1
|
Mohammadi Barzelighi H, Bakhshi B, Daraei B, Mirzaei A. Investigating the effect of rAzurin loaded mesoporous silica nanoparticles enwrapped with chitosan-folic acid on breast tumor regression in BALB/ C mice. Int J Biol Macromol 2025; 300:139245. [PMID: 39732269 DOI: 10.1016/j.ijbiomac.2024.139245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups. This formulation inhibited MCF7 cells at higher concentrations, induced apoptosis in cells, and caused DNA degradation. It also increased the uptake efficiency of rAzurin and stimulated the secretion of TNF-α, INF-γ, and IL-4 while inhibiting the secretion of IL-6. Furthermore, it regulated the expression of specific genes (upregulating tlr3 and downregulating tlr2, 4, and 9). In animal studies with BALB/c mice, the rAzu-MSNs-CS-FA formulation led to tumor regression and decreased tumor volume over 21 days. Overall, this formulation showed promising results in inducing cytotoxic effects against cancer cells, promoting apoptosis, and eliciting appropriate immune responses, suggesting its potential as a valuable therapy for breast cancer.
Collapse
Affiliation(s)
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezoo Mirzaei
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Lin L, Liu H, Zhang D, Du L, Zhang H. Nanolevel Immunomodulators in Sepsis: Novel Roles, Current Perspectives, and Future Directions. Int J Nanomedicine 2024; 19:12529-12556. [PMID: 39606559 PMCID: PMC11600945 DOI: 10.2147/ijn.s496456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Sepsis represents a profound challenge in critical care, characterized by a severe systemic inflammatory response which can lead to multi-organ failure and death. The intricate pathophysiology of sepsis involves an overwhelming immune reaction that disrupts normal host defense mechanisms, necessitating innovative approaches to modulation. Nanoscale immunomodulators, with their precision targeting and controlled release capabilities, have emerged as a potent solution to recalibrate immune responses in sepsis. This review explores the recent advancements in nanotechnology for sepsis management, emphasizing the integration of nanoparticulate systems to modulate immune function and inflammatory pathways. Discussions detail the development of the immune system, the distinct inflammatory responses triggered by sepsis, and the scientific principles underpinning nanoscale immunomodulation, including specific targeting mechanisms and delivery systems. The review highlights nanoformulation designs aimed at enhancing bioavailability, stability, and therapeutic efficacy, which shows promise in clinical settings by modulating key inflammatory pathways. Ultimately, this review synthesizes the current state of knowledge and projects future directions for research, underscoring the transformative potential of nanolevel immunomodulators for sepsis treatment through innovative technologies and therapeutic strategies.
Collapse
Affiliation(s)
- Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hanyou Liu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Dingshan Zhang
- Department of Intensive Care Unit, Public Health Clinical Center of Chengdu, Chengdu, People’s Republic of China
| | - Lijia Du
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| | - Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, People’s Republic of China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
3
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Gholap AD, Kapare HS, Pagar S, Kamandar P, Bhowmik D, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Rojekar S, Hatvate N, Mohanto S. Exploring modified chitosan-based gene delivery technologies for therapeutic advancements. Int J Biol Macromol 2024; 260:129581. [PMID: 38266848 DOI: 10.1016/j.ijbiomac.2024.129581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024]
Abstract
One of the critical steps in gene therapy is the successful delivery of the genes. Immunogenicity and toxicity are major issues for viral gene delivery systems. Thus, non-viral vectors are explored. A cationic polysaccharide like chitosan could be used as a nonviral gene delivery vector owing to its significant interaction with negatively charged nucleic acid and biomembrane, providing effective cellular uptake. However, the native chitosan has issues of targetability, unpacking ability, and solubility along with poor buffer capability, hence requiring modifications for effective use in gene delivery. Modified chitosan has shown that the "proton sponge effect" involved in buffering the endosomal pH results in osmotic swelling owing to the accumulation of a greater amount of proton and chloride along with water. The major challenges include limited exploration of chitosan as a gene carrier, the availability of high-purity chitosan for toxicity reduction, and its immunogenicity. The genetic drugs are in their infancy phase and require further exploration for effective delivery of nucleic acid molecules as FDA-approved marketed formulations soon.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Sakshi Pagar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India
| | - Pallavi Kamandar
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Deblina Bhowmik
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India.
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangaluru, Karnataka 575018, India
| |
Collapse
|
5
|
Liu H, Huang Z, Chen H, Zhang Y, Yu P, Hu P, Zhang X, Cao J, Zhou T. A potential strategy against clinical carbapenem-resistant Enterobacteriaceae: antimicrobial activity study of sweetener-decorated gold nanoparticles in vitro and in vivo. J Nanobiotechnology 2023; 21:409. [PMID: 37932843 PMCID: PMC10626710 DOI: 10.1186/s12951-023-02149-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Enterobacteriaceae (CRE) present substantial challenges to clinical intervention, necessitating the formulation of novel antimicrobial strategies to counteract them. Nanomaterials offer a distinctive avenue for eradicating bacteria by employing mechanisms divergent from traditional antibiotic resistance pathways and exhibiting reduced susceptibility to drug resistance development. Non-caloric artificial sweeteners, commonly utilized in the food sector, such as saccharin, sucralose, acesulfame, and aspartame, possess structures amenable to nanomaterial formation. In this investigation, we synthesized gold nanoparticles decorated with non-caloric artificial sweeteners and evaluated their antimicrobial efficacy against clinical CRE strains. RESULTS Among these, gold nanoparticles decorated with aspartame (ASP_Au NPs) exhibited the most potent antimicrobial effect, displaying minimum inhibitory concentrations ranging from 4 to 16 µg/mL. As a result, ASP_Au NPs were chosen for further experimentation. Elucidation of the antimicrobial mechanism unveiled that ASP_Au NPs substantially elevated bacterial reactive oxygen species (ROS) levels, which dissipated upon ROS scavenger treatment, indicating ROS accumulation within bacteria as the fundamental antimicrobial modality. Furthermore, findings from membrane permeability assessments suggested that ASP_Au NPs may represent a secondary antimicrobial modality via enhancing inner membrane permeability. In addition, experiments involving crystal violet and confocal live/dead staining demonstrated effective suppression of bacterial biofilm formation by ASP_Au NPs. Moreover, ASP_Au NPs demonstrated notable efficacy in the treatment of Galleria mellonella bacterial infection and acute abdominal infection in mice, concurrently mitigating the organism's inflammatory response. Crucially, evaluation of in vivo safety and biocompatibility established that ASP_Au NPs exhibited negligible toxicity at bactericidal concentrations. CONCLUSIONS Our results demonstrated that ASP_Au NPs exhibit promise as innovative antimicrobial agents against clinical CRE.
Collapse
Affiliation(s)
- Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Pingting Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Liu B, Zhang C, Zhao H, Gao J, Hu J. Chitosan Hydrogel-Delivered ABE8e Corrects PAX9 Mutant in Dental Pulp Stem Cells. Gels 2023; 9:436. [PMID: 37367107 DOI: 10.3390/gels9060436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Hypodontia (dental agenesis) is a genetic disorder, and it has been identified that the mutation C175T in PAX9 could lead to hypodontia. Cas9 nickase (nCas9)-mediated homology-directed repair (HDR) and base editing were used for the correction of this mutated point. This study aimed to investigate the effect of HDR and the base editor ABE8e in editing PAX9 mutant. It was found that the chitosan hydrogel was efficient in delivering naked DNA into dental pulp stem cells (DPSCs). To explore the influence of the C175T mutation in PAX9 on the proliferation of DPSCs, hydrogel was employed to deliver PAX9 mutant vector into DPSCs, finding that the PAX9-containing C175T mutation failed to promote the proliferation of DPSCs. Firstly, DPSCs stably carrying PAX9 mutant were constructed. Either an HDR or ABE8e system was delivered into the above-mentioned stable DPSCs, and then the correction efficiency using Sanger sequencing and Western blotting was determined. Meanwhile, the ABE8e presented significantly higher efficiency in correcting C175T compared with HDR. Furthermore, the corrected PAX9 presented enhanced viability and differentiation capacity for osteogenic and neurogenic lineages; the corrected PAX9 even possessed extremely enhanced transcriptional activation ability. In summary, this study has powerful implications for studies into base editors, chitosan hydrogel, and DPSCs in treating hypodontia.
Collapse
Affiliation(s)
- Bowen Liu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Chenjiao Zhang
- Department of General, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Han Zhao
- Multi-Disciplinary Treatment Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jingchao Hu
- Department of Periodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China
| |
Collapse
|
7
|
Teng L, Zhang Y, Chen L, Shi G. Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-25. [PMID: 37163302 DOI: 10.1080/09205063.2023.2181554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study aimed to fabricate an eco-friendly functionalized chitosan (CS) nanocarrier to establish a pH-responsive drug delivery system for the treatment of sepsis. Curcumin (Cur) and cerium oxide (CeO2) were loaded onto an octenylsuccinic anhydride (OSA)-functionalized CS nanoformulation (Cur@Ce/OCS) to achieve an effective nanocarrier (NC) for sepsis treatment. The physicochemical characteristics of the developed nanocarriers were determined using various characterization techniques. The developed CeO2-OCS nanoformulation has been showed effective anti-bacterial activity (∼97%) against G+ and G- bacterial pathogens, and also have improved drug loading (94% ± 2), and encapsulation efficiency (89.8% ± 1.5), with uniform spherical particles having an average diameter of between 100 and 150 nm. The in vivo experimental results establish that Cur-loaded Ce/OCS NPs could have enhanced therapeutic potential against lung infection model by reducing bacterial burden and extensively decreasing inflammatory responses in sepsis model. Additionally, we determined the in vivo biosafety of the nanoformulations by histological observation of different mouse organs (heart, liver, spleen, and kidney), and observed no signs of toxicity in the treatment groups. The findings of this study clearly demonstrate the therapeutic potential of pH-sensitive nanoplatforms in the management of infectious sepsis.
Collapse
Affiliation(s)
- Li Teng
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Yiliang Zhang
- Department of Pharmacy, Yantai City Yantaishan Hospital, Yantai 264600, Shandong Province, China
| | - Li Chen
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| | - Ge Shi
- Second Department of Paediatrics, Zhumadian Women and Children's Hospital, Zhumadian 46300, Henan Province, PR China
| |
Collapse
|
8
|
Kannaujiya VK, De Rubis G, Paudel KR, Manandhar B, Chellappan DK, Singh SK, MacLoughlin R, Gupta G, Xenaki D, Kumar P, Hansbro PM, Oliver BGG, Wich PR, Dua K. Anticancer activity of NFκB decoy oligonucleotide-loaded nanoparticles against human lung cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
9
|
Song C, Xu J, Gao C, Zhang W, Fang X, Shang Y. Nanomaterials targeting macrophages in sepsis: A promising approach for sepsis management. Front Immunol 2022; 13:1026173. [PMID: 36569932 PMCID: PMC9780679 DOI: 10.3389/fimmu.2022.1026173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a life-threatening organ dysfunction resulting from dysregulated host responses to infection. Macrophages play significant roles in host against pathogens and the immunopathogenesis of sepsis, such as phagocytosis of pathogens, secretion of cytokines, and phenotype reprogramming. However, the rapid progression of sepsis impairs macrophage function, and conventional antimicrobial and supportive treatment are not sufficient to restore dysregulated macrophages roles. Nanoparticles own unique physicochemical properties, surface functions, localized surface plasmon resonance phenomenon, passive targeting in vivo, good biocompatibility and biodegradability, are accessible for biomedical applications. Once into the body, NPs are recognized by host immune system. Macrophages are phagocytes in innate immunity dedicated to the recognition of foreign substances, including nanoparticles, with which an immune response subsequently occurs. Various design strategies, such as surface functionalization, have been implemented to manipulate the recognition of nanoparticles by monocytes/macrophages, and engulfed by them to regulate their function in sepsis, compensating for the shortcomings of sepsis traditional methods. The review summarizes the mechanism of nanomaterials targeting macrophages and recent advances in nanomedicine targeting macrophages in sepsis, which provides good insight for exploring macrophage-based nano-management in sepsis.
Collapse
|
10
|
dos Santos DB, Lemos JA, Miranda SEM, Di Filippo LD, Duarte JL, Ferreira LAM, Barros ALB, Oliveira AEMFM. Current Applications of Plant-Based Drug Delivery Nano Systems for Leishmaniasis Treatment. Pharmaceutics 2022; 14:2339. [PMID: 36365157 PMCID: PMC9695113 DOI: 10.3390/pharmaceutics14112339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 09/28/2023] Open
Abstract
Leishmania is a trypanosomatid that causes leishmaniasis. It is transmitted to vertebrate hosts during the blood meal of phlebotomine sandflies. The clinical manifestations of the disease are associated with several factors, such as the Leishmania species, virulence and pathogenicity, the host-parasite relationship, and the host's immune system. Although its causative agents have been known and studied for decades, there have been few advances in the chemotherapy of leishmaniasis. The urgency of more selective and less toxic alternatives for the treatment of leishmaniasis leads to research focused on the study of new pharmaceuticals, improvement of existing drugs, and new routes of drug administration. Natural resources of plant origin are promising sources of bioactive substances, and the use of ethnopharmacology and folk medicine leads to interest in studying new medications from phytocomplexes. However, the intrinsic low water solubility of plant derivatives is an obstacle to developing a therapeutic product. Nanotechnology could help overcome these obstacles by improving the availability of common substances in water. To contribute to this scenario, this article provides a review of nanocarriers developed for delivering plant-extracted compounds to treat clinical forms of leishmaniasis and critically analyzing them and pointing out the future perspectives for their application.
Collapse
Affiliation(s)
- Darline B. dos Santos
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| | - Janaina A. Lemos
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Sued E. M. Miranda
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Leonardo D. Di Filippo
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Jonatas L. Duarte
- Department of Drugs and Medicines, Sao Paulo State University, Rodovia Araraquara/Jaú, Km 01, Araraquara 14800-903, SP, Brazil
| | - Lucas A. M. Ferreira
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Andre L. B. Barros
- Department of Clinical and Toxicological Analyses, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Anna E. M. F. M. Oliveira
- Department of Biological and Health Sciences, Federal University of Amapá, Rodovia Juscelino Kubitisheck, km 02, Macapá 68902-280, AP, Brazil
| |
Collapse
|
11
|
Caprifico AE, Foot PJS, Polycarpou E, Calabrese G. Advances in Chitosan-Based CRISPR/Cas9 Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091840. [PMID: 36145588 PMCID: PMC9505239 DOI: 10.3390/pharmaceutics14091840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and the associated Cas endonuclease (Cas9) is a cutting-edge genome-editing technology that specifically targets DNA sequences by using short RNA molecules, helping the endonuclease Cas9 in the repairing of genes responsible for genetic diseases. However, the main issue regarding the application of this technique is the development of an efficient CRISPR/Cas9 delivery system. The consensus relies on the use of non-viral delivery systems represented by nanoparticles (NPs). Chitosan is a safe biopolymer widely used in the generation of NPs for several biomedical applications, especially gene delivery. Indeed, it shows several advantages in the context of gene delivery systems, for instance, the presence of positively charged amino groups on its backbone can establish electrostatic interactions with the negatively charged nucleic acid forming stable nanocomplexes. However, its main limitations include poor solubility in physiological pH and limited buffering ability, which can be overcome by functionalising its chemical structure. This review offers a critical analysis of the different approaches for the generation of chitosan-based CRISPR/Cas9 delivery systems and suggestions for future developments.
Collapse
|
12
|
Balde A, Kim SK, Abdul NR. Crab (Charybdis natator) exoskeleton derived chitosan nanoparticles for the in vivo delivery of poorly water-soluble drug: Ibuprofen. Int J Biol Macromol 2022; 212:283-293. [PMID: 35609839 DOI: 10.1016/j.ijbiomac.2022.05.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023]
Abstract
The study aims to extract and purify chitosan (CS) from the exoskeleton of crab (C. natator) and develop ibuprofen (IBU) encapsulated CS nanoparticles (IBU-CSNPs). Analysis of purified CS revealed characteristic functional and crystallinity peaks. Moreover, morphological analysis of prepared IBU-CSNPs showed uniform spherical shape with a size range of 40-100 nm whereas encapsulation efficiency (EE%) and loading capacity (LC%) were estimated to be 68.94 ± 1.61% and 28 ± 1.18% respectively. Further, in vitro release profile of IBU from IBU-CSNPs was observed to be in biphasic form with initial release up to 15 h followed by the sustained release in different test conditions. Further, the effects of purified CS on the viability of RAW264.7 cells exhibited no toxic effects in higher concentrations. Furthermore, fluorescein isothiocyanate (FITC) conjugated nanoparticles (FITC-IBU-CSNPs) were investigated on in vivo model of adult zebrafish for time-dependent circulation and accumulation of the drug through the nano-carrier system. It was observed that the drug diffusion from the nanoparticles was in a sustained manner throughout the gastrointestinal region which resulted in suppression of inflammation. Overall, this study provides an effective and facile process for preparing a crab CS-based nano-carrier system used for the delivery of IBU in vivo which may help in the curing of prolonged chronic inflammatory diseases. Moreover, it may also help to reduce adverse effects of these drugs in the gastrointestinal tract such as ulcers and bleeding.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Life Science, Korea Maritime and Ocean University, Busan, South Korea
| | - Nazeer Rasool Abdul
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India.
| |
Collapse
|
13
|
López-Barrera LD, Díaz-Torres R, Martínez-Rosas JR, Salazar AM, Rosales C, Ramírez-Noguera P. Modification of Proliferation and Apoptosis in Breast Cancer Cells by Exposure of Antioxidant Nanoparticles Due to Modulation of the Cellular Redox State Induced by Doxorubicin Exposure. Pharmaceutics 2021; 13:pharmaceutics13081251. [PMID: 34452212 PMCID: PMC8399704 DOI: 10.3390/pharmaceutics13081251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 12/24/2022] Open
Abstract
In this report, we investigated whether the use of chitosan-carrying-glutathione nanoparticles (CH-GSH NPs) can modify proliferation and apoptosis, and reduce cell damage induced by doxorubicin on breast cancer cells. Doxorubicin is a widely used antineoplasic agent for the treatment of various types of cancer. However, it is also a highly toxic drug because it induces oxidative stress. Thus, the use of antioxidant molecules has been considered to reduce the toxicity of doxorubicin. CH-GSH NPs were characterized in size, zeta potential, concentration, and shape. When breast cancer cells were treated with CH-GSH nanoparticles, they were localized in the cellular cytoplasm. Combined doxorubicin exposure with nanoparticles increased intracellular GSH levels. At the same time, decreasing levels of reactive oxygen species and malondialdehyde were observed and modified antioxidant enzyme activity. Levels of the Ki67 protein were evaluated as a marker of cell proliferation and the activity of the Casp-3 protein related to cell apoptosis was measured. Our data suggests that CH-GSH NPs can modify cell proliferation by decreasing Ki67 levels, induce apoptosis by increasing caspase-3 activity, and reduce the oxidative stress induced by doxorubicin in breast cancer cells by modulating molecules associated with the cellular redox state. CH-GSH NPs could be used to reduce the toxic effects of this antineoplastic. Considering these results, CH-GSH NPs represent a novel delivery system offering new opportunities in pharmacy, material science, and biomedicine.
Collapse
Affiliation(s)
- Laura Denise López-Barrera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
| | - Roberto Díaz-Torres
- Departamento de Ingeniería y Tecnología, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Joselo Ramón Martínez-Rosas
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
| | - Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico;
| | - Patricia Ramírez-Noguera
- Departamento de Ciencias Biológicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 4510, 4513, Mexico City CP 54714, Mexico; (L.D.L.-B.); (J.R.M.-R.)
- Correspondence: ; Tel.: +52-5623-19-99 (ext. 3-9429)
| |
Collapse
|
14
|
Li Z, Bratlie KM. The Influence of Polysaccharides-Based Material on Macrophage Phenotypes. Macromol Biosci 2021; 21:e2100031. [PMID: 33969643 DOI: 10.1002/mabi.202100031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 02/03/2023]
Abstract
Macrophage polarization is a key factor in determining the success of implanted tissue engineering scaffolds. Polysaccharides (derived from plants, animals, and microorganisms) are known to modulate macrophage phenotypes by recognizing cell membrane receptors. Numerous studies have developed polysaccharide-based materials into functional biomaterial substrates for tissue regeneration and pharmaceutical application due to their immunostimulatory activities and anti-inflammatory response. They are used as hydrogel substrates, surface coatings, and drug delivery carriers. In addition to their innate immunological functions, the newly endowed physical and chemical properties, including substrate modulus, pore size/porosity, surface binding chemistry, and the mole ratio of polysaccharides in hybrid materials may regulate macrophage phenotypes more precisely. Growing evidence indicates that the sulfation pattern of glycosaminoglycans and proteoglycans expressed on polarized macrophages leads to the changes in protein binding, which may alter macrophage phenotype and influence the immune response. A comprehensive understanding of how different types of polysaccharide-based materials alter macrophage phenotypic changes can be beneficial to predict transplantation/implantation outcomes. This review focuses on recent advances in promoting wound healing and balancing macrophage phenotypes using polysaccharide-based substrates/coatings and new directions to address the limitations in the current understanding of macrophage responses to polysaccharides.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Chemical & Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
15
|
Xing H, Li R, Qing Y, Ying B, Qin Y. Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. APPLIED MATERIALS TODAY 2021; 22:100969. [DOI: 10.1016/j.apmt.2021.100969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Sun J, Sun X, Chen J, Liao X, He Y, Wang J, Chen R, Hu S, Qiu C. microRNA-27b shuttled by mesenchymal stem cell-derived exosomes prevents sepsis by targeting JMJD3 and downregulating NF-κB signaling pathway. Stem Cell Res Ther 2021; 12:14. [PMID: 33413595 PMCID: PMC7791667 DOI: 10.1186/s13287-020-02068-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exosomal microRNAs (miRs) derived from mesenchymal stem cells (MSCs) have been shown to play roles in the pathophysiological processes of sepsis. Moreover, miR-27b is highly enriched in MSC-derived exosomes. Herein, we aimed to investigate the potential role and downstream molecular mechanism of exosomal miR-27b in sepsis. Methods Inflammation was induced in bone marrow-derived macrophages (BMDMs) by lipopolysaccharide (LPS), and mice were made septic by cecal ligation and puncture (CLP). The expression pattern of miR-27b in MSC-derived exosomes was characterized using RT-qPCR, and its downstream gene was predicted by in silico analysis. The binding affinity between miR-27b, Jumonji D3 (JMJD3), or nuclear factor κB (NF-κB) was characterized to identify the underlying mechanism. We induced miR-27b overexpression or downregulation, along with silencing of JMJD3 or NF-κB to examine their effects on sepsis. The production of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 was detected by ELISA. Results miR-27b was highly expressed in MSC-derived exosomes. Mechanistic investigations showed that miR-27b targeted JMJD3. miR-27b decreased expression of pro-inflammatory genes by inhibiting the recruitment of JMJD3 and NF-κB at gene promoter region. Through this, MSC-derived exosomal miR-27b diminished production of pro-inflammatory cytokines in LPS-treated BMDMs and septic mice, which could be rescued by upregulation of JMJD3 and NF-κB. Besides, in vitro findings were reproduced by in vivo findings. Conclusion These data demonstrated that exosomal miR-27b derived from MSCs inhibited the development of sepsis by downregulating JMJD3 and inactivating the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jia Sun
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China.,Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xuan Sun
- Hematology Department, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China
| | - Junhui Chen
- Intervention and Cell Therapy Center, Shenzhen Hospital of Peking University, Shenzhen, 518057, People's Republic of China
| | - Xin Liao
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Yixuan He
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Jinsong Wang
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Rui Chen
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China
| | - Sean Hu
- ShenZhen Beike Biotechnology Research Institute, No. 59, Gaoxin South 9th Road, Nanshan District, Shenzhen, 518057, Guangdong Province, People's Republic of China. .,Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen, 518020, People's Republic of China.
| | - Chen Qiu
- Respiratory and Critical Care Medicine Department, Shenzhen People's Hospital, No. 1017, Dongmen North Road, Luohu District, Shenzhen, 518020, Guangdong Province, People's Republic of China.
| |
Collapse
|
17
|
Lebaudy E, Fournel S, Lavalle P, Vrana NE, Gribova V. Recent Advances in Antiinflammatory Material Design. Adv Healthc Mater 2021; 10:e2001373. [PMID: 33052031 DOI: 10.1002/adhm.202001373] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Implants and prostheses are widely used to replace damaged tissues or to treat various diseases. However, besides the risk of bacterial or fungal infection, an inflammatory response usually occurs. Here, recent progress in the field of anti-inflammatory biomaterials is described. Different materials and approaches are used to decrease the inflammatory response, including hydrogels, nanoparticles, implant surface coating by polymers, and a variety of systems for anti-inflammatory drug delivery. Complex multifunctional systems dealing with inflammation, microbial infection, bone regeneration, or angiogenesis are also described. New promising stimuli-responsive systems, such as pH- and temperature-responsive materials, are also being developed that would enable an "intelligent" antiinflammatory response when the inflammation occurs. Together, different approaches hold promise for creation of novel multifunctional smart materials allowing better implant integration and tissue regeneration.
Collapse
Affiliation(s)
- Eloïse Lebaudy
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Sylvie Fournel
- Université de Strasbourg CNRS 3Bio team Laboratoire de Conception et Application de Molécules Bioactives UMR 7199 Faculté de Pharmacie 74 route du Rhin Illkirch Cedex 67401 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg 67100 France
| | | | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| |
Collapse
|
18
|
Tsvetkov YE, Paulovičová E, Paulovičová L, Farkaš P, Nifantiev NE. Synthesis of Biotin-Tagged Chitosan Oligosaccharides and Assessment of Their Immunomodulatory Activity. Front Chem 2020; 8:554732. [PMID: 33335882 PMCID: PMC7736555 DOI: 10.3389/fchem.2020.554732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/20/2020] [Indexed: 01/10/2023] Open
Abstract
Chitin, a polymer of β-(1→4)-linked N-acetyl-d-glucosamine, is one of the main polysaccharide components of the fungal cell wall. Its N-deacetylated form, chitosan, is enzymatically produced in the cell wall by chitin deacetylases. It exerts immunomodulative, anti-inflammatory, anti-cancer, anti-bacterial, and anti-fungal activities with various medical applications. To study the immunobiological properties of chitosan oligosaccharides, we synthesized a series of β-(1→4)-linked N-acetyl-d-glucosamine oligomers comprising 3, 5, and 7 monosaccharide units equipped with biotin tags. The key synthetic intermediate employed for oligosaccharide chain elongation, a disaccharide thioglycoside, was prepared by orthogonal glycosylation of a 4-OH thioglycoside acceptor with a glycosyl trichloroacetimidate bearing the temporary 4-O-tert-butyldimethylsilyl group. The use of silyl protection suppressed aglycon transfer and provided a high yield for the target disaccharide donor. Using synthesized chitosan oligomers, as well as previously obtained chitin counterparts, the immunobiological relationship between these synthetic oligosaccharides and RAW 264.7 cells was studied in vitro. Evaluation of cell proliferation, phagocytosis, respiratory burst, and Th1, Th2, Th17, and Treg polarized cytokine expression demonstrated effective immune responsiveness and immunomodulation in RAW 264.7 cells exposed to chitin- and chitosan-derived oligosaccharides. Macrophage reactivity was accompanied by significant inductive dose- and structure-dependent protective Th1 and Th17 polarization, which was greater with exposure to chitosan- rather than chitin-derived oligosaccharides. Moreover, no antiproliferative or cytotoxic effects were observed, even following prolonged 48 h exposure. The obtained results demonstrate the potent immunobiological activity of these synthetically prepared chito-oligosaccharides.
Collapse
Affiliation(s)
- Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ema Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Paulovičová
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Farkaš
- Cell Culture & Immunology Laboratory, Department of Immunochemistry of Glycoconjugates, Center for Glycomics, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
19
|
Javed I, Cui X, Wang X, Mortimer M, Andrikopoulos N, Li Y, Davis TP, Zhao Y, Ke PC, Chen C. Implications of the Human Gut-Brain and Gut-Cancer Axes for Future Nanomedicine. ACS NANO 2020; 14:14391-14416. [PMID: 33138351 DOI: 10.1021/acsnano.0c07258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent clinical and pathological evidence have implicated the gut microbiota as a nexus for modulating the homeostasis of the human body, impacting conditions from cancer and dementia to obesity and social behavior. The connections between microbiota and human diseases offer numerous opportunities in medicine, most of which have limited or no therapeutic solutions available. In light of this paradigm-setting trend in science, this review aims to provide a comprehensive and timely summary of the mechanistic pathways governing the gut microbiota and their implications for nanomedicines targeting cancer and neurodegenerative diseases. Specifically, we discuss in parallel the beneficial and pathogenic relationship of the gut microbiota along the gut-brain and gut-cancer axes, elaborate on the impact of dysbiosis and the gastrointestinal corona on the efficacy of nanomedicines, and highlight a molecular mimicry that manipulates the universal cross-β backbone of bacterial amyloid to accelerate neurological disorders. This review further offers a forward-looking section on the rational design of cancer and dementia nanomedicines exploiting the gut-brain and gut-cancer axes.
Collapse
Affiliation(s)
- Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Xiaoyu Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Nikolaos Andrikopoulos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Thomas P Davis
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Victoria 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai 200032, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
20
|
Karam TK, Ortega S, Ueda Nakamura T, Auzély-Velty R, Nakamura CV. Development of chitosan nanocapsules containing essential oil of Matricaria chamomilla L. for the treatment of cutaneous leishmaniasis. Int J Biol Macromol 2020; 162:199-208. [PMID: 32565304 DOI: 10.1016/j.ijbiomac.2020.06.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
Matricaria chamomilla L. has been used for centuries in many applications, including antiparasitic activity. Leishmaniasis is a parasitic disease, with limited treatments, due to high cost and toxicity. Thus, there is a need to develop new treatments, and in this context, natural products are targets of these researches. We report the development of chitosan nanocapsules containing essential oil of M. chamomilla (CEO) from oil-in-water emulsions using chitosan modified with tetradecyl chains as biocompatible shell material. The nanocapsules of CEO (NCEO) were analyzed by optical microscopy and dynamic light scattering, which revealed spherical shape and an average size of 800 nm. Successful encapsulation of CEO was further confirmed by fluorescence microscopy observations taking advantage of the autofluorescence properties of CEO. The encapsulation efficiency was around 90%. The entrapment of CEO reduced its cytotoxicity towards normal cells. On the other hand, the CEO was active against promastigotes and intracellular amastigotes, exhibiting IC50 of 3.33 μg/mL and 14.56 μg/mL, respectively, while NCEO showed IC50 for promastigotes of 7.18 μg/mL and for intracellular amastigotes of 14.29 μg/mL. These results demonstrate that encapsulation of CEO in nanocapsules using an alkylated chitosan biosurfactant as a "green" stabilizer is a promising therapeutic strategy to treat leishmaniasis.
Collapse
Affiliation(s)
- Thaysa Ksiaskiewcz Karam
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil
| | - Sonia Ortega
- University Grenoble Alpes, Centre de Recherche de Macromolecules Végetales, CERMAV - CNRS, Grenoble, France
| | - Tania Ueda Nakamura
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil
| | - Rachel Auzély-Velty
- University Grenoble Alpes, Centre de Recherche de Macromolecules Végetales, CERMAV - CNRS, Grenoble, France.
| | - Celso Vataru Nakamura
- State University of Maringá, Laboratory of Microbiology Applied to Natural and Synthetic Products, Department of Pharmaceutical Sciences, Maringá, Brazil.
| |
Collapse
|
21
|
Kolonko AK, Bangel-Ruland N, Goycoolea FM, Weber WM. Chitosan Nanocomplexes for the Delivery of ENaC Antisense Oligonucleotides to Airway Epithelial Cells. Biomolecules 2020; 10:biom10040553. [PMID: 32260534 PMCID: PMC7226018 DOI: 10.3390/biom10040553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nanoscale drug delivery systems exhibit a broad range of applications and promising treatment possibilities for various medical conditions. Nanomedicine is of great interest, particularly for rare diseases still lacking a curative treatment such as cystic fibrosis (CF). CF is defined by a lack of Cl− secretion through the cystic fibrosis transmembrane conductance regulator (CFTR) and an increased Na+ absorption mediated by the epithelial sodium channel (ENaC). The imbalanced ion and water transport leads to pathological changes in many organs, particularly in the lung. We developed a non-viral delivery system based on the natural aminopolysaccharide chitosan (CS) for the transport of antisense oligonucleotides (ASO) against ENaC to specifically address Na+ hyperabsorption. CS–ASO electrostatic self-assembled nanocomplexes were formed at varying positive/negative (P/N) charge ratios and characterized for their physicochemical properties. Most promising nanocomplexes (P/N 90) displayed an average size of ~150 nm and a zeta potential of ~+30 mV. Successful uptake of the nanocomplexes by the human airway epithelial cell line NCI-H441 was confirmed by fluorescence microscopy. Functional Ussing chamber measurements of transfected NCI-H441 cells showed significantly decreased Na+ currents, indicating successful downregulation of ENaC. The results obtained confirm the promising characteristics of CS as a non-viral and non-toxic delivery system and demonstrate the encouraging possibility to target ENaC with ASOs to treat abnormal ion transport in CF.
Collapse
Affiliation(s)
- A. Katharina Kolonko
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
- Correspondence: ; Tel.: +49-251-832-1784
| | - Nadine Bangel-Ruland
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| | | | - Wolf-Michael Weber
- Institute of Animal Physiology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; (N.B.-R.); (W.-M.W.)
| |
Collapse
|
22
|
Li G, Fan L, Wang Y, Huang L, Wang M, Zhu C, Hao C, Ji W, Liang H, Yan Y, Chen Z. High co-expression of TNF-α and CARDS toxin is a good predictor for refractory Mycoplasma pneumoniae pneumonia. Mol Med 2019; 25:38. [PMID: 31399022 PMCID: PMC6688229 DOI: 10.1186/s10020-019-0105-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
Background Early distinction between refractory M. pneumoniae pneumonia (RMPP) and non-RMPP (NRMPP) is still difficult. The community-acquired respiratory distress syndrome (CARDS) toxin can induce inflammatory and histopathological phenotypes associated with M. pneumoniae infection. This study aimed to investigate the clinical significance of CARDS toxin and pro-inflammatory cytokines in children with RMPP and to explore whether CARDS toxin can induce TNF-α expression. Methods Levels of CARDS toxin and cytokines in BALF from control and children with MPP were determined by real-time PCR and ELISA, respectively. A receiver-operating characteristic (ROC) analysis was performed to assess the diagnostic values of CARDS toxin, TNF-α, and IL-6 in RMPP. The recombinant CARDS toxin was constructed and prepared at different concentrations for stimulation of RAW264.7 cells. After co-culture with CARDS toxin, cytokines were detected by ELISA and the mRNA levels were measured by real-time PCR. Effects of CARDS toxin and TNF-α on inflammatory cell infiltration and mucus secretion in mouse lungs were also evaluated. Results Levels of CARDS toxin, TNF-α and IL-6 in bronchoalveolar lavage fluid (BALF) were significantly higher in RMPP cases compared with NRMPP cases. Furthermore, TNF-α had better diagnostic ability for differentiation of RMPP with AUC of 0.824 and Youden index of 0.692 compared with CARDS toxin and IL-6. Moreover, CARDS toxin was positively correlated with TNF-α level in MPP cases. In vitro assay revealed that CARDS toxin induced RAW264.7 macrophages to secrete TNF-α. Further in vivo assay showed that TNF-α deletion partially abrogated the CARDS toxin-mediated induction of inflammatory cell infiltration and mucus secretion in mouse lungs. Conclusions The high co-expression of TNF-α and CARDS toxin in BALF is a good diagnostic biomarker for differentiating children with RMPP and NRMPP.
Collapse
Affiliation(s)
- Gang Li
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Liping Fan
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Yuqing Wang
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Li Huang
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Meijuan Wang
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Canhong Zhu
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Chuangli Hao
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Wei Ji
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Hansi Liang
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China
| | - Yongdong Yan
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China.
| | - Zhengrong Chen
- Department of Respiratory medicine, Children's Hospital of Soochow University, Jingde Road NO.303, Suzhou, 215003, Jiangsu Province, China.
| |
Collapse
|
23
|
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: Methods for improvement and applications. Adv Colloid Interface Sci 2019; 268:25-38. [PMID: 30933750 DOI: 10.1016/j.cis.2019.03.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/06/2019] [Accepted: 03/19/2019] [Indexed: 02/05/2023]
Abstract
Gene therapy is a promising strategy for treating challenging diseases. The successful delivery of genes is a critical step for gene therapy. However, concerns about immunogenicity and toxicity are the main obstacles against the widespread use of effective viral systems. Therefore, nonviral vectors are regarded as good alternatives to viral vectors. Chitosan is a natural cationic polysaccharide that could be used to create nonviral gene delivery vectors. Various methods have been developed to improve the properties of chitosan related to gene delivery. This review introduces the features of chitosan in gene delivery, summarizes current progress toward methods promoting the properties of chitosan related to gene delivery, and presents different applications of chitosan in gene delivery vectors. Finally, future prospects of gene vectors based on chitosan are discussed.
Collapse
Affiliation(s)
- Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Tao Jin
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Liangxue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Department of Neurosurgery, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, PR China.
| |
Collapse
|
24
|
Zhang Y, Zhou J, Ma S, He Y, Yang J, Gu Z. Reactive Oxygen Species (ROS)-Degradable Polymeric Nanoplatform for Hypoxia-Targeted Gene Delivery: Unpacking DNA and Reducing Toxicity. Biomacromolecules 2019; 20:1899-1913. [DOI: 10.1021/acs.biomac.9b00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuxin Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Jie Zhou
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
| | - Yiyan He
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, People’s Republic of China
| | - Zhongwei Gu
- National Engineering Research Center for Biomaterials, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, People’s Republic of China
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, People’s Republic of China
| |
Collapse
|
25
|
Reichel D, Tripathi M, Perez JM. Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment. Nanotheranostics 2019; 3:66-88. [PMID: 30662824 PMCID: PMC6328304 DOI: 10.7150/ntno.30052] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022] Open
Abstract
Biological interactions between tumor-associated macrophages (TAMs), cancer cells and other cells within the tumor microenvironment contribute to tumorigenesis, tumor growth, metastasis and therapeutic resistance. TAMs can remodel the tumor microenvironment to reduce growth barriers such as the dense extracellular matrix and shift tumors towards an immunosuppressive microenvironment that protects cancer cells from targeted immune responses. Nanoparticles can interrupt these biological interactions within tumors by altering TAM phenotypes through a process called polarization. Macrophage polarization within tumors can shift TAMs from a growth-promoting phenotype towards a cancer cell-killing phenotype that predicts treatment efficacy. Because many types of nanoparticles have been shown to preferentially accumulate within macrophages following systemic administration, there is considerable interest in identifying nanoparticle effects on TAM polarization, evaluating nanoparticle-induced TAM polarization effects on cancer treatment using drug-loaded nanoparticles and identifying beneficial types of nanoparticles for effective cancer treatment. In this review, the macrophage polarization effects of nanoparticles will be described based on their primary chemical composition. Because of their strong macrophage-polarizing and antitumor effects compared to other types of nanoparticles, the effects of iron oxide nanoparticles on macrophages will be discussed in detail. By comparing the macrophage polarization effects of various nanoparticle treatments reported in the literature, this review aims to both elucidate nanoparticle material effects on macrophage polarization and to provide insight into engineering nanoparticles with more beneficial immunological responses for cancer treatment.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - J. Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
26
|
Gorgieva S, Vuherer T, Kokol V. Autofluorescence-aided assessment of integration and μ-structuring in chitosan/gelatin bilayer membranes with rapidly mineralized interface in relevance to guided tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:226-241. [DOI: 10.1016/j.msec.2018.07.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
|
27
|
Kadry MO, Abdel-Megeed RM, El-Meliegy E, Abdel-Hamid AHZ. Crosstalk between GSK-3, c-Fos, NFκB and TNF-α signaling pathways play an ambitious role in Chitosan Nanoparticles Cancer Therapy. Toxicol Rep 2018; 5:723-727. [PMID: 30013938 PMCID: PMC6024197 DOI: 10.1016/j.toxrep.2018.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/15/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising era of medicine for developing targeted drug delivery system. Chitosan nanoparticles (CNPs) have attracted increasing attention for their wide applications as anticancer drugs. This article is concerned with the therapeutic index of chitosan nanoparticles against diethyl nitrosamine (DEN) induced hepatocellular carcinoma (HCC). HCC was induced in rats via repeated DEN administration in a dose of 200 mg/kg BW IP, 2 weeks later rats received (2 ml/kg BW) CCl4 orally for 2 months followed by daily treatment with chitosan nanoparticles in an oral dose of 12 mg/kg for 1 month. Then the gene expression of glycogen synthase kinase-3 (GSK-3), (c-FOS), nuclear factor kappa-B (NFκB) and tumor necrosis factor- α (TNF-α) were reported in rats sera and the correlation between GSK-3, C-Fos, NFƘB and TNF-α and liver tumorigenesis was investigated. The results elucidated that DEN significantly increased serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Marked increments in serum malondialdehyde (MDA) and nitric oxide (NOx) levels along with a slight reduction of glutathione (GSH) level were evidenced in HCC. Liver injury triggered an inflammatory response by enhancing the mRNA gene expression of NFκB and TNF-α. DEN effectively activated apoptotic markers GSK-3 and c-FOS. Oral administration of CNPs alleviated the oxidative, inflammatory and apoptotic hazards induced via DEN. The histopathological examination reinforced these results. The present study highlights the anti-inflammatory and anti-apoptotic potentials of CNPs against DEN-induced HCC.
Collapse
Affiliation(s)
- Mai O Kadry
- Biochemistry, Therapeutic Chemistry Department, National Research Centre, Dokki, Egypt
| | - Rehab M Abdel-Megeed
- Molecular Biology, Therapeutic Chemistry Department, National Research Centre, Dokki, Egypt
| | - Emad El-Meliegy
- Nanoceramics and technology, Department of biomaterials, National Research Centre, Dokki, Egypt
| | | |
Collapse
|
28
|
Phil L, Naveed M, Mohammad IS, Bo L, Bin D. Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomed Pharmacother 2018; 102:438-451. [DOI: 10.1016/j.biopha.2018.03.108] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 01/08/2023] Open
|
29
|
Pichavant L, López-González MJ, Favereaux A, Héroguez V. Thermosensitive polynorbornene poly(ethylene oxide) nanoparticles loaded with oligoDNAs: an innovative approach for acting on cancer-associated pain. Polym Chem 2018. [DOI: 10.1039/c7py01889d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA oligonucleotides (oligoDNAs) have been recently identified as a novel class of therapeutic tools for acting on the cancer-associated pain.
Collapse
Affiliation(s)
- L. Pichavant
- LCPO
- CNRS UMR5629
- IPB-ENSCBP
- Université de Bordeaux
- Pessac
| | - M. J. López-González
- Institut Interdisciplinaire De Neurosciences
- CNRS UMR 5297
- Université de Bordeaux
- Bordeaux
- France
| | - A. Favereaux
- Institut Interdisciplinaire De Neurosciences
- CNRS UMR 5297
- Université de Bordeaux
- Bordeaux
- France
| | - V. Héroguez
- LCPO
- CNRS UMR5629
- IPB-ENSCBP
- Université de Bordeaux
- Pessac
| |
Collapse
|