1
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Balgobind A, Daniels A, Ariatti M, Singh M. HER2/neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15041190. [PMID: 37111675 PMCID: PMC10142055 DOI: 10.3390/pharmaceutics15041190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The overexpression of the human epidermal growth factor 2 (HER2/neu) oncogene is predictive of adverse breast cancer prognosis. Silencing the HER2/neu overexpression using siRNA may be an effective treatment strategy. Major requirements for siRNA-based therapy are safe, stable, and efficient delivery systems to channel siRNA into target cells. This study assessed the efficacy of cationic lipid-based systems for the delivery of siRNA. Cationic liposomes were formulated with equimolar ratios of the respective cholesteryl cytofectins, 3β-N-(N', N'-dimethylaminopropyl)-carbamoyl cholesterol (Chol-T) or N, N-dimethylaminopropylaminylsuccinylcholesterylformylhydrazide (MS09), with the neutral helper lipid, dioleoylphosphatidylethanolamine (DOPE), with and without a polyethylene glycol stabilizer. All cationic liposomes efficiently bound, compacted, and protected the therapeutic siRNA against nuclease degradation. Liposomes and siRNA lipoplexes were spherical, <200 nm in size, with moderate particle size distributions (PDI < 0.4). The siRNA lipoplexes exhibited minimal dose-dependent cytotoxicity and effective HER2/neu siRNA transfection in the HER2/neu overexpressing SKBR-3 cells. The non-PEGylated Chol-T-siRNA lipoplexes induced the highest HER2/neu silencing at the mRNA (10000-fold decrease) and protein levels (>111.6-fold decrease), surpassing that of commercially available Lipofectamine 3000 (4.1-fold reduction in mRNA expression). These cationic liposomes are suitable carriers of HER2/neu siRNA for gene silencing in breast cancer.
Collapse
Affiliation(s)
- Adhika Balgobind
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Aliscia Daniels
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Mario Ariatti
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
3
|
Wei Y, He T, Bi Q, Yang H, Hu X, Jin R, Liang H, Zhu Y, Tong R, Nie Y. A cationic lipid with advanced membrane fusion performance for pDNA and mRNA delivery. J Mater Chem B 2023; 11:2095-2107. [PMID: 36810919 DOI: 10.1039/d2tb02783f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The success of mRNA vaccines for COVID-19 prevention raised global awareness of the importance of nucleic acid drugs. The approved systems for nucleic acid delivery were mainly formulations of different lipids, yielding lipid nanoparticles (LNPs) with complex internal structures. Due to the multiple components, the relationship between the structure of each component and the overall biological activity of LNPs is hard to study. However, ionizable lipids have been extensively explored. In contrast to former studies on the optimization of hydrophilic parts in single-component self-assemblies, we report in this study on structural alterations of the hydrophobic segment. We synthesize a library of amphiphilic cationic lipids by varying the lengths (C = 8-18), numbers (N = 2, 4), and unsaturation degrees (Ω = 0, 1) of hydrophobic tails. Notably, all self-assemblies with nucleic acid have significant differences in particle size, stability in serum, membrane fusion, and fluidity. Moreover, the novel mRNA/pDNA formulations are characterized by overall low cytotoxicity, efficient compaction, protection, and release of nucleic acids. We find that the length of hydrophobic tails dominates the formation and stability of the assembly. And at a certain length, the unsaturated hydrophobic tails enhance the membrane fusion and fluidity of assemblies and thus significantly affect the transgene expression, followed by the number of hydrophobic tails.
Collapse
Affiliation(s)
- Yu Wei
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ting He
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Qunjie Bi
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Huan Yang
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xueyi Hu
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Hong Liang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongqun Zhu
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China. .,Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Thongbamrer C, Teerakantrakorn P, Nongpong U, Apiratikul N, Roobsoong W, Kunkeaw N, Nguitragool W, Sattabongkot J, Yingyongnarongkul BE. In vitro transfection efficiencies of T-shaped spermine-based cationic lipids with identical and nonidentical tails under high serum conditions. Org Biomol Chem 2023; 21:1967-1979. [PMID: 36762533 DOI: 10.1039/d2ob02129c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
T-shaped spermine-based cationic lipids with identical and nonidentical hydrophobic tails having variable carbon lengths (from C10 to C18) were designed and synthesized. These lipids were characterized, and their structure-activity relationships were determined for DNA binding and transfection ability of these compounds when formulated as cationic liposomes. These liposomes were then applied as non-viral vectors to transfect HEK293T, HeLa, PC3, H460, HepG2, and Calu'3 cell lines with plasmid DNA encoding the green fluorescent protein. ST9, ST12 and ST13 with nonidentical tails could deliver DNA into HEK293T cells up to 60% under serum-free conditions. The lipid ST15 bearing nonidentical tails was found to be a potent gene transfer agent under 40% serum conditions in HEK293T and HeLa cells. Besides their low cytotoxicity, these lipoplexes also exhibited greater transfection efficiency than the commercially available transfection agent, Lipofectamine 3000.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| | - Purichaya Teerakantrakorn
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Ussanee Nongpong
- Bodindecha (Sing Singhaseni) School, 40 Ramkhamhaeng 43/1, Plabpla Wangthonglang, Bangkok, 10310 Thailand.
| | - Nuttapon Apiratikul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400 Thailand
| | - Boon-Ek Yingyongnarongkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Ramkhamhaeng University, Bangkapi, Bangkok, 10240 Thailand
| |
Collapse
|
5
|
Structure-activity relationships of pH-responsive and ionizable lipids for gene delivery. Int J Pharm 2022; 617:121596. [PMID: 35181463 DOI: 10.1016/j.ijpharm.2022.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Ionizable lipids are the leading vectors for gene therapy. Understanding the effects of molecular structure on efficient gene delivery is one of the most important challenges for maximizing the utility of such lipid vectors. We synthesized an array of pH-responsive and ionizable lipids to investigate the relationship between lipid structure and activity. The optimized lipid (EDM) has double tertiary amines in the headgroup and an ester linker. EDM exhibited efficient DNA and siRNA delivery to, and gene silencing of, A549 cells. EDM has a pKa value of 6.67, which enabled it to quickly escape from the endosome after entering the cell; the ester linkages rapidly degraded and enabled gene release into the cytoplasm. EDM also delivered IGF-1R siRNA to inhibit tumor growth and induce cancer cell apoptosis by efficient inhibition of IGF-1R expression in mice. Our study on the structure-activity relationships of ionizable lipids will facilitate clinical applications.
Collapse
|
6
|
Thongbamrer C, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul BE. Serum Compatible Spermine-based Cationic Lipids with Non-identical Hydrocarbon Tails Mediate High Transfection Efficiency. Chembiochem 2022; 23:e202100672. [PMID: 35001486 DOI: 10.1002/cbic.202100672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/08/2022] [Indexed: 11/09/2022]
Abstract
Cationic lipids are widely used as non-viral synthetic vectors for gene delivery as a safer alternative to viral vectors. In this work, a library of L-shaped spermine-based cationic lipids with identical and non-identical hydrophobic chains having variable carbon length (from C10 to C18) was designed and synthesized. These lipids were characterized and the structure-activity relationships of these compounds were determined for DNA binding and transfection ability when formulated as cationic liposomes. The liposomes were then used successfully for the transfection of HEK293T, HeLa, PC3, H460, HepG2, SH-SY5Y and Calu'3 cell lines. The transfection efficiency of lipids with non-identical hydrocarbon chains was greater than the identical analog. These reagents exhibited superior efficiency to the commercial reagent, Lipofectamine3000, under both serum-free and 10-40% serum conditions in HEK293T, HeLa and H460 cell lines. The lipids were also not toxic to the tested cells. The results suggested that L-shaped spermine-based cationic lipids with non-identical hydrocarbon tails could serve as an efficient and safe non-viral vector gene carrier for further in vivo studies.
Collapse
Affiliation(s)
- Chopaka Thongbamrer
- Ramkhamhaeng University, Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), THAILAND
| | | | | | - Praneet Opanasopit
- Silpakorn University, Pharmaceutical Development of Green Innovations Group (PDGIG), THAILAND
| | - Boon-Ek Yingyongnarongkul
- Ramkhamhaeng University, Department of Chemistry and Center of Excellene for Innovation in Chemistry (PERCH-CIC), Ramkhamhaeng Road, Huamark Bangkapi, 10240, Bangkok, THAILAND
| |
Collapse
|
7
|
Ponti F, Campolungo M, Melchiori C, Bono N, Candiani G. Cationic lipids for gene delivery: many players, one goal. Chem Phys Lipids 2021; 235:105032. [PMID: 33359210 DOI: 10.1016/j.chemphyslip.2020.105032] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 12/28/2022]
Abstract
Lipid-based carriers represent the most widely used alternative to viral vectors for gene expression and gene silencing purposes. This class of non-viral vectors is particularly attractive for their ease of synthesis and chemical modifications to endow them with desirable properties. Despite combinatorial approaches have led to the generation of a large number of cationic lipids displaying different supramolecular structures and improved behavior, additional effort is needed towards the development of more and more effective cationic lipids for transfection purposes. With this review, we seek to highlight the great progress made in the design of each and every constituent domain of cationic lipids, that is, the chemical structure of the headgroup, linker and hydrophobic moieties, and on the specific effect on the assembly with nucleic acids. Since the complexity of such systems is known to affect their performances, the role of formulation, stability and phase behavior on the transfection efficiency of such assemblies will be thoroughly discussed. Our objective is to provide a conceptual framework for the development of ever more performing lipid gene delivery vectors.
Collapse
Affiliation(s)
- Federica Ponti
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy; Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Dept. Min-Met-Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Matilde Campolungo
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Clara Melchiori
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy
| | - Nina Bono
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| | - Gabriele Candiani
- GenT LΛB, Dept. of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, 20131, Milan, Italy.
| |
Collapse
|
8
|
Beutner GL, Ayers S, Brueggemeier S, Cho P, Carrasquillo-Flores R, Kelly K, Gonzalez FL, Marshall J, Mukherjee S, Qiu J, Smith MJ. Crystallizing Fats? Development of a Scalable, Chromatography-Free Synthesis of Cationic Lipids. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregory L. Beutner
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sloan Ayers
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Shawn Brueggemeier
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Patricia Cho
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ronald Carrasquillo-Flores
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Kathleen Kelly
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Federico Lora Gonzalez
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jonathan Marshall
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Subha Mukherjee
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jun Qiu
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael J. Smith
- Chemical Process Development, Bristol-Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
9
|
Li G, Srivastava A, Liu C, Qiao W. Interaction of doxorubicin hydrochloride in the presence of, mixed aggregate of ibuprofen sodium and cationic lipid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Radchatawedchakoon W, Niyomtham N, Thongbamrer C, Posa C, Sakee U, Roobsoong W, Sattabongkot J, Opanasopit P, Yingyongnarongkul B. Synthesis and Transfection Efficiencies of Divalent Ammonium Headgroup Cationic Lipids with Different Hydrophobic Tails. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162020030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Chen G, Katrekar D, Mali P. RNA-Guided Adenosine Deaminases: Advances and Challenges for Therapeutic RNA Editing. Biochemistry 2019; 58:1947-1957. [PMID: 30943016 DOI: 10.1021/acs.biochem.9b00046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Targeted transcriptome engineering, in contrast to genome engineering, offers a complementary and potentially tunable and reversible strategy for cellular engineering. In this regard, adenosine to inosine (A-to-I) RNA base editing was recently engineered to make programmable base conversions on target RNAs. Similar to the DNA base editing technology, A-to-I RNA editing may offer an attractive alternative in a therapeutic setting, especially for the correction of point mutations. This Perspective introduces five currently characterized RNA editing systems and serves as a reader's guide for implementing an appropriate RNA editing strategy for applications in research or therapeutics.
Collapse
Affiliation(s)
- Genghao Chen
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Dhruva Katrekar
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| | - Prashant Mali
- Department of Bioengineering , University of California, San Diego , La Jolla , California 92093-0412 , United States
| |
Collapse
|
12
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|
13
|
Zhi D, Bai Y, Yang J, Cui S, Zhao Y, Chen H, Zhang S. A review on cationic lipids with different linkers for gene delivery. Adv Colloid Interface Sci 2018; 253:117-140. [PMID: 29454463 DOI: 10.1016/j.cis.2017.12.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
Cationic lipids have become known as one of the most versatile tools for the delivery of DNA, RNA and many other therapeutic molecules, and are especially attractive because they can be easily designed, synthesized and characterized. Most of cationic lipids share the common structure of cationic head groups and hydrophobic portions with linker bonds between both domains. The linker bond is an important determinant of the chemical stability and biodegradability of cationic lipid, and further governs its transfection efficiency and cytotoxicity. Based on the structures of linker bonds, they can be grouped into many types, such as ether, ester, amide, carbamate, disulfide, urea, acylhydrazone, phosphate, and other unusual types (carnitine, vinyl ether, ketal, glutamic acid, aspartic acid, malonic acid diamide and dihydroxybenzene). This review summarizes some research results concerning the nature (such as the structure and orientation of linker groups) and density (such as the spacing and the number of linker groups) of linker bond for improving the chemical stability, biodegradability, transfection efficiency and cytotoxicity of cationic lipid to overcome the critical barriers of in vitro and in vivo transfection.
Collapse
|
14
|
Zylberberg C, Gaskill K, Pasley S, Matosevic S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther 2017; 24:441-452. [PMID: 28504657 DOI: 10.1038/gt.2017.41] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
Recent mechanistic studies have attempted to deepen our understanding of the process by which liposome-mediated delivery of genetic material occurs. Understanding the interactions between lipid nanoparticles and cells is still largely elusive. Liposome-mediated delivery of genetic material faces systemic obstacles alongside entry into the cell, endosomal escape, lysosomal degradation and nuclear uptake. Rational design approaches for targeted delivery have been developed to reduce off-target effects and enhance transfection. These strategies, which have included the modification of lipid nanoparticles with target-specific ligands to enhance intracellular uptake, have shown significant promise at the proof-of-concept stage. Control of physical and chemical specifications of liposome composition, which includes lipid-to-DNA charge, size, presence of ester bonds, chain length and nature of ligand complexation, is integral to the performance of targeted liposomes as genetic delivery agents. Clinical advances are expected to rely on such systems in the therapeutic application of liposome nanoparticle-based gene therapy. Here, we discuss the latest breakthroughs in the development of targeted liposome-based agents for the delivery of genetic material, paying particular attention to new ligand and cationic lipid design as well as recent in vivo advances.
Collapse
Affiliation(s)
| | | | - S Pasley
- Akron Biotech, Boca Raton, FL, USA
| | | |
Collapse
|
15
|
Ding AX, Tan ZL, Shi YD, Song L, Gong B, Lu ZL. Gemini-Type Tetraphenylethylene Amphiphiles Containing [12]aneN 3 and Long Hydrocarbon Chains as Nonviral Gene Vectors and Gene Delivery Monitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11546-11556. [PMID: 28294601 DOI: 10.1021/acsami.7b01850] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four gemini amphiphiles decorated with triazole-[12]aneN3 as the hydrophilic moiety and various long hydrocarbons as hydrophobic moieties, 1-4, were designed to form micelles possessing the aggregation-induced emission (AIE) property for gene delivery and tracing. All four amphiphiles give ultralow critical micelle concentrations, are pH-/photostable and biocompatible, and completely retard the migration of plasmid DNAs at low concentrations. The DNA-binding abilities of the micelles were fully assessed. The coaggregated nanoparticles of 1-4 with DNAs could convert back into AIE micelles. In vitro transfections indicated that lipids 1 and 2 and their originated liposomes bearing decent delivering abilities have great potentials as nonviral vectors. Finally, on the basis of the transfection and the transitions between condensates and micelles, lipid 2 was singled out as the first example for real-time tracing of the intracellular deliveries of nonlabeled DNA, which provides spatiotemporal messages about the processes of condensate uptake and DNA release.
Collapse
Affiliation(s)
- Ai-Xiang Ding
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University , Xinyang 464000, China
| | - Zheng-Li Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - You-Di Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Lin Song
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Bing Gong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
- Department of Chemistry, State University of New York , Buffalo, New York 14260, United States
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
16
|
Chang DC, Zhang YM, Zhang J, Liu YH, Yu XQ. Cationic lipids with a cyclen headgroup: synthesis and structure–activity relationship studies as non-viral gene vectors. RSC Adv 2017. [DOI: 10.1039/c7ra00422b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The structure–activity relationships of cyclen-based cationic lipids as non-viral gene delivery vectors were studied and clarified.
Collapse
Affiliation(s)
- De-Chun Chang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Ji Zhang
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry and Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- PR China
| |
Collapse
|
17
|
Prenyl Ammonium Salts--New Carriers for Gene Delivery: A B16-F10 Mouse Melanoma Model. PLoS One 2016; 11:e0153633. [PMID: 27088717 PMCID: PMC4835110 DOI: 10.1371/journal.pone.0153633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 04/02/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Prenyl ammonium iodides (Amino-Prenols, APs), semi-synthetic polyprenol derivatives were studied as prospective novel gene transfer agents. METHODS AP-7, -8, -11 and -15 (aminoprenols composed of 7, 8, 11 or 15 isoprene units, respectively) were examined for their capacity to form complexes with pDNA, for cytotoxicity and ability to transfect genes to cells. RESULTS All the carriers were able to complex DNA. The highest, comparable to commercial reagents, transfection efficiency was observed for AP-15. Simultaneously, AP-15 exhibited the lowest negative impact on cell viability and proliferation--considerably lower than that of commercial agents. AP-15/DOPE complexes were also efficient to introduce pDNA to cells, without much effect on cell viability. Transfection with AP-15/DOPE complexes influenced the expression of a very few among 44 tested genes involved in cellular lipid metabolism. Furthermore, complexes containing AP-15 and therapeutic plasmid, encoding the TIMP metallopeptidase inhibitor 2 (TIMP2), introduced the TIMP2 gene with high efficiency to B16-F10 melanoma cells but not to B16-F10 melanoma tumors in C57BL/6 mice, as confirmed by TIMP2 protein level determination. CONCLUSION Obtained results indicate that APs have a potential as non-viral vectors for cell transfection.
Collapse
|