1
|
Gao F, Feng X, Li X. Recent advances in polymeric nanoparticles for the treatment of hepatic diseases. Front Pharmacol 2025; 16:1528752. [PMID: 39925843 PMCID: PMC11802823 DOI: 10.3389/fphar.2025.1528752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 02/11/2025] Open
Abstract
The liver performs crucial roles in energy metabolism, detoxification, and immune regulation. Hepatic diseases, including hepatitis, liver fibrosis, and liver cancer, have posed a significant threat to global health, emphasizing the critical need for the development of novel and effective treatment approaches. Nanotechnology, an emerging technology, has been extensively researched in medicine. Among the many types of nanomaterials, polymeric nanoparticles (NPs) are widely used in drug delivery systems. Compared to traditional therapies, they offer significant advantages in the treatment of liver disease by improving outcomes and reducing side effects. This review introduced the development of liver disease and discussed the application of natural polymers and synthetic polymers in their management. Furthermore, this paper reviewed the application of polymeric nanoparticles -mainly chitosan (CS), hyaluronic acid (HA), polyethylene glycol (PEG) and poly (lactic-co-glycolic acid) (PLGA)-in liver disease treatment, focusing on their use in various delivery systems for pure bioactive compounds of natural origin, drugs, nucleic acids, peptides, and others. Finally, the challenges and future perspectives of the NPs were discussed to provide guidance for further research directions, with the aim of promoting the clinical application of nanotherapeutics in treating hepatic diseases.
Collapse
Affiliation(s)
| | | | - Xinyu Li
- Clinical Laboratory of China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
2
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
3
|
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, Liang Y, Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med 2024; 9:e10623. [PMID: 38435823 PMCID: PMC10905561 DOI: 10.1002/btm2.10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 03/05/2024] Open
Abstract
The biological barriers of the body, such as the blood-brain, placental, intestinal, skin, and air-blood, protect against invading viruses and bacteria while providing necessary physical support. However, these barriers also hinder the delivery of drugs to target tissues, reducing their therapeutic efficacy. Extracellular vesicles (EVs), nanostructures with a diameter ranging from 30 nm to 10 μm secreted by cells, offer a potential solution to this challenge. These natural vesicles can effectively pass through various biological barriers, facilitating intercellular communication. As a result, artificially engineered EVs that mimic or are superior to the natural ones have emerged as a promising drug delivery vehicle, capable of delivering drugs to almost any body part to treat various diseases. This review first provides an overview of the formation and cross-species uptake of natural EVs from different organisms, including animals, plants, and bacteria. Later, it explores the current clinical applications, perspectives, and challenges associated with using engineered EVs as a drug delivery platform. Finally, it aims to inspire further research to help bioengineered EVs effectively cross biological barriers to treat diseases.
Collapse
Affiliation(s)
- Bin Zeng
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Ying Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Jiang Xia
- Department of ChemistryThe Chinese University of Hong Kong, ShatinHong Kong SARChina
| | - Yin Xiao
- School of Medicine and Dentistry & Menzies Health Institute Queensland, SouthportGold CoastQueenslandAustralia
| | - Nawaz Khan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| | - Bin Jiang
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- R&D Division, Eureka Biotech Inc, PhiladelphiaPennsylvaniaUSA
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning HospitalShenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare and Shenzhen Institute of Mental HealthShenzhenGuangdongChina
| | - Li Duan
- Graduate SchoolGuangxi University of Chinese MedicineNanningGuangxiChina
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's Hospitalthe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
| |
Collapse
|
4
|
Beraza-Millor M, Rodríguez-Castejón J, Miranda J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Novel Golden Lipid Nanoparticles with Small Interference Ribonucleic Acid for Substrate Reduction Therapy in Fabry Disease. Pharmaceutics 2023; 15:1936. [PMID: 37514122 PMCID: PMC10385692 DOI: 10.3390/pharmaceutics15071936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Substrate reduction therapy (SRT) has been proposed as a new gene therapy for Fabry disease (FD) to prevent the formation of globotriaosylceramide (Gb3). Nanomedicines containing different siRNA targeted to Gb3 synthase (Gb3S) were designed. Formulation factors, such as the composition, solid lipid nanoparticles (SLNs) preparation method and the incorporation of different ligands, such as gold nanoparticles (GNs), protamine (P) and polysaccharides, were evaluated. The new siRNA-golden LNPs were efficiently internalized in an FD cell model (IMFE-1), with GNs detected in the cytoplasm and in the nucleus. Silencing efficacy (measured by RT-qPCR) depended on the final composition and method of preparation, with silencing rates up to 90% (expressed as the reduction in Gb3S-mRNA). GNs conferred a higher system efficacy and stability without compromising cell viability and hemocompatibility. Immunocytochemistry assays confirmed Gb3S silencing for at least 15 days with the most effective formulations. Overall, these results highlight the potential of the new siRNA-golden LNP system as a promising nanomedicine to address FD by specific SRT.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Jonatan Miranda
- GLUTEN3S Research Group, Faculty of Pharmacy, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Nutrition and Food Safety, 01006 Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (Pharma Nano Gene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006 Vitoria-Gasteiz, Spain
| |
Collapse
|
5
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Zare M, Thomas V, Ramakrishna S. Nanoscience and quantum science-led biocidal and antiviral strategies. J Mater Chem B 2021; 9:7328-7346. [PMID: 34378553 DOI: 10.1039/d0tb02639e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The severe acute respiratory syndrome coronavirus (SARS-CoV-2) caused the COVID-19 pandemic. According to the World Health Organization, this pandemic continues to be a serious threat to public health due to the worldwide spread of variants and their higher rate of transmissibility. A range of measures are necessary to slow the pandemic and save lives, which include constant evaluation and the careful adjustment of public-health responses augmented by medical treatments, vaccines and protective gear. It is hypothesized that nanostructured particulates underpinned by nanoscience and quantum science yield high-performing antiviral strategies, which can be applied in preventive, diagnostic, and therapeutic applications such as face masks, respirators, COVID test kits, vaccines, and drugs. This review is aimed at providing comprehensive and cohesive perspectives on various nanostructures that are suited to intensifying and amplifying the effectiveness of antiviral strategies. Growing scientific literature over the past eighteen months indicates that quantum dots, iron oxide, silicon oxide, polymeric and metallic nanoparticles have been employed in COVID-19 diagnostic assays, vaccines, and personal protective equipment (PPE). Quantum dots have displayed their suitability as more sensitive imaging probes in diagnostics and prognostics, and as controlled drug-release carriers that target the virus. Nanoscience and quantum science have assisted the design of advanced vaccine delivery since nanostructured materials are suited for antigen delivery, as mimics of viral structures and as adjuvants. Furthermore, the quantum science- and nanoscience-supported tailored functionalization of nanostructured materials offers insight and pathways to deal with future pandemics. This review seeks to illustrate several examples, and to explain the underpinning quantum science and nanoscience phenomena, which include wave functions, electrostatic interactions, van der Waals forces, thermal and electrodynamic fluctuations, dispersion forces, local field-enhancement effects, and the generation of reactive oxygen species (ROS). This review discusses how nanostructured materials are helpful in the detection, prevention, and treatment of the SARS-CoV-2 infection, other known viral infection diseases, and future pandemics.
Collapse
Affiliation(s)
- Mina Zare
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore.
| |
Collapse
|
7
|
Shukla BK, Tyagi H, Bhandari H, Garg S. Nanotechnology-Based Approach to Combat Pandemic COVID 19: A Review. MACROMOLECULAR SYMPOSIA 2021; 397:2000336. [PMID: 34511843 PMCID: PMC8420461 DOI: 10.1002/masy.202000336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of a novel Corona virus (COVID 19) originated on December 19 from China. The city of Wuhan, the capital city of Hubei province, China, is responsible for an outbreak of respiratory illness known as COVID 19 and it has been rapidly spread across the world claiming millions of lives. The sudden outbreak of novel Coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV), is a big concern for their speedy mitigation using the predictable treatment and creating its approach around the world. Researchers and doctors are in search of rapid diagnosis kit, drugs, and viral-resistant personal protective equipment (PPE) to clinical diagnosis, medication, and prevent the spread of COVID 19. A rational approach with adaptability and broad viewpoint to challenge the growing pain could be overcome by the application of appropriate technology. The nanotechnology-based approach can significantly serve the purpose of the current pandemic situation of COVID 19. But same time implementation of innovative and creative nanotech approach, there is a decisive need for the full knowledge of SARS-CoV-2 pathogenesis. Moreover, to defeat COVID 19, particularly nanotech-based system with their viral inhibitory properties to increase the effective nanotech approach is essential. In this scenario, this review aims to summarize the past, present, and future of nanotech-based systems that can be used to treat COVID 19, highlighting Nano-based compounds. Lastly, the potential application of the different category of Inorganic Nanomaterials/Inorganic organic conjugate /hybrid system and their practical applicability as suitable means for inspiring against COVID 19 has also been discussed.
Collapse
Affiliation(s)
- Brijesh Kumar Shukla
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| | - Himanshi Tyagi
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| | - Hema Bhandari
- Department of ChemistryMaitreyi CollegeUniversity of DelhiDelhi110021India
| | - Seema Garg
- Department of ChemistryAmity Institute of Applied SciencesAmity UniversitySector‐125NoidaUttar Pradesh201313India
| |
Collapse
|
8
|
Dong HJ, Zhang R, Kuang Y, Wang XJ. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch Microbiol 2020; 203:1021-1032. [PMID: 33124672 PMCID: PMC7594972 DOI: 10.1007/s00203-020-02094-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 11/25/2022]
Abstract
As intracellular parasites, viruses depend heavily on host cell structures and their functions to complete their life cycle and produce new viral particles. Viruses utilize or modulate cellular translational machinery to achieve efficient replication; the role of ribosome biogenesis and protein synthesis in viral replication particularly highlights the importance of the ribosome quantity and/or quality in controlling viral protein synthesis. Recently reported studies have demonstrated that ribosome biogenesis factors (RBFs) and ribosomal proteins (RPs) act as multifaceted regulators in selective translation of viral transcripts. Here we summarize the recent literature on RBFs and RPs and their association with subcellular redistribution, post-translational modification, enzyme catalysis, and direct interaction with viral proteins. The advances described in this literature establish a rationale for targeting ribosome production and function in the design of the next generation of antiviral agents.
Collapse
Affiliation(s)
- Hui-Jun Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Yu Kuang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Liang L, Ahamed A, Ge L, Fu X, Lisak G. Advances in Antiviral Material Development. Chempluschem 2020; 85:2105-2128. [PMID: 32881384 PMCID: PMC7461489 DOI: 10.1002/cplu.202000460] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023]
Abstract
The rise in human pandemics demands prudent approaches in antiviral material development for disease prevention and treatment via effective protective equipment and therapeutic strategy. However, the current state of the antiviral materials research is predominantly aligned towards drug development and its related areas, catering to the field of pharmaceutical technology. This review distinguishes the research advances in terms of innovative materials exhibiting antiviral activities that take advantage of fast-developing nanotechnology and biopolymer technology. Essential concepts of antiviral principles and underlying mechanisms are illustrated, followed with detailed descriptions of novel antiviral materials including inorganic nanomaterials, organic nanomaterials and biopolymers. The biomedical applications of the antiviral materials are also elaborated based on the specific categorization. Challenges and future prospects are discussed to facilitate the research and development of protective solutions and curative treatments.
Collapse
Affiliation(s)
- Lili Liang
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Interdisciplinary Graduate ProgramNanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Ashiq Ahamed
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
- Laboratory of Molecular Science and EngineeringJohan Gadolin Process Chemistry Centre Åbo Akademi UniversityFI-20500Turku/ÅboFinland
| | - Liya Ge
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Xiaoxu Fu
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| | - Grzegorz Lisak
- School of Civil and Environmental EngineeringNanyang Technological University50 Nanyang Ave, N1 01a–29Singapore639798Singapore
- Residues and Resource Reclamation CentreNanyang Environment and Water Research Institute Nanyang Technological University1 Cleantech Loop, CleanTech OneSingapore637141Singapore
| |
Collapse
|
10
|
Apaolaza PS, Busch M, Asin-Prieto E, Peynshaert K, Rathod R, Remaut K, Dünker N, Göpferich A. Hyaluronic acid coating of gold nanoparticles for intraocular drug delivery: Evaluation of the surface properties and effect on their distribution. Exp Eye Res 2020; 198:108151. [PMID: 32721426 DOI: 10.1016/j.exer.2020.108151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Due to the unique anatomical structure of the eye, ocular drug delivery is a promising delivery route for the treatment of several ocular diseases, such as the ocular neovascularization that contributes to diabetic retinopathy. This disease is triggered by inflammation, retinal ischemia, and/or deposits of advanced-glycation end-products (AGEs), as well as increased levels of vascular endothelial growth factor (VEGF), interleukins, or reactive oxygen species (ROS). Gold has unique antioxidant and antiangiogenic properties and can inhibit angiogenic molecules. Furthermore, gold nanoparticles (GNPs) are not only biocompatible, they are easy to synthesize, they absorb and scatter visible light, and they can be made with precise control over size and shape. GNPs are an excellent candidate for ocular drug delivery because they can be conjugated to an extraordinarily diverse array of different biomolecules, and surface functionalization can improve the mobility of GNPs across the physiological barriers of the eye, such as the vitreous humour or the inner limiting membrane. For this purpose, we employed low molecular weight hyaluronan (HA) to increase the mobility of the nanoparticles as well as target them to HA receptors that are expressed in different cells of the eye. In this study, the combination of gold and HA enhanced the stability of the whole carrier and promoted their distribution across ocular tissues and barriers to reach the retina. Moreover, analysis in vitro, ex vivo, and in ovo revealed the protective and antiangiogenic effect of GNPs as inhibitors of AGEs-mediated- retinal pigment epithelial cell death and neovascularization. We demonstrated that conjugation with HA enhances GNP stability and distribution due to a specific CD44 receptor interaction. The capacity of HA-GNPs to distribute through the vitreous humour and their avidity for the deeper retinal layers ex vivo, suggest that HA-GNPs are a promising delivery system for the treatment of ocular neovascularization and related disorders.
Collapse
Affiliation(s)
- P S Apaolaza
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - M Busch
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - E Asin-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Irunlarrea s/n, 31008, Pamplona, Spain
| | - K Peynshaert
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - R Rathod
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany
| | - K Remaut
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - N Dünker
- Medical Faculty, Institute for Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Hufelandstraße. 55, D-45122, Essen, Germany
| | - A Göpferich
- Department of Pharmaceutical Technology, University of Regensburg, Universitätsstraße 31, D, 93053, Regensburg, Germany.
| |
Collapse
|
11
|
Gupta A, Kumar S, Kumar R, Choudhary AK, Kumari K, Singh P, Kumar V. COVID-19: Emergence of Infectious Diseases, Nanotechnology Aspects, Challenges, and Future Perspectives. ChemistrySelect 2020; 5:7521-7533. [PMID: 32835089 PMCID: PMC7361534 DOI: 10.1002/slct.202001709] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
Wuhan, a city of China, is the epicenter for the pandemic outbreak of coronavirus disease-2019 (COVID-19). It has become a severe public health challenge to the world and established a public health emergency of international worry. This infectious disease has pulled down the economy of almost all top developed nations. The coronaviruses (CoVs) known for various epidemics caused time to time. Infectious diseases such as severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), followed by COVID-19, are all coronaviruses led outbreaks that scourged the history of mankind. CoVs evolved themselves to more infectious, transmissible, and more pandemic with time. To prevent the spread of the SARS-CoV-2, many countries have ordered the complete lockdown to combat the outbreak. This paper briefly discussed the historical background of CoVs and the evolution of human coronaviruses (HCoVs), the case studies and the development of their antiviral medications. The viral infection encountered with present-day challenges and futuristic approaches with the help of nanotechnology to minimize the spread of infectious viruses. The antiviral drugs and their clinical advances, along with herbal medicines for viral inhibition and immunity boosters, are described. Elaboration of tables related to CoVs for the compilation of the literature has been adopted for the better understanding.
Collapse
Affiliation(s)
- Akanksha Gupta
- Department of ChemistrySri Venkateswara CollegeUniversity of DelhiIndia.
| | - Sanjay Kumar
- Department of ChemistryDeshbandhu CollegeUniversity of DelhiIndia.
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri VishwavidyalayaHaridwarIndia.
| | | | - Kamlesh Kumari
- Department of ZoologyDeen Dayal Upadhyaya CollegeDelhiIndia.
| | - Prashant Singh
- Department of ChemistryAtma Ram Sanatan Dharma CollegeDelhi UniversityNew DelhiIndia.
| | - Vinod Kumar
- Department of ChemistryKirori Mal CollegeUniversity of DelhiIndia
- Special Centre for Nano SciencesJawaharlal Nehru UniversityDelhiIndia
| |
Collapse
|
12
|
Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 18:196-220. [PMID: 30904587 PMCID: PMC7106268 DOI: 10.1016/j.nano.2019.03.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/19/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Emergence of new virus and their heterogeneity are growing at an alarming rate. Sudden outburst of Nipah virus (NiV) has raised serious question about their instant management using conventional medication and diagnostic measures. A coherent strategy with versatility and comprehensive perspective to confront the rising distress could perhaps be effectuated by implementation of nanotechnology. But in concurrent to resourceful and precise execution of nano-based medication, there is an ultimate need of concrete understanding of the NIV pathogenesis. Moreover, to amplify the effectiveness of nano-based approach in a conquest against NiV, a list of developed nanosystem with antiviral activity is also a prerequisite. Therefore the present review provides a meticulous cognizance of cellular and molecular pathogenesis of NiV. Conventional as well several nano-based diagnosis experimentations against viruses have been discussed. Lastly, potential efficacy of different forms of nano-based systems as convenient means to shield mankind against NiV has also been introduced.
Collapse
Affiliation(s)
- Rout George Kerry
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Santosh Malik
- Departmentof Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Sabuj Sahoo
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India.
| |
Collapse
|
13
|
Torrecilla J, Gómez-Aguado I, Vicente-Pascual M, Del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. MMP-9 Downregulation with Lipid Nanoparticles for Inhibiting Corneal Neovascularization by Gene Silencing. NANOMATERIALS 2019; 9:nano9040631. [PMID: 31003493 PMCID: PMC6523231 DOI: 10.3390/nano9040631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Gene silencing targeting proangiogenic factors have been shown to be a useful strategy in the treatment of corneal neovascularization (CNV). Among interference RNA (RNAi) molecules, short-hairpin RNA (shRNA) is a plasmid-coded RNA able to down-regulate the expression of the desired gene. It is continuously produced in the host cell, inducing a durable gene silencing effect. The aim of this work was to develop a solid lipid nanoparticle (SLN)-based shRNA delivery system to downregulate metalloproteinase 9 (MMP-9), a proangiogenic factor, in corneal cells for the treatment of CNV associated with inflammation. The nanovectors were prepared using a solvent emulsification-evaporation technique, and after physicochemical evaluation, they were evaluated in different culture cell models. Transfection efficacy, cell internalization, cell viability, the effect on MMP-9 expression, and cell migration were evaluated in human corneal epithelial cells (HCE-2). The inhibition of tube formation using human umbilical vein endothelial cells (HUVEC) was also assayed. The non-viral vectors based on SLN were able to downregulate the MMP-9 expression in HCE-2 cells via gene silencing, and, consequently, to inhibit cell migration and tube formation. These results demonstrate the potential of lipid nanoparticles as gene delivery systems for the treatment of CNV-associated inflammation by RNAi technology.
Collapse
Affiliation(s)
- Josune Torrecilla
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01015 Vitoria-Gasteiz, Spain.
| |
Collapse
|
14
|
Del Pozo-Rodríguez A, Rodríguez-Gascón A, Rodríguez-Castejón J, Vicente-Pascual M, Gómez-Aguado I, Battaglia LS, Solinís MÁ. Gene Therapy. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 171:321-368. [PMID: 31492963 DOI: 10.1007/10_2019_109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene therapy medicinal products (GTMPs) are one of the most promising biopharmaceuticals, which are beginning to show encouraging results. The broad clinical research activity has been addressed mainly to cancer, primarily to those cancers that do not respond well to conventional treatment. GTMPs to treat rare disorders caused by single-gene mutations have also made important advancements toward market availability, with eye and hematopoietic system diseases as the main applications.Nucleic acid-marketed products are based on both in vivo and ex vivo strategies. Apart from DNA-based therapies, antisense oligonucleotides, small interfering RNA, and, recently, T-cell-based therapies have been also marketed. Moreover, the gene-editing tool CRISPR is boosting the development of new gene therapy-based medicines, and it is expected to have a substantial impact on the gene therapy biopharmaceutical market in the near future.However, despite the important advancements of gene therapy, many challenges have still to be overcome, which are discussed in this book chapter. Issues such as efficacy and safety of the gene delivery systems and manufacturing capacity of biotechnological companies to produce viral vectors are usually considered, but problems related to cost and patient affordability must be also faced to ensure the success of this emerging therapy. Graphical Abstract.
Collapse
Affiliation(s)
- Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Itziar Gómez-Aguado
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Luigi S Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Turin, Italy
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| |
Collapse
|
15
|
Vicente-Pascual M, Albano A, Solinís MÁ, Serpe L, Rodríguez-Gascón A, Foglietta F, Muntoni E, Torrecilla J, Pozo-Rodríguez AD, Battaglia L. Gene delivery in the cornea: in vitro & ex vivo evaluation of solid lipid nanoparticle-based vectors. Nanomedicine (Lond) 2018; 13:1847-1854. [PMID: 29792369 DOI: 10.2217/nnm-2018-0112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Inflammation is a process that underlies sight-threatening ocular surface diseases, and gene supplementation with the plasmid that encodes for p-IL10 will allow the sustained de novo synthesis of the cytokine to occur in corneal cells, and provide a long-term anti-inflammatory effect. This work describes the development of solid lipid nanoparticle systems for the delivery of p-IL10 to transfect the cornea. RESULTS In vitro, vectors showed suitable features as nonviral vectors (size, ζ-potential, DNA binding, protection and release), and they were able to enter and transfect human corneal epithelial cells. Ex vivo, the vectors were found to transfect the epithelium, the stroma and the endothelium in rabbit corneal explants. Distribution of gene expression within the cell layers of the cornea depended on the composition of the four vectors evaluated. CONCLUSION Solid lipid nanoparticle-based vectors are promising gene delivery systems for corneal diseases, including inflammation.
Collapse
Affiliation(s)
- Mónica Vicente-Pascual
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Andrea Albano
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain.,Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, via Pietro Giuria 9, Turin, Italy
| | - María Á Solinís
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Loredana Serpe
- Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, via Pietro Giuria 9, Turin, Italy
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Federica Foglietta
- Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, via Pietro Giuria 9, Turin, Italy
| | - Elisabetta Muntoni
- Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, via Pietro Giuria 9, Turin, Italy
| | - Josune Torrecilla
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology & Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz, Spain
| | - Luigi Battaglia
- Università degli Studi di Torino, Dipartimento di Scienza e Tecnologia del Farmaco, via Pietro Giuria 9, Turin, Italy
| |
Collapse
|
16
|
Yu Q, Chen J, Deng W, Cao X, Adu-Frimpong M, Yu J, Xu X. Neural differentiation of fibroblasts induced by intracellular co-delivery of Ascl1, Brn2 and FoxA1 via a non-viral vector of cationic polysaccharide. Biomed Mater 2017; 13:015022. [DOI: 10.1088/1748-605x/aa8962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Maepa MB, Ely A, Arbuthnot P. How successful has targeted RNA interference for hepatic fibrosis been? Expert Opin Biol Ther 2017; 18:381-388. [PMID: 29265946 DOI: 10.1080/14712598.2018.1420775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Exposure to toxins from the portal circulation, viral infection and by-products of metabolic activity make liver tissue prone to injury. When sustained, associated inflammation leads to activation of hepatic stellate cells (HSCs), deposition of extracellular matrix (ECM) proteins and complicating hepatic fibrosis. AREAS COVERED In this article, the authors discuss utility of therapeutic gene silencing to disable key steps of hepatic fibrogenesis. Strategies aimed at inhibiting HSC activation and silencing primary causes of fibrogenesis, such as viruses that cause chronic hepatitis, are reviewed. Both synthetic and expressed artificial intermediates of the RNAi pathway have potential to treat hepatic fibrosis, and each type of gene silencer has advantages for clinical translation. Silencing expression cassettes comprising DNA templates are compatible with efficient hepatotropic viral vectors, which may effect sustained gene silencing. By contrast, synthetic short interfering RNAs are amenable to chemical modification, incorporation into non-viral formulations, more precise dose control and large scale preparation. EXPERT OPINION Clinical translation of RNAi-based technology for treatment of hepatic fibrosis is now a realistic goal. However, achieving this aim will require safe, efficient delivery of artificial RNAi intermediates to target cells, economic large scale production of candidate drugs and specificity of action.
Collapse
Affiliation(s)
- Mohube Betty Maepa
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Abdullah Ely
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
18
|
Xin Y, Huang M, Guo WW, Huang Q, Zhang LZ, Jiang G. Nano-based delivery of RNAi in cancer therapy. Mol Cancer 2017; 16:134. [PMID: 28754120 PMCID: PMC5534073 DOI: 10.1186/s12943-017-0683-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/20/2017] [Indexed: 12/31/2022] Open
Abstract
Background RNA interference (RNAi), a newly developed method in which RNA molecules inhibit gene expression, has recently received considerable research attention. In the development of RNAi-based therapies, nanoparticles, which have distinctive size effects along with facile modification strategies and are capable of mediating effective RNAi with targeting potential, are attracting extensive interest. Objective This review presents an overview of the mechanisms of RNAi molecules in gene therapy and the different nanoparticles used to deliver RNAi molecules; briefly describes the current uses of RNAi in cancer therapy along with the nano-based delivery of RNA molecules in previous studies; and highlights some other carriers that have been applied in clinical settings. Finally, we discuss the nano-based delivery of RNAi therapeutics in preclinical development, including the current status and limitations of anti-cancer treatment. Conclusion With the growing number of RNAi therapeutics entering the clinical phase, various nanocarriers are expected to play important roles in the delivery of RNAi molecules for cancer therapeutics.
Collapse
Affiliation(s)
- Yong Xin
- Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Min Huang
- Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Wen Wen Guo
- Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Qian Huang
- Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Long Zhen Zhang
- Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| |
Collapse
|
19
|
Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Rahal P. Inhibition of hepatitis C virus using siRNA targeted to the virus and Hsp90. Cell Stress Chaperones 2017; 22:113-122. [PMID: 27858224 PMCID: PMC5225065 DOI: 10.1007/s12192-016-0747-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/24/2016] [Accepted: 11/08/2016] [Indexed: 01/19/2023] Open
Abstract
Hepatitis C (HCV) is a viral disease affecting millions of people worldwide, and persistent HCV infection can lead to progressive liver disease with the development of liver cirrhosis and hepatocellular carcinoma. During treatment for hepatitis C, the occurrence of viral resistance is common. To reduce the occurrence of resistance, new viral treatments should target both viral and cellular factors. Many interactions occur between viral and host proteins during the HCV replication cycle and might be used for the development of new therapies against hepatitis C. Heat shock protein 90 (Hsp90) plays a role in the folding of cellular and viral proteins and also interacts with HCV proteins. In the present study, we knocked down the expression of the Hsp90 gene and inhibited viral replication using siRNA molecules. Reducing the expression of Hsp90 successfully decreased HCV replication. All siRNA molecules specific to the viral genome showed the efficient inhibition of viral replication, particularly siRNA targeted to the 5'UTR region. The combination of siRNAs targeting the viral genome and Hsp90 mRNA also successfully reduced HCV replication and reduced the occurrence of viral resistance. Moreover, these results suggest that an approach based on the combination of cellular and viral siRNAs can be used as an effective alternative for hepatitis C viral suppression.
Collapse
Affiliation(s)
- Ana Claudia Silva Braga
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Bruno Moreira Carneiro
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
- Institute of Exact and Natural Sciences, Mato Grosso Federal University, Rondonópolis, Brazil
| | - Mariana Nogueira Batista
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Mônica Mayumi Akinaga
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil
| | - Paula Rahal
- Institute of Biosciences, Letters and Exact Sciences, UNESP, Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, CEP: 15054-000, Brazil.
| |
Collapse
|
20
|
Devnarain N, Ramharack P, Soliman ME. Brain grants permission of access to Zika virus but denies entry to drugs: a molecular modeling perspective to infiltrate the boundary. RSC Adv 2017. [DOI: 10.1039/c7ra05918c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thein silicodesign of targeted Zika virus inhibitors.
Collapse
Affiliation(s)
- Nikita Devnarain
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Pritika Ramharack
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| | - Mahmoud E. Soliman
- Molecular Bio-computation and Drug Design Laboratory
- School of Health Sciences
- University of KwaZulu-Natal
- Durban 4001
- South Africa
| |
Collapse
|
21
|
del Pozo-Rodríguez A, Solinís MÁ, Rodríguez-Gascón A. Applications of lipid nanoparticles in gene therapy. Eur J Pharm Biopharm 2016; 109:184-193. [DOI: 10.1016/j.ejpb.2016.10.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/29/2016] [Accepted: 10/23/2016] [Indexed: 11/17/2022]
|