimicrobial polymers share common features with nonviral gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. Building off these observations, we provide here an overview of the structure-function relationships of polymers for both antimicrobial applications and gene delivery by elaborating some key structural parameters, including functional groups, charge density, hydrophobic/hydrophilic balance, MW, and macromolecular architectures. By borrowing a leaf from antimicrobial agents, great advancement in the development of newer nonviral gene vectors with high transfection efficiency and biocompatibility will be more promising. STATEMENT OF SIGNIFICANCE: The development of gene delivery is still in the preclinical stage for the lack of effective and biocompatible vectors. Given that antimicrobial polymers share common features with gene vectors in various aspects, such as membrane affinity, functional groups, physicochemical characteristics, and unique macromolecular architectures, these polymers may provide us with inspirations to overcome challenges in the design of novel vectors toward more safe and efficient gene delivery in clinic. In this review, we systematically summarized the structure-function relationships of antimicrobial polymers and gene vectors, with which the design of more advanced nonviral gene vectors is anticipated to be further boosted in the future.
Collapse
Affiliation(s)
- Haonan Xing
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mei Lu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Husson University, Bangor, ME, USA
| | - Hui Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanping Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Li Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| | - Pingtian Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China.
| |
Collapse
|
16
|
Luan X, Rahme K, Cong Z, Wang L, Zou Y, He Y, Yang H, Holmes JD, O'Driscoll CM, Guo J. Anisamide-targeted PEGylated gold nanoparticles designed to target prostate cancer mediate: Enhanced systemic exposure of siRNA, tumour growth suppression and a synergistic therapeutic response in combination with paclitaxel in mice. Eur J Pharm Biopharm 2019; 137:56-67. [PMID: 30779980 DOI: 10.1016/j.ejpb.2019.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/18/2018] [Accepted: 02/15/2019] [Indexed: 12/24/2022]
Abstract
Small interfering RNA (siRNA) has recently illustrated therapeutic potential for malignant disorders. However, the clinical application of siRNA-based therapeutics is significantly retarded by the paucity of successful delivery systems. Recently, multifunctional gold nanoparticles (AuNPs) as non-viral delivery carriers have shown promise for transporting chemotherapeutics, proteins/peptides, and genes. In this study, AuNPs capped with polyethylenimine (PEI) and PEGylated anisamide (a ligand known to target the sigma receptor) have been developed to produce a range of positively charged anisamide-targeted PEGylated AuNPs (namely Au-PEI-PEG-AA). The anisamide-targeted AuNPs effectively complexed siRNA via electrostatic interaction, and the resultant complex (Au110-PEI-PEG5000-AA.siRNA) illustrated favourable physicochemical characteristics, including particle size, surface charge, and stability. In vitro, anisamide-targeted AuNPs selectively bound to human prostate cancer PC-3 cells, inducing efficient endosomal escape of siRNA, and effective downregulation of the RelA gene. In vivo, prolonged systemic exposure of siRNA was achieved by anisamide-targeted AuNPs resulting in significant tumour growth suppression in a PC3 xenograft mouse model without an increase in toxicity. In addition, a combination of siRNA-mediated NF-κB knockdown using anisamide-targeted AuNPs with Paclitaxel produced a synergistic therapeutic response, thus providing a promising therapeutic strategy for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Xue Luan
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon; Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland
| | - Zhongcheng Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Limei Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; Department of Pharmacy, The General Hospital of FAW, Changchun 130011, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hao Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Justin D Holmes
- Department of Chemistry and the Tyndall National Institute, University College Cork, Cork, Ireland; AMBER@CRANN, Trinity College Dublin, Dublin 2, Ireland
| | | | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Ma T, Duan H, Zhang W, Shao Y, Hao L, Chen X, Leng Y, Huang X, Xiong Y. An amphiphilic-ligand-modified gold nanoflower probe for enhancing the stability of lateral flow immunoassays in dried distillers grains. RSC Adv 2019; 9:36670-36679. [PMID: 35539045 PMCID: PMC9075177 DOI: 10.1039/c9ra06690j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/28/2019] [Indexed: 01/21/2023] Open
Abstract
An amphiphilic ligand-capped gold nanoflower (AuNF) was proposed as a novel lateral flow immunoassay (LFA) reporter for zearalenone (ZEN) detection in distillers dried grains solubles (DDGS).
Collapse
Affiliation(s)
- Tongtong Ma
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Hong Duan
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Wenjing Zhang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Yanna Shao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Liangwen Hao
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Xirui Chen
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| | - Yuankui Leng
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- School of Food Science and Technology
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang 330047
- P. R. China
- Jiangxi-OAI Joint Research Institute
| |
Collapse
|
18
|
Xia Y, Zhao M, Chen Y, Hua L, Xu T, Wang C, Li Y, Zhu B. Folate-targeted selenium nanoparticles deliver therapeutic siRNA to improve hepatocellular carcinoma therapy. RSC Adv 2018; 8:25932-25940. [PMID: 35541982 PMCID: PMC9082925 DOI: 10.1039/c8ra04204g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/05/2018] [Indexed: 12/02/2022] Open
Abstract
To obtain a tumor targeting siRNA delivery vehicle for hepatocellular carcinoma treatments, functionalized selenium nanoparticles, Se–PEI–FA, were first prepared by decorating selenium nanoparticles with polycationic polymers, polyethylenimine (PEI), linked with folic acid (FA). FA functions as the tumor-targeted molecule to enhance tumor targeting activity, and PEI conjugates FA and siRNA. Se–PEI–FA@siRNA entered HepG2 cells principally via clathrin-mediated endocytosis. Due to the active tumor targeting effectiveness of FA, Se–PEI–FA@siRNA has significantly higher cellular uptake and gene silencing efficiency, and more apparent cytotoxicity, in HepG2 cells compared with Se–PEI@siRNA. The silencing of HES5 by Se–PEI–FA@siRNA could induce HepG2 cells arrest at G0/G1 phase possibly via inhibiting protein expression of CDK2, cyclinE, and cyclinD1, and up-regulating the protein expression of p21. More importantly, Se–PEI–FA@siRNA exhibits more significant antitumor efficacy compared with Se–PEI@siRNA in vivo. Additionally, Se–PEI–FA@siRNA exhibits low toxicity to the important organs of tumor-bearing mice. This research provides an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma. We provide an effective strategy for the design of tumor-targeted nanodrugs against hepatocellular carcinoma by functionalising Se nanoparticles with polyethylenimine linked with folic acid and siRNA.![]()
Collapse
Affiliation(s)
- Yu Xia
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Mingqi Zhao
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yi Chen
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Liang Hua
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Tiantian Xu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Changbing Wang
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Yinghua Li
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| | - Bing Zhu
- Virus Laboratory
- Guangzhou Institute of Paediatrics
- Guangzhou Women and Children’s Medical Center
- Guangzhou Medical University
- Guangzhou 510120
| |
Collapse
|
19
|
Lozada-Delgado EL, Grafals-Ruiz N, Vivas-Mejía PE. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials. Life Sci 2017; 188:26-36. [PMID: 28864225 PMCID: PMC5617340 DOI: 10.1016/j.lfs.2017.08.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and deadliest type of primary brain tumor with a prognosis of 14months after diagnosis. Current treatment for GBM patients includes "total" tumor resection, temozolomide-based chemotherapy, radiotherapy or a combination of these options. Although, several targeted therapies, gene therapy, and immunotherapy are currently in the clinic and/or in clinical trials, the overall survival of GBM patients has hardly improved over the last two decades. Therefore, novel multitarget modalities are urgently needed. Recently, RNA interference (RNAi) has emerged as a novel strategy for the treatment of most cancers, including GBM. RNAi-based therapies consist of using small RNA oligonucleotides to regulate protein expression at the post-transcriptional level. Despite the therapeutic potential of RNAi molecules, systemic limitations including short circulatory stability and low release into the tumor tissue have halted their progress to the clinic. The effective delivery of RNAi molecules through the blood-brain barrier (BBB) represents an additional challenge. This review focuses on connecting the translational process of RNAi-based therapies from in vitro evidence to pre-clinical studies. We delineate the effect of RNAi in GBM cell lines, describe their effectiveness in glioma mouse models, and compare the proposed drug carriers for the effective transport of RNAi molecules through the BBB to reach the tumor in the brain. Furthermore, we summarize the most important obstacles to overcome before RNAi-based therapy becomes a reality for GBM treatment.
Collapse
Affiliation(s)
- Eunice L Lozada-Delgado
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00927, United States; Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Nilmary Grafals-Ruiz
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States
| | - Pablo E Vivas-Mejía
- Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States; Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00935, United States.
| |
Collapse
|
20
|
Sun Y, Zhao Y, Zhao X, Lee RJ, Teng L, Zhou C. Enhancing the Therapeutic Delivery of Oligonucleotides by Chemical Modification and Nanoparticle Encapsulation. Molecules 2017; 22:E1724. [PMID: 29027965 PMCID: PMC6158866 DOI: 10.3390/molecules22101724] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/30/2022] Open
Abstract
Oligonucleotide (ON) drugs, including small interfering RNA (siRNA), microRNA (miRNA) and antisense oligonucleotides, are promising therapeutic agents. However, their low membrane permeability and sensitivity to nucleases present challenges to in vivo delivery. Chemical modifications of the ON offer a potential solution to improve the stability and efficacy of ON drugs. Combined with nanoparticle encapsulation, delivery at the site of action and gene silencing activity of chemically modified ON drugs can be further enhanced. In the present review, several types of ON drugs, selection of chemical modification, and nanoparticle-based delivery systems to deliver these ON drugs are discussed.
Collapse
Affiliation(s)
- Yating Sun
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yarong Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xiuting Zhao
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun 130012, China.
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | | |
Collapse
|
21
|
Prisner L, Bohn N, Hahn U, Mews A. Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. NANOSCALE 2017; 9:14486-14498. [PMID: 28929152 DOI: 10.1039/c7nr02973j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The delivery of gold nanoparticles (AuNPs) to specific cells strongly depends on the properties e.g. the size of the particles and is of great interest for a large variety of biomedical applications. Here we investigated the size dependence of the receptor-ligand mediated AuNP delivery to cells by comparing very small "molecular" Au-clusters of only 2 nm to larger 7 nm and 36 nm AuNPs with a distinct surface plasmon resonance. Since the molecular weight in this range changes by almost three orders of magnitude, we show how the amount of gold relates to the number of delivered AuNPs. We attached small interleukin-6 receptor (IL-6R) specific aptamer molecules (AIR-3A) in different amounts to the particles and investigated the specificity of the delivery to IL-6R-carrying cells. To reduce unspecific interaction the particles were additionally covered with polyethylene glycol (PEG). Besides particle size and concentration we varied additional parameters such as aptamer surface coverage as well as incubation time and temperature. We found that in particular, small particles with diameters of less than 2 nm show an up to six times higher delivery rate for the aptamer-conjugated AuNPs compared to untargeted PEG-coated AuNPs. The specificity reduces with a decreasing aptamer/PEG ratio, and also with an increase in particle size where the unspecific uptake is much higher. In addition we also compared the delivery efficiency of this aptamer-mediated delivery system with an antibody-mediated system targeting the same receptor to validate the performance of this approach.
Collapse
Affiliation(s)
- Lisa Prisner
- Universität Hamburg, Institute for Physical Chemistry, Grindelallee 117, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|
22
|
Rouster P, Pavlovic M, Horváth E, Forró L, Dey SK, Szilagyi I. Influence of Protamine Functionalization on the Colloidal Stability of 1D and 2D Titanium Oxide Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:9750-9758. [PMID: 28829607 DOI: 10.1021/acs.langmuir.7b01815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The colloidal stability of titanium oxide nanosheets (TNS) and nanowires (TiONW) was studied in the presence of protamine (natural polyelectrolyte) in aqueous dispersions, where the nanostructures possessed negative net charge, and the protamine was positively charged. Regardless of their shape, similar charging and aggregation behaviors were observed for both TNS and TiONW. Electrophoretic experiments performed at different protamine loadings revealed that the adsorption of protamine led to charge neutralization and charge inversion depending on the polyelectrolyte dose applied. Light scattering measurements indicated unstable dispersions once the surface charge was close to zero or slow aggregation below and above the charge neutralization point with negatively or positively charged nanostructures, respectively. These stability regimes were confirmed by the electron microscopy images taken at different polyelectrolyte loadings. The protamine dose and salt-dependent colloidal stability confirmed the presence of DLVO-type interparticle forces, and no experimental evidence was found for additional interactions (e.g., patch-charge, hydrophobic, or steric forces), which are usually present in similar polyelectrolyte-particle systems. These findings indicate that the polyelectrolyte adsorbs on the TNS and TiONW surfaces in a flat and extended conformation giving rise to the absence of surface heterogeneities. Therefore, protamine is an excellent biocompatible candidate to form smooth surfaces, for instance in multilayers composed of polyelectrolytes and particles to be used in biomedical applications.
Collapse
Affiliation(s)
- Paul Rouster
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| | - Marko Pavlovic
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| | - Endre Horváth
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - László Forró
- School of Basic Sciences, École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Sandwip K Dey
- Materials Program, School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Istvan Szilagyi
- School of Chemistry and Biochemistry, University of Geneva , CH-1205 Geneva, Switzerland
| |
Collapse
|
23
|
Liu J, Peng Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater 2017; 55:13-27. [PMID: 28377307 DOI: 10.1016/j.actbio.2017.03.055] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/23/2022]
Abstract
In the past few years, concerns of protein-gold nanoparticles (AuNP) interaction have been continuously growing in numerous potential biomedical applications. Despite the advances in tunable size, shape and excellent biocompatibility, unpredictable adverse effects related with protein corona (PC) have critically affected physiological to therapeutic responses. The complexity and uncontrollability of AuNP-PC formation limited the clinical applications of AuNP, e.g. AuNP-based drug delivery systems or imaging agent. Thus, even intensive attempts have been made for in vitro characterizations of PC around AuNP, the extrapolation of these data into in vivo PC responses still lags far behind. However, with accumulated knowledge of corona formation and the unique properties of AuNP, we are now encouraged to move forward to seeking positive exploitations. Herein, we summarize recent researches on interaction of protein and AuNP, aiming at provide a comprehensive understanding of such interaction associated with subsequent biomedical impacts. Importantly, the emerging trends in exploiting of potential applications and opportunities based on protein-AuNP interaction were discussed as well. STATEMENT OF SIGNIFICANCE Gold nanoparticles (AuNPs) have shown great potentials in biomedical areas. However, its practical use is highly limited by protein corona, formed as a result of protein-AuNP interaction. This protein corona surrounding AuNPs is a new identity and the real substance that the organs and cells firstly encounter, and finally makes the behavior of AuNPs in vivo uncontrollable and unpredictable. Therefore, comprehensively understanding such interaction is of great significance for predicting the in vivo fate of AuNPs and for designing advanced AuNPs systems. In this review, we would provide a detailed description of protein-AuNP interaction and launch an interesting discussion on how to use such interaction for smart and controlled AuNPs delivery, which would be a topic of widespread interest.
Collapse
|
24
|
Gomes MJ, Kennedy PJ, Martins S, Sarmento B. Delivery of siRNA silencing P-gp in peptide-functionalized nanoparticles causes efflux modulation at the blood–brain barrier. Nanomedicine (Lond) 2017; 12:1385-1399. [DOI: 10.2217/nnm-2017-0023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Explore the use of transferrin-receptor peptide-functionalized nanoparticles (NPs) targeting blood–brain barrier (BBB) as siRNA carriers to silence P-glycoprotein (P-gp). Materials & methods: Permeability experiments were assessed through a developed BBB cell-based model; P-gp mRNA expression was evaluated in vitro; rhodamine 123 permeability was assessed after cell monolayer treatment with siRNA NPs. Results: Beyond their ability to improve siRNA permeability through the BBB by twofold, 96-h post-transfection, functionalized polymeric NPs successfully reduced P-gp mRNA expression up to 52%, compared with nonfunctionalized systems. Subsequently, the permeability of rhodamine 123 through the human BBB model increased up to 27%. Conclusion: Developed BBB-targeted NPs induced P-gp downregulation and consequent increase on P-gp substrate permeability, revealing their ability to modulate drug efflux at the BBB.
Collapse
Affiliation(s)
- Maria João Gomes
- i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal
| | - Patrick J Kennedy
- i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050–313 Porto, Portugal
- IPATIMUP, Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Alfredo Allen, 208, 4200–393 Porto, Portugal
| | - Susana Martins
- Department of Physics, Chemistry & Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Bruno Sarmento
- i3S, Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Biocarrier Group, Rua Alfredo Allen, 208, 4200–135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585–116 Gandra, Portugal
| |
Collapse
|
25
|
Hao Q, Xu G, Yang Y, Sun Y, Cong D, Li H, Liu X, Wang Z, Zhang Z, Chen J, Li Y, Luan X, Wang L, Tian L, Liu K, Li Y, Jiao Q, Pei J. Oestrone-targeted liposomes for mitoxantrone delivery via oestrogen receptor - synthesis, physicochemical characterization and in-vitro evaluation. ACTA ACUST UNITED AC 2017; 69:991-1001. [PMID: 28444771 DOI: 10.1111/jphp.12736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/26/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Targeted delivery of mitoxantrone (MTO, an anthraquinone drug with high antitumour effect) may be achieved using a novel nanoparticulate delivery system via binding the oestrogen receptor (ER, highly expressed in a variety of human tumours). METHODS A novel liposomal nanoparticle (NP) was developed using a conjugate derived from 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino (polyethylene glycol)-2000] (DSPE-PEG2000 -NH2 ) and oestrone (ES, is known to bind the ER) to produce an ES-targeted PEGylated liposome (ES-SSL). The resulting targeted NP was loaded with MTO to produce a targeted liposome-MTO formulation (ES-SSL-MTO). KEY FINDINGS The targeted formulation (~140 nm, 1.5 mV) achieved over 95% drug encapsulation efficiency and a favourable stability at 4, 25 and 37 °C up to 48 h. The flow cytometric data indicated that cellular uptake of ES-SSL into human leukaemia HL-60 cells was mediated via binding the oestrogen receptor. In addition, the ES-SSL-MTO significantly reduced the growth of HL-60 cells. CONCLUSIONS Our results provide a proof of principle that ES-modified PEGylated liposomes can target the ER, thereby potentially improving the therapeutic benefits in ER-overexpressed tumours.
Collapse
Affiliation(s)
- Qiang Hao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Guoxing Xu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yuxin Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Dengli Cong
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Hongrui Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zeng Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Zheng Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Jinglin Chen
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Xue Luan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Tian
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Kun Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Yan Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| | - Qianru Jiao
- School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Jin Pei
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, China
| |
Collapse
|
26
|
Sardo C, Bassi B, Craparo EF, Scialabba C, Cabrini E, Dacarro G, D’Agostino A, Taglietti A, Giammona G, Pallavicini P, Cavallaro G. Gold nanostar–polymer hybrids for siRNA delivery: Polymer design towards colloidal stability and in vitro studies on breast cancer cells. Int J Pharm 2017; 519:113-124. [DOI: 10.1016/j.ijpharm.2017.01.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
27
|
Guo J, Russell EG, Darcy R, Cotter TG, McKenna SL, Cahill MR, O’Driscoll CM. Antibody-Targeted Cyclodextrin-Based Nanoparticles for siRNA Delivery in the Treatment of Acute Myeloid Leukemia: Physicochemical Characteristics, in Vitro Mechanistic Studies, and ex Vivo Patient Derived Therapeutic Efficacy. Mol Pharm 2017; 14:940-952. [DOI: 10.1021/acs.molpharmaceut.6b01150] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianfeng Guo
- School
of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Eileen G. Russell
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery
Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Thomas G. Cotter
- Tumour
Biology Laboratory, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | | | - Mary R. Cahill
- Department
of Haematology, Cork University Hospital, Cork, Ireland
| | | |
Collapse
|
28
|
Tomasetti L, Liebl R, Wastl DS, Breunig M. Influence of PEGylation on nanoparticle mobility in different models of the extracellular matrix. Eur J Pharm Biopharm 2016; 108:145-155. [PMID: 27544052 DOI: 10.1016/j.ejpb.2016.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 12/11/2022]
Abstract
Nanoparticle transport inside the extracellular matrix (ECM) is a crucial factor affecting the therapeutic success. In this work, two in vitro ECM models - a neutrally charged collagen I network with an effective pore size of 0.47μm and Matrigel, a basement membrane matrix with strong negative charge and effective pore size of 0.14μm - were assessed for barrier function in the context of diffusing nanoparticles. Nanoparticles with a size of 120nm were coated with poly(ethylene glycol) (PEG) of different molecular weights - 2, 5 and 20kDa - over a range of gradually increasing coating densities - precisely 0.2, 2, 8 and 20PEG/nm2. The PEG corona was imaged in its native state without any drying process by atomic force microscopy, revealing that the experimentally determined arrangement of PEG at the surface did not match with what was theoretically expected. In a systematic investigation of nanoparticle mobility via fluorescence recovery after photobleaching, increasing both PEG MW and PEGylation density gradually improved diffusion properties predominately in collagen. Due to its smaller pore size and electrostatic obstruction, diffusion coefficients were about ten times lower in Matrigel than in the collagen network and an extension of the PEG MW and density did not necessarily lead to better diffusing particles. Consequently, collagen gels were revealed to be a poor model for nanoparticle mobility assessment, as neither their pore size nor their electrostatic properties reflect the expected in vivo conditions. In Matrigel, diffusion proceeded according to a sigmoidal increase with gradually increasing PEG densities showing threshold zeta potentials of 11.6mV (PEG2kDa) and 13.8mV (PEG5kDa), below which particles were regarded as mobile. Irrespective of the molecular weight particles with a PEGylation density lower than 2PEG/nm2 were defined as immobile and those with a PEG coverage of more than 8PEG/nm2 as mobile.
Collapse
Affiliation(s)
- Luise Tomasetti
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Renate Liebl
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany
| | - Daniel S Wastl
- Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11/1, 1190 Vienna, Austria
| | - Miriam Breunig
- Department of Pharmaceutical Technology, University of Regensburg, Universitaetsstrasse 31, 93040 Regensburg, Germany.
| |
Collapse
|
29
|
Guo J, O'Driscoll CM, Holmes JD, Rahme K. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. Int J Pharm 2016; 509:16-27. [PMID: 27188645 DOI: 10.1016/j.ijpharm.2016.05.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 12/19/2022]
Abstract
The chemistry of gold nanoparticles (AuNPs) facilitates surface modifications and thus these bioengineered NPs have been investigated as a means of delivering a variety of therapeutic cargos to treat cancer. In this study we have developed AuNPs conjugated with targeting ligands to enhance cell-specific uptake in prostate cancer cells, with a purpose of providing efficient non-viral gene delivery systems in the treatment of prostate cancer. As a consequence, two novel AuNPs were synthesised namely AuNPs-PEG-Tf (negatively charged AuNPs with the transferrin targeting ligands) and AuNPs-PEI-FA (positively charged AuNPs with the folate-receptor targeting ligands). Both bioconjugated AuNPs demonstrated low cytotoxicity in prostate cancer cells. The attachment of the targeting ligand Tf to AuNPs successfully achieved receptor-mediated cellular uptake in PC-3 cells, a prostate cancer cell line highly expressing Tf receptors. The AuNPs-PEI-FA effectively complexed small interfering RNA (siRNA) through electrostatic interaction. At the cellular level the AuNPs-PEI-FA specifically delivered siRNA into LNCaP cells, a prostate cancer cell line overexpressing prostate specific membrane antigen (PSMA, exhibits a hydrolase enzymic activity with a folate substrate). Following endolysosomal escape the AuNPs-PEI-FA.siRNA formulation produced enhanced endogenous gene silencing compared to the non-targeted formulation. Our results suggest both formulations have potential as non-viral gene delivery vectors in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jianfeng Guo
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland.
| | | | - Justin D Holmes
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
| | - Kamil Rahme
- Materials Chemistry and Analysis Group, Department of Chemistry and The Tyndall National Institute, University College Cork, Cork, Ireland; Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland; Department of Sciences, Faculty of Natural and Applied Science, Notre Dame University (Louaize), Zouk Mosbeh, Lebanon.
| |
Collapse
|
30
|
Fitzgerald KA, Rahme K, Guo J, Holmes JD, O'Driscoll CM. Anisamide-targeted gold nanoparticles for siRNA delivery in prostate cancer - synthesis, physicochemical characterisation and in vitro evaluation. J Mater Chem B 2016; 4:2242-2252. [PMID: 32263220 DOI: 10.1039/c6tb00082g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metastatic prostate cancer is a leading cause of cancer-related death in men and current chemotherapies are largely inadequate in terms of efficacy and toxicity. Hence improved treatments are required. The application of siRNA as a cancer therapeutic holds great promise. However, translation of siRNA into the clinic is dependent on the availability of an effective delivery system. Gold nanoparticles (AuNPs) are known to be effective and non-toxic siRNA delivery agents. In this study, a stable gold nanosphere coated with poly(ethylenimine) (PEI) was prepared to yield PEI capped AuNPs (Au-PEI). The PEI was further conjugated with the targeting ligand anisamide (AA, is known to bind to the sigma receptor overexpressed on the surface of prostate cancer cells) to produce an anisamide-targeted nanoparticle (Au-PEI-AA). The resulting untargeted and targeted nanoparticles (Au-PEI and Au-PEI-AA respectively) were positively charged and efficiently complexed siRNA. Au-PEI-AA mediated siRNA uptake into PC3 prostate cancer cells via binding to the sigma receptor. In addition, the Au-PEI-AA·siRNA complexes resulted in highly efficient knockdown of the RelA gene (∼70%) when cells were transfected in serum-free medium. In contrast, no knockdown was observed in the presence of serum, suggesting that adsorption of serum proteins inhibits the binding of the anisamide moiety to the sigma receptor. This study provides (for the first time) proof of principle that anisamide-labelled gold nanoparticles can target the sigma receptor. Further optimisation of the formulation to increase serum stability will enhance its potential to treat prostate cancer.
Collapse
|
31
|
Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice. Sci Rep 2016; 6:20203. [PMID: 26830764 PMCID: PMC4735330 DOI: 10.1038/srep20203] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022] Open
Abstract
Gold nanoparticles (GNPs) are attracting more and more attention for their great potential value in biomedical application. Currently, no study has been reported on the chronic cardiac toxicity of GNPs after repeated administration. Here we carried out a comprehensive evaluation of the chronic cardiac toxicity of GNPs to the heart. Polyethylene glycol (PEG) -coated GNPs at three different sizes (10, 30 and 50 nm) or PBS was administrated to mice via tail vein for 14 consecutive days. Then the mice were euthanized at 2 weeks, 4 weeks or 12 weeks after the first injection. The accumulation of GNPs in the mouse heart and their effects on cardiac function, structure, fibrosis and inflammation were analysized. GNPs with smaller size showed higher accumulation and faster elimination. None of the three sizes of GNPs affected cardiac systolic function. The LVIDd (left ventricular end-diastolicinner-dimension), LVMass (left ventricular mass) and HW/BW (heart weight/body weight) were significantly increased in the mice receiving 10 nm PEG-GNPs for 2 weeks, but not for 4 weeks or 12 weeks. These results indicated that the accumulation of small size GNPs can induce reversible cardiac hypertrophy. Our results provide the basis for the further biomedical applications of GNPs in cardiac diseases.
Collapse
|