1
|
Gupta J, Vaid PK, Priyadarshini E, Rajamani P. Nano-bio convergence unveiled: Systematic review on quantum dots-protein interaction, their implications, and applications. Biophys Chem 2024; 310:107238. [PMID: 38733645 DOI: 10.1016/j.bpc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals (2-10 nm) with unique optical and electronic properties due to quantum confinement effects. They offer high photostability, narrow emission spectra, broad absorption spectrum, and high quantum yields, making them versatile in various applications. Due to their highly reactive surfaces, QDs can conjugate with biomolecules while being used, produced, or unintentionally released into the environment. This systematic review delves into intricate relationship between QDs and proteins, examining their interactions that influence their physicochemical properties, enzymatic activity, ligand binding affinity, and stability. The research utilized electronic databases like PubMed, WOS, and Proquest, along with manual reviews from 2013 to 2023 using relevant keywords, to identify suitable literature. After screening titles and abstracts, only articles meeting inclusion criteria were selected for full text readings. This systematic review of 395 articles identifies 125 articles meeting the inclusion criteria, categorized into five overarching themes, encompassing various mechanisms of QDs and proteins interactions, including adsorption to covalent binding, contingent on physicochemical properties of QDs. Through a meticulous analysis of existing literature, it unravels intricate nature of interaction, significant influence on nanomaterials and biological entities, and potential for synergistic applications harnessing both specific and nonspecific interactions across various fields.
Collapse
Affiliation(s)
- Jagriti Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradeep Kumar Vaid
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
2
|
Xu R, Lai S, Zhang Y, Zhang X. Research Progress of Heavy-Metal-Free Quantum Dot Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:832. [PMID: 38786788 PMCID: PMC11124338 DOI: 10.3390/nano14100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
At present, heavy-metal-free quantum dot light-emitting diodes (QLEDs) have shown great potential as a research hotspot in the field of optoelectronic devices. This article reviews the research on heavy-metal-free quantum dot (QD) materials and light-emitting diode (LED) devices. In the first section, we discussed the hazards of heavy-metal-containing quantum dots (QDs), such as environmental pollution and human health risks. Next, the main representatives of heavy-metal-free QDs were introduced, such as InP, ZnE (E=S, Se and Te), CuInS2, Ag2S, and so on. In the next section, we discussed the synthesis methods of heavy-metal-free QDs, including the hot injection (HI) method, the heat up (HU) method, the cation exchange (CE) method, the successful ionic layer adsorption and reaction (SILAR) method, and so on. Finally, important progress in the development of heavy-metal-free QLEDs was summarized in three aspects (QD emitter layer, hole transport layer, and electron transport layer).
Collapse
Affiliation(s)
| | | | | | - Xiaoli Zhang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Physics and Opto-Electronic Engineering, Guangdong University of Technology, Guangzhou 510006, China; (R.X.); (S.L.); (Y.Z.)
| |
Collapse
|
3
|
Liu Y, Yuan Z, Zhao P, Li C, Qin L, Zhao T, Zhu X, Feng S. Studies on the binding of wedelolactone to human serum albumin with multi-spectroscopic analysis, molecular docking and molecular dynamic simulation. Biophys Chem 2024; 307:107198. [PMID: 38359582 DOI: 10.1016/j.bpc.2024.107198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Wedelolactone (WEL) is a small molecule compound isolated from Eclipta prostrate L., which has been reported to possess various biological activities such as anti-hepatotoxicity, anti-hypertension, anti-tumour, anti-phospholipase A2 and detoxification activity against snake venom. In the present study, we investigated the interaction of WEL with human serum albumin (HSA) using simultaneous fluorescence, UV-visible spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), molecular docking technique and molecular dynamics simulation. We found that the interaction between HSA and WEL can exhibit a static fluorescence burst mechanism, and the binding process is essentially spontaneous, with the main forces manifested as hydrogen bonding, van der Waals force and electrostatic interactions. Competitive binding and molecular docking studies showed that WEL preferentially bound to HSA in substructural region IIA (site I); molecular dynamics simulations showed that HSA interacted with WEL to form a stable complex, which also induced conformational changes in HSA. The study of the interaction between WEL and HSA can provide a reference for a more in-depth study of the pharmacodynamic mechanism of WEL and its further development and utilisation.
Collapse
Affiliation(s)
- Yali Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhen Yuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Changxin Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Qin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianlun Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Shuai Feng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
4
|
Chen H, Wu Y, Xie W, Chen J, Jin L. InP/ZnS quantum dots cause liver damage in rare minnow (Gobiocypris rarus) larvae. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109546. [PMID: 36717047 DOI: 10.1016/j.cbpc.2023.109546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/23/2022] [Accepted: 01/01/2023] [Indexed: 01/29/2023]
Abstract
InP/ZnS quantum dots (QDs) are widely used in biomedical imaging and light-emitting component manufacturing industries, but there are few studies on their biological toxicity. In this study, we conducted experiments with rare minnow larvae and found that InP/ZnS QDs can cause liver damage. InP/ZnS QDs appeared only in the intestine of larvae and were not enriched in other parts of the larvae. The activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (AKP) increased, while the decrease in bile acid. InP/ZnS QDs caused hepatic cell nuclear lysis, abnormal cytoplasmic staining, and mitochondrial cristae reduction, swelling, and fragmentation. RNA-sequencing results revealed that InP/ZnS QDs exposure treatment affected the expression of genes involved in lipid metabolism, sterol synthesis, bile acid synthesis and other pathways. The excessive production of reactive oxygen species (ROS) induced by InP/ZnS QDs may be the main source of toxicity.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Weiwei Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
5
|
Liu L, Bai B, Yang X, Du Z, Jia G. Anisotropic Heavy-Metal-Free Semiconductor Nanocrystals: Synthesis, Properties, and Applications. Chem Rev 2023; 123:3625-3692. [PMID: 36946890 DOI: 10.1021/acs.chemrev.2c00688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Heavy-metal (Cd, Hg, and Pb)-containing semiconductor nanocrystals (NCs) have been explored widely due to their unique optical and electrical properties. However, the toxicity risks of heavy metals can be a drawback of heavy-metal-containing NCs in some applications. Anisotropic heavy-metal-free semiconductor NCs are desirable replacements and can be realized following the establishment of anisotropic growth mechanisms. These anisotropic heavy-metal-free semiconductor NCs can possess lower toxicity risks, while still exhibiting unique optical and electrical properties originating from both the morphological and compositional anisotropy. As a result, they are promising light-emitting materials in use various applications. In this review, we provide an overview on the syntheses, properties, and applications of anisotropic heavy-metal-free semiconductor NCs. In the first section, we discuss hazards of heavy metals and introduce the typical heavy-metal-containing and heavy-metal-free NCs. In the next section, we discuss anisotropic growth mechanisms, including solution-liquid-solid (SLS), oriented attachment, ripening, templated-assisted growth, and others. We discuss mechanisms leading both to morphological anisotropy and to compositional anisotropy. Examples of morphological anisotropy include growth of nanorods (NRs)/nanowires (NWs), nanotubes, nanoplatelets (NPLs)/nanosheets, nanocubes, and branched structures. Examples of compositional anisotropy, including heterostructures and core/shell structures, are summarized. Third, we provide insights into the properties of anisotropic heavy-metal-free NCs including optical polarization, fast electron transfer, localized surface plasmon resonances (LSPR), and so on, which originate from the NCs' anisotropic morphologies and compositions. Finally, we summarize some applications of anisotropic heavy-metal-free NCs including catalysis, solar cells, photodetectors, lighting-emitting diodes (LEDs), and biological applications. Despite the huge progress on the syntheses and applications of anisotropic heavy-metal-free NCs, some issues still exist in the novel anisotropic heavy-metal-free NCs and the corresponding energy conversion applications. Therefore, we also discuss the challenges of this field and provide possible solutions to tackle these challenges in the future.
Collapse
Affiliation(s)
- Long Liu
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Bing Bai
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, P. R. China
| | - Zuliang Du
- Key Lab for Special Functional Materials, Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, School of Materials Science and Engineering, and Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Guohua Jia
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
6
|
Luo H, Li B, Liu J, Liu Y, Xiao Q, Huang S. Investigation on conformational variation and fibrillation of human serum albumin affected by molybdenum disulfide quantum dots. Int J Biol Macromol 2021; 190:999-1006. [PMID: 34487782 DOI: 10.1016/j.ijbiomac.2021.08.215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
In this work, binding interaction between molybdenum disulfide quantum dots (MoS2 QDs) and human serum albumin (HSA) was researched deeply to dissect the conformational variation and fibrillation of HSA affected by MoS2 QDs. The results revealed that MoS2 QDs bound strongly with HSA with molar ratio of 1:1 under the joint actions of hydrogen bond and van der Waals force, leading to the static fluorescence quenching of HSA. MoS2 QDs caused the secondary structure transition of HSA from α-helix stepwise to β-turn, β-sheet, and random coil gradually. MoS2 QDs reduced both the molar enthalpy change and the melting temperature of HSA, reducing the thermal stability of HSA significantly. It is worth noting that MoS2 QDs inhibited the fibrillation process of HSA according to the reduced hydrophobic environment and the disturbance of disulfide bonds in HSA network structure. These results reveal the precise binding mechanism of MoS2 QDs with HSA at molecular level, providing indispensable information for the potential application of MoS2 QDs in biological fields.
Collapse
Affiliation(s)
- Huajian Luo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Bo Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Jiajia Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Yi Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, PR China.
| |
Collapse
|
7
|
Raza M, Jiang Y, Ahmad B, Rahman AU, Raza S, Khan A, Tahir K, Hassan S, Khan S, Yuan Q. Biophysical investigation of interactions between sorbic acid and human serum albumin through spectroscopic and computational approaches. NEW J CHEM 2021. [DOI: 10.1039/d0nj06276f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This work provides an effective strategy to analyze the SA-induced microenvironmental changes in the HSA macromolecule, and also highlights the medicinal importance of SA.
Collapse
Affiliation(s)
- Muslim Raza
- Institute of Synthetic Biology
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
- Shenzhen
- China
| | - Yang Jiang
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| | - Bashir Ahmad
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Ata ur Rahman
- Institute of chemical sciences
- University of Peshawar
- Peshawar 25120
- Pakistan
| | - Saleem Raza
- College of Chemistry and Environmental Engineering
- Shenzhen University
- Shenzhen
- P. R. China
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre
- University of Nizwa
- Nizwa 616
- Sultanate of Oman
| | - Kamran Tahir
- Institute of Chemical Sciences
- Gomal University
- D. I. Khan
- Pakistan
| | - Said Hassan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Saifullah Khan
- Centre of Biotechnology and Microbiology
- University of Peshawar
- Peshawar
- Pakistan
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing
- P. R. China
| |
Collapse
|
8
|
Li L, Chen T, Yang Z, Chen Y, Liu D, Xiao H, Liu M, Liu K, Xu J, Liu S, Wang X, Lin G, Xu G. Nephrotoxicity Evaluation of Indium Phosphide Quantum Dots with Different Surface Modifications in BALB/c Mice. Int J Mol Sci 2020; 21:ijms21197137. [PMID: 32992627 PMCID: PMC7582660 DOI: 10.3390/ijms21197137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
InP QDs have shown a great potential as cadmium-free QDs alternatives in biomedical applications. It is essential to understand the biological fate and toxicity of InP QDs. In this study, we investigated the in vivo renal toxicity of InP/ZnS QDs terminated with different functional groups—hydroxyl (hQDs), amino (aQDs) and carboxyl (cQDs). After a single intravenous injection into BALB/c mice, blood biochemistry, QDs distribution, histopathology, inflammatory response, oxidative stress and apoptosis genes were evaluated at different predetermined times. The results showed fluorescent signals from QDs could be detected in kidneys during the observation period. No obvious changes were observed in histopathological detection or biochemistry parameters. Inflammatory response and oxidative stress were found in the renal tissues of mice exposed to the three kinds of QDs. A significant increase of KIM-1 expression was observed in hQDs and aQDs groups, suggesting hQDs and aQDs could cause renal involvement. Apoptosis-related genes (Bax, Caspase 3, 7 and 9) were up-regulated in hQDs and aQDs groups. The above results suggested InP/ZnS QDs with different surface chemical properties would cause different biological behaviors and molecular actions in vivo. The surface chemical properties of QDs should be fully considered in the design of InP/ZnS QDs for biomedical applications.
Collapse
Affiliation(s)
- Li Li
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Tingting Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Yajing Chen
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Dongmeng Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Huiyu Xiao
- Shenzhen Institute for Drug Control, Shenzhen 518000, China;
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Maixian Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
| | - Kan Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Jiangyao Xu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Shikang Liu
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
| | - Guimiao Lin
- Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China; (L.L.); (T.C.); (Z.Y.); (Y.C.); (D.L.); (K.L.); (J.X.); (S.L.); (X.W.)
- Correspondence: (G.L.); (G.X.)
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518055, China;
- Correspondence: (G.L.); (G.X.)
| |
Collapse
|
9
|
Lin G, Chen T, Pan Y, Yang Z, Li L, Yong KT, Wang X, Wang J, Chen Y, Jiang W, Weng S, Huang X, Kuang J, Xu G. Biodistribution and acute toxicity of cadmium-free quantum dots with different surface functional groups in mice following intratracheal inhalation. Nanotheranostics 2020; 4:173-183. [PMID: 32483522 PMCID: PMC7256016 DOI: 10.7150/ntno.42786] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022] Open
Abstract
Indium phosphide/zinc sulfate (InP/ZnS) quantum dots (QDs) are presumed to be less hazardous than those that contain cadmium. However, the toxicological profile has not been established. The present study investigated the acute toxicity of InP/ZnS QDs with different surface modifications (COOH, NH2, and OH) in mice after pulmonary aerosol inhalation. InP/ZnS QDs were able to pass through the blood-gas barrier and enter the circulation, and subsequently accumulated in major organs. No obvious changes were observed in the body weight or major organ coefficients. Red blood cell counts and platelet-related indicators were in the normal range, but the proportion of white blood cells was altered. The InP/ZnS QDs caused varying degrees of changes in some serum markers, but no histopathological abnormalities related to InP/ZnS QDs treatment was observed in major organs except that hyperemia in alveolar septa was found in lung sections. These results suggested that the effects of respiratory exposure to InP/ZnS QDs on the lungs need to be fully considered in future biomedical application although the overall toxicity of quantum dots is relatively low.
Collapse
Affiliation(s)
- Guimiao Lin
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Ting Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Yongning Pan
- Center for Disease Control and Prevention of Ban'an district, Shenzhen 518101, China
| | - Zhiwen Yang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Li Li
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiaomei Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Jie Wang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Yajing Chen
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Wenxiao Jiang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Shuting Weng
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Xiaorui Huang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Jiajie Kuang
- Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, Shenzhen Key Lab of Synthetic Biology, Department of Physiology, School of Basic Medical Sciences Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
10
|
Huang S, Li H, Luo H, Yang L, Zhou Z, Xiao Q, Liu Y. Conformational structure variation of human serum albumin after binding interaction with black phosphorus quantum dots. Int J Biol Macromol 2020; 146:405-414. [DOI: 10.1016/j.ijbiomac.2020.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/02/2023]
|
11
|
Liu R, Liu K, Tan M. Nanocorona Formation between Foodborne Nanoparticles Extracted from Roast Squid and Human Serum Albumin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10470-10480. [PMID: 31469565 DOI: 10.1021/acs.jafc.9b04425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Foodborne nanoparticles (FNPs) produced by roasting have attracted the attention of people, owing to their safety risk to body health. Herein, we reported the formation, physicochemical properties, elemental composition, biodistribution, and binding with human serum albumin (HSA) of FNPs extracted from roast squid. The results showed that the FNP size gradually decreased from 4.1 to 2.3 nm as the roasting temperature changed from 190 to 250 °C. The main component elements of FNPs are carbon, oxygen, and nitrogen, and the carbon and nitrogen contents of FNPs increased with the roasting temperature rising. The surface of FNPs contained hydroxyl, amino, and carboxyl functional groups. The FNPs can emit fluorescence in ultraviolet light and show excitation-dependent emission behavior. Furthermore, it was found that the FNPs derived from roast squid could be accumulated in the stomach, intestine, and brain of BALB/c mice after oral feeding. Static fluorescence quenching of HSA was found by the Stern-Volmer equation and ultraviolet-visible spectrum analysis after interaction with the FNPs. After the addition of FNPs, the α-helix content of HSA decreased and the morphological height of HSA increased, which indicated that the FNPs could cause structural changes in HSA. The atomic force microscopy characterization showed the formation of nanocorona between FNPs and HSA.
Collapse
Affiliation(s)
- Ronggang Liu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Kangjing Liu
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| | - Mingqian Tan
- School of Food Science and Technology , Dalian Polytechnic University , Dalian , Liaoning 116034 , People's Republic of China
- National Engineering Research Center of Seafood , Dalian , Liaoning 116034 , People's Republic of China
- Engineering Research Center of Seafood of Ministry of Education of China , Dalian , Liaoning 116034 , People's Republic of China
| |
Collapse
|
12
|
Yang E, Yao J, Wang L, Liu Y, Xiao Q, Huang S. InP/ZnS quantum dot-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase. Methods Appl Fluoresc 2019; 7:035008. [PMID: 30654340 DOI: 10.1088/2050-6120/aaff92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
InP/ZnS quantum dot (QD)-based fluorescent probe for directly sensitive and selective detection of horseradish peroxidase (HRP) was reported herein. Fluorescence of InP/ZnS QDs was statically quenched by HRP, due to the ground state complex formation of InP/ZnS QDs with HRP. Such ground state complex formation between InP/ZnS QDs and HRP reduced both the α-helix content and the melting temperature of HRP. Several key factors including InP/ZnS QDs concentration, buffer pH value, ionic strength, reaction temperature, and reaction time those affected the analytical performance of InP/ZnS QDs in HRP determination were investigated thoroughly. Under the optimal conditions, fluorescence intensity of InP/ZnS QDs was linearly decreased with the increasing of HRP concentration during the range of 1.0 × 10-9 M ∼ 3.0 × 10-8 M (0.01 U ml-1 ∼ 0.3 U ml-1) with the detection limit as low as 1.2 × 10-10 M (1.2 mU ml-1). The present method showed excellent selectivity for HRP over some amino acids, nucleotides, and common proteins. This method was utilized to detect HRP in synthetic samples successfully.
Collapse
Affiliation(s)
- Erli Yang
- College of Chemistry and Materials Science, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Zhang W, Zhang K, Xiong X, Chen Y. Study of interaction between citrate-coated silver nanoparticles and gamma globulin using spectroscopic method. J Biomol Struct Dyn 2019; 37:4251-4257. [DOI: 10.1080/07391102.2018.1548976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wanju Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei, China
| | - Kai Zhang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei, China
| | - Xujie Xiong
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei, China
| | - Yanmei Chen
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang, Hubei, China
| |
Collapse
|
14
|
Huang S, Xie J, Cui J, Liu L, Liang Y, Liu Y, Xiao Q. Comparative investigation of binding interactions between three steroidal compounds and human serum albumin: Multispectroscopic and molecular modeling techniques. Steroids 2017; 128:136-146. [PMID: 28962852 DOI: 10.1016/j.steroids.2017.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/10/2017] [Accepted: 09/23/2017] [Indexed: 02/06/2023]
Abstract
Steroidal compounds have attracted great attentions in biomedical and pharmacological areas. The investigation of structural influences during protein-compound interactions helps in understanding both the biological effects and the mechanism behind bioactivities of steroidal compounds. Herein, the structural influences of three steroidal complexes were investigated based on their binding interactions with human serum albumin (HSA) by multispectroscopic methods and molecular modeling techniques. Three steroidal compounds bonded with HSA to form three HSA-compound complexes, and van der Waals force and hydrogen bond played major roles in stabilizing these complexes. Detailed binding conformation of three steroidal compounds and HSA was further investigated by molecular modeling techniques. The changes of microenvironments and conformations of HSA were significant and the biological activity of HSA was weakened in the present of three steroidal compounds. The space steric hindrance was responsible for differences in the binding interactions between HSA and three steroidal compounds. These results provided the molecular understanding of binding interactions of protein with steroidal compounds and the strategy for research of structural influences.
Collapse
Affiliation(s)
- Shan Huang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jiangning Xie
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Jianguo Cui
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| | - Liang Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yu Liang
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Yi Liu
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China
| | - Qi Xiao
- College of Chemistry and Materials Science, Guangxi Teachers Education University, Nanning 530001, PR China.
| |
Collapse
|
15
|
Raza M, Jiang Y, Wei Y, Ahmad A, Khan A, Qipeng Y. Insights from spectroscopic and in-silico techniques for the exploitation of biomolecular interactions between Human serum albumin and Paromomycin. Colloids Surf B Biointerfaces 2017; 157:242-253. [DOI: 10.1016/j.colsurfb.2017.05.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/15/2017] [Accepted: 05/30/2017] [Indexed: 11/16/2022]
|