1
|
Cao J, Wu Q, Liu X, Zhu X, Huang C, Wang X, Song Y. Mechanistic insight on nanomaterial-induced reactive oxygen species formation. J Environ Sci (China) 2025; 151:200-210. [PMID: 39481933 DOI: 10.1016/j.jes.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 11/03/2024]
Abstract
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
Collapse
Affiliation(s)
- Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Liu Z, Gao M, Yan F, Zhang H, Wang L, Zhao Y, Zhao H, Xie X, Li C, Dai J, Xiong H, Zhang J. Cucurbitacin IIb mitigates concanavalin A-induced acute liver injury by suppressing M1 macrophage polarization. Int Immunopharmacol 2025; 147:113964. [PMID: 39755110 DOI: 10.1016/j.intimp.2024.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/06/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Cucurbitacins are a class of triterpenoid compounds extracted from plants and possess various pharmacological applications. Cucurbitacin IIb (CuIIb), extracted from the medicinal plant Hemsleya amabilis (Cucurbitaceae), has served as a traditional Chinese medicine for the treatment of bacterial dysentery and intestinal inflammation. CuIIb has been shown to exhibit anti-inflammatory activity; however, the protective effect of CuIIb against concanavalin A (Con A)-induced acute liver injury (ALI) and the fundamental mechanism remain unelucidated. In this study, we established an acute liver injury mouse model using Con A to investigate the effects of CuIIb on ALI. The results revealed that CuIIb significantly reduced serum aminotransferase levels and increased the survival rate of mice. Additionally, CuIIb effectively attenuated hepatocyte apoptosis, hepatic histopathological damage, and oxidative stress. Notably, CuIIb inhibited the polarization of M1 macrophages in vivo and in vitro. Moreover, the expression levels of pro-inflammatory cytokines related to M1 macrophages, such as interleukin (IL)-12, IL-1β, IL-6 and tumor necrosis factor-α (TNF-α), were reduced. CuIIb regulated M1 macrophage activation by modulating the nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Conclusively, these results demonstrated that CuIIb significantly prevented Con A-induced ALI by suppressing M1 macrophage polarization via the MAPK and NF-κB signaling pathways, demonstrating the potential use of CuIIb for ALI treatment.
Collapse
Affiliation(s)
- Zhihong Liu
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; School of Basic Medicine, Shandong First Medical University, Jinan 271016, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining 272011, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China; Jining Key Laboratory of Immunology, Jining Medical University, Jining 272067, China
| | - Yuxuan Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Hongru Zhao
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Xinzhou Xie
- Department of Spine Surgery, Jining First People's Hospital, Jining 272011, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining 272067, China.
| |
Collapse
|
3
|
Sikorska M, Ruzycka-Ayoush M, Rios-Mondragon I, Longhin EM, Meczynska-Wielgosz S, Wojewodzka M, Kowalczyk A, Kasprzak A, Nowakowska J, Sobczak K, Muszynska M, Cimpan MR, Runden-Pran E, Shaposhnikov S, Kruszewski M, Dusinska M, Nowicka AM, Grudzinski IP. Lack of cytotoxic and genotoxic effects of mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium despite cellular uptake in cancerous and noncancerous lung cells. Toxicol In Vitro 2024; 99:105850. [PMID: 38801838 DOI: 10.1016/j.tiv.2024.105850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Cytotoxic and genotoxic effects of novel mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium (Mg0.1-γ-Fe2O3(mPEG-silane)0.5) have been investigated on human adenocarcinomic alveolar basal epithelial (A549) and human normal bronchial epithelial (BEAS-2B) cells. In the studies several molecular and cellular targets addressing to cell membrane, cytoplasm organelles and nucleus components were served as toxicological endpoints. The as-synthesized nanoparticles were found to be stable in the cell culture media and were examined for different concentration and exposure times. No cytotoxicity of the tested nanoparticles was found although these nanoparticles slightly increased reactive oxygen species in both cell types studied. Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles did not produce any DNA strand breaks and oxidative DNA damages in A549 and BEAS-2B cells. Different concentration of Mg0.1-γ-Fe2O3(mPEG-silane)0.5 nanoparticles and different incubation time did not affect cell migration. The lung cancer cells' uptake of the nanoparticles was more effective than in normal lung cells. Altogether, the results evidence that mPEG-silane coated iron(III) oxide nanoparticles doped with magnesium do not elucidate any deleterious effects on human normal and cancerous lung cells despite cellular uptake of these nanoparticles. Therefore, it seems reasonable to conclude that these novel biocompatible nanoparticles are promising candidates for further development towards medical applications.
Collapse
Affiliation(s)
- Malgorzata Sikorska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland.
| | - Monika Ruzycka-Ayoush
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland
| | - Ivan Rios-Mondragon
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien. 19, Bergen 5009, Norway
| | - Eleonora Marta Longhin
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Sylwia Meczynska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland
| | - Maria Wojewodzka
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland
| | - Agata Kowalczyk
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Artur Kasprzak
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL-00-664 Warsaw, Poland
| | - Julita Nowakowska
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, University of Warsaw, Miecznikowa Str.1, PL-02-096 Warsaw, Poland
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101 Str., PL 02-089 Warsaw, Poland
| | - Magdalena Muszynska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101 Str., PL 02-089 Warsaw, Poland; Pro-Environment Poland Sp. z o. o., Zwirki i Wigury Str. 101, PL 02-098 Warsaw, Poland
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Årstadveien. 19, Bergen 5009, Norway
| | - Elise Runden-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | | | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna Str. 16, PL-03-195, Warsaw, Poland; Department of Medical Biology and Translational Research, Institute of Rural Health,Jaczewskiego Str. 2, PL-20-090 Lublin, Poland
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Anna M Nowicka
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097 Warsaw, Poland
| |
Collapse
|
4
|
Ding X, Fan S. Purple sweet potato polysaccharide ameliorates concanavalin A-induced hepatic injury by inhibiting inflammation and oxidative stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155652. [PMID: 38663118 DOI: 10.1016/j.phymed.2024.155652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is a prevalent liver disease that can potentially lead to hepatic fibrosis and cirrhosis. The prolonged administration of immunosuppressive medications carries significant risks for patients. Purple sweet potato polysaccharide (PSPP), a macromolecule stored in root tubers, exhibits anti-inflammatory, antioxidant, immune-enhancing, and intestinal flora-regulating properties. Nevertheless, investigation into the role and potential mechanisms of PSPP in AIH remains notably scarce. PURPOSE Our aim was to explore the possible protective impacts of PSPP against concanavalin A (Con A)-induced liver injury in mice. METHODS Polysaccharide was isolated from purple sweet potato tubers using water extraction and alcohol precipitation, followed by purification through DEAE-52 cellulose column chromatography and Sephadex G-100 column chromatography. A highly purified component was obtained, and its monosaccharide composition was characterized by high performance liquid chromatography (HPLC). Mouse and cellular models induced by Con A were set up to investigate the impacts of PSPP on hepatic histopathology, apoptosis, as well as inflammation- and oxidative stress-related proteins in response to PSPP treatment. RESULTS The administration of PSPP significantly reduced hepatic pathological damage, suppressed elevation of ALT and AST levels, and attenuated hepatic apoptosis in Con A-exposed mice. PSPP was found to mitigate Con A-induced inflammation by suppressing the TLR4-P2X7R/NLRP3 signaling pathway in mice. Furthermore, PSPP alleviated Con A-induced oxidative stress by activating the PI3K/AKT/mTOR signaling pathway in mice. Additionally, PSPP demonstrated the ability to reduce inflammation and oxidative stress in RAW264.7 cells induced by Con A in vitro. CONCLUSION PSPP has the potential to ameliorate hepatic inflammation via the TLR4-P2X7R/NLRP3 pathway and inhibit hepatic oxidative stress through the PI3K/AKT/mTOR pathway during the progression of Con A-induced hepatic injury. The results of this study have unveiled the potential hepatoprotective properties of purple sweet potato and its medicinal value for humans. Moreover, this study serves as a valuable reference, highlighting the potential of PSPP-1 as a drug candidate for the treatment of immune liver injury.
Collapse
Affiliation(s)
- Xiao Ding
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Julaiti M, Guo H, Cui T, Nijiati N, Huang P, Hu B. Application of stem cells in the study of developmental and functional toxicity of endodermal-derived organs caused by nanoparticles. Toxicol In Vitro 2024; 98:105836. [PMID: 38702034 DOI: 10.1016/j.tiv.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Nanoparticles have unique properties that make them useful in biomedicine. However, their extensive use raises concerns about potential hazards to the body. Therefore, it is crucial to establish effective and robust toxicology models to evaluate the developmental and functional toxicity of nanoparticles on the body. This article discusses the use of stem cells to study the developmental and functional toxicity of organs of endodermal origin due to nanoparticles. The study discovered that various types of nanoparticles have varying effects on stem cells. The application of stem cell models can provide a possibility for studying the effects of nanoparticles on organ development and function, as they can more accurately reflect the toxic mechanisms of different types of nanoparticles. However, stem cell toxicology systems currently cannot fully reflect the effects of nanoparticles on entire organs. Therefore, the establishment of organoid models and other advanced assessment models is expected to address this issue.
Collapse
Affiliation(s)
- Mulati Julaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Haoqiang Guo
- Human anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Tingting Cui
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Nadire Nijiati
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Pengfei Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Bowen Hu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China.
| |
Collapse
|
6
|
Qiao S, Kang Y, Tan X, Zhou X, Zhang C, Lai S, Liu J, Shao L. Nanomaterials-induced programmed cell death: Focus on mitochondria. Toxicology 2024; 504:153803. [PMID: 38616010 DOI: 10.1016/j.tox.2024.153803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Nanomaterials are widely utilized in several domains, such as everyday life, societal manufacturing, and biomedical applications, which expand the potential for nanomaterials to penetrate biological barriers and interact with cells. Multiple studies have concentrated on the particular or improper utilization of nanomaterials, resulting in cellular death. The primary mode of cell death caused by nanotoxicity is programmable cell death, which includes apoptosis, ferroptosis, necroptosis, and pyroptosis. Based on our prior publications and latest research, mitochondria have a vital function in facilitating programmed cell death caused by nanomaterials, as well as initiating or transmitting death signal pathways associated with it. Therefore, this review takes mitochondria as the focal point to investigate the internal molecular mechanism of nanomaterial-induced programmed cell death, with the aim of identifying potential targets for prevention and treatment in related studies.
Collapse
Affiliation(s)
- Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinru Zhou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Can Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shulin Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
7
|
Zhang X, Nan K, Zhang Y, Song K, Geng Z, Shang D, Fan L. Lithium and cobalt co-doped mesoporous bioactive glass nanoparticles promote osteogenesis and angiogenesis in bone regeneration. Front Bioeng Biotechnol 2024; 11:1288393. [PMID: 38239917 PMCID: PMC10794388 DOI: 10.3389/fbioe.2023.1288393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Healing of severe fractures and bone defects involves many complex biological processes, including angiogenesis and osteogenesis, presenting significant clinical challenges. Biomaterials used for bone tissue engineering often possess multiple functions to meet these challenges, including proangiogenic, proosteogenic, and antibacterial properties. We fabricated lithium and cobalt co-doped mesoporous bioactive glass nanoparticles (Li-Co-MBGNs) using a modified sol-gel method. Physicochemical analysis revealed that the nanoparticles had high specific surface areas (>600 m2/g) and a mesoporous structure suitable for hydroxyapatite (HA) formation and sustained release of therapeutic ions. In vitro experiments with Li-Co-MBGNs showed that these promoted angiogenic properties in HUVECs and pro-osteogenesis abilities in BMSCs by releasing Co2+ and Li+ ions. We observed their antibacterial activity against Staphylococcus aureus and Escherichia coli, indicating their potential applications in bone tissue engineering. Overall, our findings indicate the feasibility of its application in bone tissue engineering.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Orthopaedics, The Second Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Kai Nan
- Department of Osteonecrosis and Joint Reconstruction Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuankai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Keke Song
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Geng
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Donglong Shang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lihong Fan
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Bae WY, Lee DU, Yu HS, Lee NK, Paik HD. Fermentation of Inula britannica using Lactobacillus plantarum SY12 increases of epigallocatechin gallate and attenuates toxicity. Food Chem 2023; 429:136844. [PMID: 37454617 DOI: 10.1016/j.foodchem.2023.136844] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to increase epigallocatechin gallate (EGCG) levels and attenuate the toxicity in Inulabritannica by fermentation using Lactobacillus plantarum SY12. The optimal medium was composed of 10 g of I. britannica, 4 g of xylose, 5 g of soytone, and 5 g of beef extract. The predicted value of EGCG was 237.327 μg/mL. To investigate damage in HepG2 cell lines by I. britannica extracts (IE) or fermented I. britannica extracts (FIE), cell viability, mitochondria membrane potential, the expression of apoptosis and autophagy genes, and chemical composition were measured. FIE increased cell viability, regulation of the gene expression (decreased p53, p62, p-ERK 1/2, and p-p38; increased CDK2 and CDK4) compared with IE. These results were explained by an increase in 1,3-dicaffeoylquinic acid and a decrease in 1-O-caffeoylquinic acid, 1-O-acetylbritannilactone, and ergolide in FIE. In conclusion, these results indicated that fermentation can mitigate the toxicity in I. britannica.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Do-Un Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyung-Seok Yu
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
9
|
Khan MS, Buzdar SA, Hussain R, Alouffi A, Aleem MT, Farhab M, Javid MA, Akhtar RW, Khan I, Almutairi MM. Cobalt Iron Oxide (CoFe 2O 4) Nanoparticles Induced Toxicity in Rabbits. Vet Sci 2023; 10:514. [PMID: 37624302 PMCID: PMC10459303 DOI: 10.3390/vetsci10080514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
The market for nanoparticles has grown significantly over the past few decades due to a number of unique qualities, including antibacterial capabilities. It is still unclear how nanoparticle toxicity works. In order to ascertain the toxicity of synthetic cobalt iron oxide (CoFe2O4) nanoparticles (CIONPs) in rabbits, this study was carried out. Sixteen rabbits in total were purchased from the neighborhood market and divided into two groups (A and B), each of which contained eight rabbits. The CIONPs were synthesized by the co-precipitation method. Crystallinity and phase identification were confirmed by X-ray diffraction (XRD). The average size of the nanoparticles (13.2 nm) was calculated by Scherrer formula (Dhkl = 0.9 λ/β cos θ) and confirmed by TEM images. The saturation magnetization, 50.1 emug-1, was measured by vibrating sample magnetometer (VSM). CIONPs were investigated as contrast agents (CA) for magnetic resonance images (MRI). The relaxivity (r = 1/T) of the MRI was also investigated at a field strength of 0.35 T (Tesla), and the ratio r2/r1 for the CIONPs contrast agent was 6.63. The CIONPs were administrated intravenously into the rabbits through the ear vein. Blood was collected at days 5 and 10 post-exposure for hematological and serum biochemistry analyses. The intensities of the signal experienced by CA with CIONPs were 1427 for the liver and 1702 for the spleen. The treated group showed significantly lower hematological parameters, but significantly higher total white blood cell counts and neutrophils. The results of the serum biochemistry analyses showed significantly higher and lower quantities of different serum biochemical parameters in the treated rabbits at day 10 of the trial. At the microscopic level, different histological ailments were observed in the visceral organs of treated rabbits, including the liver, kidneys, spleen, heart, and brain. In conclusion, the results revealed that cobalt iron oxide (CoFe2O4) nanoparticles induced toxicity via alterations in multiple tissues of rabbits.
Collapse
Affiliation(s)
- Muhammad Shahid Khan
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Saeed Ahmad Buzdar
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Muhammad Tahir Aleem
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA;
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Farhab
- Key Laboratory of Animal Genetic Engineering, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Arshad Javid
- Institute of Physics, The Islamia University, Bahawalpur 63100, Pakistan; (M.S.K.); (S.A.B.); (M.A.J.)
| | - Rana Waseem Akhtar
- Department of Animal Breeding and Genetics, Faculty of Veterinary and Animal Sciences, The Islamia University, Bahawalpur 63100, Pakistan;
| | - Iahtasham Khan
- Section of Epidemiology and Public Health, Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang Sub-Campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Lomphithak T, Helvacioglu S, Armenia I, Keshavan S, Ovejero JG, Baldi G, Ravagli C, Grazú V, Fadeel B. High-Dose Exposure to Polymer-Coated Iron Oxide Nanoparticles Elicits Autophagy-Dependent Ferroptosis in Susceptible Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111719. [PMID: 37299622 DOI: 10.3390/nano13111719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Ferroptosis, a form of iron-dependent, lipid peroxidation-driven cell death, has been extensively investigated in recent years, and several studies have suggested that the ferroptosis-inducing properties of iron-containing nanomaterials could be harnessed for cancer treatment. Here we evaluated the potential cytotoxicity of iron oxide nanoparticles, with and without cobalt functionalization (Fe2O3 and Fe2O3@Co-PEG), using an established, ferroptosis-sensitive fibrosarcoma cell line (HT1080) and a normal fibroblast cell line (BJ). In addition, we evaluated poly (ethylene glycol) (PEG)-poly(lactic-co-glycolic acid) (PLGA)-coated iron oxide nanoparticles (Fe3O4-PEG-PLGA). Our results showed that all the nanoparticles tested were essentially non-cytotoxic at concentrations up to 100 μg/mL. However, when the cells were exposed to higher concentrations (200-400 μg/mL), cell death with features of ferroptosis was observed, and this was more pronounced for the Co-functionalized nanoparticles. Furthermore, evidence was provided that the cell death triggered by the nanoparticles was autophagy-dependent. Taken together, the exposure to high concentrations of polymer-coated iron oxide nanoparticles triggers ferroptosis in susceptible human cancer cells.
Collapse
Affiliation(s)
- Thanpisit Lomphithak
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Selin Helvacioglu
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35433, Turkey
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50001 Zaragoza, Spain
| | - Sandeep Keshavan
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jesús G Ovejero
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
- Department of Dosimetry and Radioprotection, General University Hospital Gregorio Marañón, 28049 Madrid, Spain
| | - Giovanni Baldi
- Colorobbia Consulting S.R.L., Sovigliana, 50053 Vinci, Italy
| | | | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50001 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Zaragoza, Spain
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
11
|
Nizamov TR, Amirov AA, Kuznetsova TO, Dorofievich IV, Bordyuzhin IG, Zhukov DG, Ivanova AV, Gabashvili AN, Tabachkova NY, Tepanov AA, Shchetinin IV, Abakumov MA, Savchenko AG, Majouga AG. Synthesis and Functional Characterization of Co xFe 3-xO 4-BaTiO 3 Magnetoelectric Nanocomposites for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:811. [PMID: 36903693 PMCID: PMC10004808 DOI: 10.3390/nano13050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 μg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.
Collapse
Affiliation(s)
- Timur R. Nizamov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Abdulkarim A. Amirov
- Amirkhanov Institute of Physics of Dagestan Federal Research Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
| | - Tatiana O. Kuznetsova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Irina V. Dorofievich
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Igor G. Bordyuzhin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Dmitry G. Zhukov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna V. Ivanova
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Anna N. Gabashvili
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Nataliya Yu. Tabachkova
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | | | - Igor V. Shchetinin
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Maxim A. Abakumov
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Alexander G. Savchenko
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
| | - Alexander G. Majouga
- Department of Physical Materials Science, National University of Science and Technology “MISiS”, 119049 Moscow, Russia
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| |
Collapse
|
12
|
Ahamed M, Lateef R, Akhtar MJ, Rajanahalli P. Dietary Antioxidant Curcumin Mitigates CuO Nanoparticle-Induced Cytotoxicity through the Oxidative Stress Pathway in Human Placental Cells. Molecules 2022; 27:7378. [PMID: 36364205 PMCID: PMC9654626 DOI: 10.3390/molecules27217378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 04/20/2024] Open
Abstract
The placenta is an important organ that maintains a healthy pregnancy by transporting nutrients to the fetus and removing waste from the fetus. It also acts as a barrier to protect the fetus from hazardous materials. Recent studies have indicated that nanoparticles (NPs) can cross the placental barrier and pose a health risk to the developing fetus. The high production and widespread application of copper oxide (CuO) NPs may lead to higher exposure to humans, raising concerns of health hazards, especially in vulnerable life stages, e.g., pregnancy. Oxidative stress plays a crucial role in the pathogenesis of adverse pregnancy outcomes. Due to its strong antioxidant activity, dietary curcumin can act as a therapeutic agent for adverse pregnancy. There is limited knowledge on the hazardous effects of CuO NPs during pregnancy and their mitigation by curcumin. This study aimed to investigate the preventive effect of curcumin against CuO NP-induced toxicity in human placental (BeWo) cells. CuO NPs were synthesized by a facile hydrothermal process and characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence techniques. We observed that curcumin did not induce toxicity in BeWo cells (1-100 µg/mL for 24 h), whereas CuO NPs decreased the cell viability dose-dependently (5-200 µg/mL for 24 h). Interestingly, CuO NP-induced cytotoxicity was effectively mitigated by curcumin co-exposure. The apoptosis data also exhibited that CuO NPs modulate the expression of several genes (p53, bax, bcl-2, casp3, and casp9), the activity of enzymes (caspase-3 and -9), and mitochondrial membrane potential loss, which was successfully reverted by co-treatment with curcumin. The mechanistic study suggested that CuO-induced reactive oxygen species generation, lipid peroxidation, and higher levels of hydrogen peroxide were significantly alleviated by curcumin co-exposure. Moreover, glutathione depletion and the lower activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were effectively mitigated by curcumin. We believe this is the first report exhibiting that CuO-induced toxicity in BeWo cells can be effectively alleviated by curcumin. The pharmacological potential of dietary curcumin in NP-induced toxicity during pregnancy warrants further investigation.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashid Lateef
- Department of Biochemistry, Faculty of Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
13
|
Alfareed TM, Slimani Y, Almessiere MA, Nawaz M, Khan FA, Baykal A, Al-Suhaimi EA. Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO 3 coated spinel ferrites. Sci Rep 2022; 12:14127. [PMID: 35986070 PMCID: PMC9391367 DOI: 10.1038/s41598-022-18306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, different nanoparticles spinel ferrite series (MFe2O4, Co0.5M0.5Fe2O4; M = Co, Mn, Ni, Mg, Cu, or Zn) have been obtained via sonochemical approach. Then, sol-gel method was employed to design core-shell magnetoelectric nanocomposites by coating these nanoparticles with BaTiO3 (BTO). The structure and morphology of the prepared samples were examined by X-ray powder diffraction (XRD), scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscope (HR-TEM), and zeta potential. XRD analysis showed the presence of spinel ferrite and BTO phases without any trace of a secondary phase. Both phases crystallized in the cubic structure. SEM micrographs illustrated an agglomeration of spherical grains with nonuniformly diphase orientation and different degrees of agglomeration. Moreover, HR-TEM revealed interplanar d-spacing planes that are in good agreement with those of the spinel ferrite phase and BTO phase. These techniques along with EDX analyses confirmed the successful formation of the desired nanocomposites. Zeta potential was also investigated. The biological influence of (MFe2O4, CoMFe) MNPs and core-shell (MFe2O4@BTO, CoMFe@BTO) magnetoelectric nanocomposites were examined by MTT and DAPI assays. Post 48 h of treatments, the anticancer activity of MNPs and MENCs was investigated on human colorectal carcinoma cells (HCT-116) against the cytocompatibility of normal non-cancerous cells (HEK-293). It was established that MNPs possess anti-colon cancer capability while MENCs exhibited a recovery effect due to the presence of a protective biocompatible BTO layer. RBCs hemolytic effect of NPs has ranged from non- to low-hemolytic effect. This effect that could be attributed to the surface charge from zeta potential, also the CoMnFe possesses the stable and lowest zeta potential in comparison with CoFe2O4 and MnFe2O4 also to the protective effect of shell. These findings open up wide prospects for biomedical applications of MNPs as anticancer and MENCs as promising drug nanocarriers.
Collapse
Affiliation(s)
- Tahani M Alfareed
- Master Program of Nanotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cells, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Ebtesam A Al-Suhaimi
- Biology Department, College of Science & Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
14
|
Wu C, Zhang G, Wang Z, Shi H. Macrophage-mediated delivery of Fe3O4-nanoparticles: a generalized strategy to deliver iron to Tumor Microenvironment. Curr Drug Deliv 2022; 19:928-939. [PMID: 35473528 DOI: 10.2174/1567201819666220426085450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Background:Iron are used to alter macrophage phenotypes and induce tumor cell death. Iron oxide nanoparticles can induce macrophage polarization into the M1 phenotype, which inhibits tumor growth and can dissociate into iron ions in macrophages. Objective:In this study, we proposed to construct high expression of Ferroportin1 macrophages as carriers to deliver Fe3O4-nanoparticles and iron directly to tumor sites. METHODS Three sizes of Fe3O4-nanoparticles with gradient concentrations were used. The migration ability of iron-carrying macrophages was confirmed by an in vitro migration experiment and monocyte chemoattractant protein-1 detection. The release of iron from macrophages was confirmed by determining their levels in the cell culture supernatant, and we constructed a high expression of ferroportin strain of macrophage lines to increase intracellular iron efflux by increasing membrane transferrin expression. Fe3O4-NPs in Ana-1 cells were degraded in lysosomes, and the amount of iron released was correlated with the expression of ferroportin1. RESULTS After Fe3O4-nanoparticles uptake by macrophages, not only polarized macrophages into M1 phenotype, but the nanoparticles also dissolved in the lysosome and iron were released out of the cell. FPN1 has known as the only known Fe transporter, we use Lentiviral vector carrying FPN1 gene transfected into macrophages, has successfully constructed Ana-1-FPN1 cells, and maintains high expression of FPN1. Ana-1-FPN1 cells increases intracellular iron release. Fe3O4-nanoparticles loaded engineered Ana-1 macrophages can act as a "reservoir" of iron. CONCLUSION Our study provides proof of strategy for Fe3O4-NPs target delivery to the tumor microenvironment. Moreover, increase of intracellular iron efflux by overexpression of FPN1, cell carriers can act as a reservoir for iron, providing the basis for targeted delivery of Fe3O4-NPs and iron ions in vivo.
Collapse
Affiliation(s)
- Cong Wu
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Guozhong Zhang
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China, 225001
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, China.,Jiangyang Road North Campus of Yangzhou University, Yangzhou City, Jiangsu Province, China
| |
Collapse
|
15
|
Fernández-Bertólez N, Costa C, Brandão F, Teixeira JP, Pásaro E, Valdiglesias V, Laffon B. Toxicological Aspects of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:303-350. [DOI: 10.1007/978-3-030-88071-2_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Li J, Wang J, Wang YL, Luo Z, Zheng C, Yu G, Wu S, Zheng F, Li H. NOX2 activation contributes to cobalt nanoparticles-induced inflammatory responses and Tau phosphorylation in mice and microglia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112725. [PMID: 34492628 DOI: 10.1016/j.ecoenv.2021.112725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Despite the wide application of cobalt nanoparticles (CoNPs), its neurotoxicity and the underlying mechanisms are not fully understood. In this study, CoNPs-induced toxic effect was examined in both C57BL/6J mice and microglial BV2 cells. CoNPs-induced brain weight loss and the reduction of Nissl bodies, assuring neural damage. Moreover, both total unphosphorylated Tau and phosphorylated Tau (pTau; T231 and S262) expressions in the hippocampus and cortex were upregulated, unveiling Tau phosphorylation. Besides, the increase in inflammation-related proteins NLRP3 and IL-1β were found in mice brain. Corroborating that, microglial marker Iba-1 expression was also increased, suggesting microglia-involved inflammation. Among the NADPH oxidase (NOX) family proteins tested, only NOX2 was activated by CoNPs in hippocampus. Therefore, BV2 cells were employed to further investigate the role of NOX2. In BV2 cells, NOX2 expression was upregulated, corresponding to the production of ROS. Moreover, similar induction in Tau phosphorylation and inflammation-related protein expressions were observed in CoNPs-exposed BV2 cells. Treatment of apocynin, a NOX2 inhibitor, reduced ROS generation and reversed Tau phosphorylation and inflammation caused by CoNPs. Thus, CoNPs induced ROS production, Tau phosphorylation and inflammation specially via NOX2 activation.
Collapse
Affiliation(s)
- Jing Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Junxiang Wang
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Yuan-Liang Wang
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Zhousong Luo
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Chunyan Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, China.
| | - Fuli Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, China; Key Lab of Environment and Health, School of Public Health, Fujian Medical University, China.
| |
Collapse
|
17
|
Bai Q, Wang Y, Duan L, Xu X, Hu Y, Yang Y, Zhang L, Liu Z, Bao H, Liu T. Cu-Doped-ZnO Nanocrystals Induce Hepatocyte Autophagy by Oxidative Stress Pathway. NANOMATERIALS 2021; 11:nano11082081. [PMID: 34443912 PMCID: PMC8399041 DOI: 10.3390/nano11082081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
As a novel nanomaterial for cancer therapy and antibacterial agent, Cu-doped-ZnO nanocrystals (CZON) has aroused concern recently, but the toxicity of CZON has received little attention. Results of hematology analysis and blood biochemical assay showed that a 50 mg/kg dosage induced the increase in white blood cells count and that the concentration of alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT), and Malonaldehyde (MDA) in the serum, liver, and lungs of the CZON group varied significantly from the control mice. Histopathological examinations results showed inflammation and congestion in the liver and lung after a single injection of CZON at 50 mg/kg. A transmission electron microscope (TEM) result manifested the autolysosome of hepatocyte of mice which received CZON at 50 mg/kg. The significant increase in LC3-II and decrease in p62 of hepatocyte in vivo could be seen in Western blot. These results indicated that CZON had the ability to induce autophagy of hepatocyte. The further researches of mechanism of autophagy revealed that CZON could produce hydroxyl radicals measured by erythrocyte sedimentation rate (ESR). The result of bio-distribution of CZON in vivo, investigated by ICP-OES, indicated that CZON mainly accumulated in the liver and two spleen organs. These results suggested that CZON can induce dose-dependent toxicity and autophagy by inducing oxidative stress in major organs. In summary, we investigated the acute toxicity and biological distribution after the intravenous administration of CZON. The results of body weight, histomorphology, hematology, and blood biochemical tests showed that CZON had a dose-dependent effect on the health of mice after a single injection. These results indicated that CZON could induce oxidative damage of the liver and lung by producing hydroxyl radicals at the higher dose.
Collapse
Affiliation(s)
- Qianyu Bai
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yeru Wang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Luoyan Duan
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Xiaomu Xu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yusheng Hu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Yue Yang
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, No.37 Guangqu Road, Chaoyang District, Beijing 100022, China; (Y.W.); (L.Z.); (Z.L.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| | - Tianlong Liu
- College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, China; (Q.B.); (L.D.); (X.X.); (Y.H.); (Y.Y.)
- Correspondence: (H.B.); (T.L.); Tel.: +86-010-62733398 (T.L.)
| |
Collapse
|
18
|
Shahrokhshahi A, Salehzadeh A, Vaziri HR, Moradi‐Shoeili Z. The Co(
OH
)
2
@
Glu‐TSC
nanoflakes enhance the apoptosis in hepatoma
G2
cell. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Ali Salehzadeh
- Department of Biology, Rasht Branch Islamic Azad University Rasht Iran
| | - Hamid Reza Vaziri
- Department of Biology, Faculty of Sciences University of Guilan Rasht Iran
| | | |
Collapse
|
19
|
Escaliante LADS, Busato B, Petkowicz CLDO, Cadena SMSC, Noleto GR. Cytotoxic effect of xyloglucan and oxovanadium (IV/V) xyloglucan complex in HepG2 cells. Int J Biol Macromol 2021; 185:40-48. [PMID: 34144065 DOI: 10.1016/j.ijbiomac.2021.06.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
It is well known that the chemical structure of polysaccharides is important to their final biological effect. In this study we investigated the cytotoxic effect of xyloglucan from Copaifera langsdorffii seeds (XGC) and its complex with oxovanadium (XGC:VO) on hepatocellular carcinoma cells (HepG2). After 72 h of incubation, XGC and XGC:VO (200 μg/mL) reduced cell viability in ~20% and ~40%, respectively. At same conditions, only XGC:VO increased in ~20% the LDH enzyme release. In permeabilized cells, incubated with XGC and XGC:VO (200 μg/mL) for 72 h, NADH oxidase activity was reduced by ~45% with XGC and XGC:VO. The succinate oxidase activity was reduced by ~35% with XGC and ~65% with XGC:VO, evidencing that polysaccharide complexation with vanadium could intensify its effects on the respiratory chain. According to this result, the mitochondrial membrane potential was also reduced by ~9% for XGC and ~30% for XGC:VO, when compared to the control group. Interestingly, ATP levels were more elevated for XGC:VO in respect to XGC, probably due the enhance in glycolytic flux evidenced by increased levels of lactate. These results show that the xyloglucan complexation with oxovanadium (IV/V) potentiates the cytotoxic effect of the native polysaccharide, possibly by impairment of oxidative phosphorylation.
Collapse
Affiliation(s)
| | - Bianca Busato
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | |
Collapse
|
20
|
Ahamed M, Akhtar MJ, Khan MAM, Alhadlaq HA. Co-exposure of Bi 2O 3 nanoparticles and bezo[a]pyrene-enhanced in vitro cytotoxicity of mouse spermatogonia cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17109-17118. [PMID: 33394445 DOI: 10.1007/s11356-020-12128-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Recent attention has been focused on reproductive toxicity of nanoscale materials in combination with pre-existing environmental pollutants. Due to its unique characteristics, bismuth (III) oxide (Bi2O3) nanoparticles (BONPs) are being used in diverse fields including cosmetics and biomedicine. Benzo[a]pyrene (BaP) is a known endocrine disruptor that most common sources of BaP exposure to humans are cigarette smoke and well-cooked barbecued meat. Hence, joint exposure of BONPs and BaP in humans is common. There is scarcity of information on toxicity of BONPs in combination with BaP in human reproductive system. In this work, combined effects of BONPs and BaP in mouse spermatogonia (GC-1 spg) cells were assessed. Results showed that combined exposure of BONPs and BaP synergistically induced cell viability reduction, lactate dehydrogenase leakage, induction of caspases (-3 and -9) and mitochondrial membrane potential loss in GC-1 spg cells. Co-exposure of BONPs and BaP also synergistically induced production of pro-oxidants (reactive oxygen species and hydrogen peroxide) and reduction of antioxidants (glutathione and several antioxidant enzymes). Experiments with N-acetyl-cysteine (NAC, a reactive oxygen species scavenger) indicated that oxidative stress was a plausible mechanism of synergistic toxicity of BONPs and BaP in GC-1 spg cells. Present data could be helpful for future in vivo research and risk assessment of human reproductive system co-exposed to BONPs and BaP.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Abdul Majeed Khan
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham Abdulaziz Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Green synthesized selenium nanoparticles for ovarian cancer cell apoptosis. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04424-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Leonel AG, Mansur AAP, Carvalho SM, Outon LEF, Ardisson JD, Krambrock K, Mansur HS. Tunable magnetothermal properties of cobalt-doped magnetite-carboxymethylcellulose ferrofluids: smart nanoplatforms for potential magnetic hyperthermia applications in cancer therapy. NANOSCALE ADVANCES 2021; 3:1029-1046. [PMID: 36133299 PMCID: PMC9416810 DOI: 10.1039/d0na00820f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/02/2021] [Indexed: 05/09/2023]
Abstract
Magnetite nanoparticles are one of the most promising ferrofluids for hyperthermia applications due to the combination of unique physicochemical and magnetic properties. In this study, we designed and produced superparamagnetic ferrofluids composed of magnetite (Fe3O4, MION) and cobalt-doped magnetite (Co x -MION, x = 3, 5, and 10% mol of cobalt) nanoconjugates through an eco-friendly aqueous method using carboxymethylcellulose (CMC) as the biocompatible macromolecular ligand. The effect of the gradual increase of cobalt content in Fe3O4 nanocolloids was investigated in-depth using XRD, XRF, XPS, FTIR, DLS, zeta potential, EMR, and VSM analyses. Additionally, the cytotoxicity of these nanoconjugates and their ability to cause cancer cell death through heat induction were evaluated by MTT assays in vitro. The results demonstrated that the progressive substitution of Co in the magnetite host material significantly affected the magnetic anisotropy properties of the ferrofluids. Therefore, Co-doped ferrite (Co x Fe(3-x)O4) nanoconjugates enhanced the cell-killing activities in magnetic hyperthermia experiments under alternating magnetic field performed with human brain cancer cells (U87). On the other hand, the Co-doping process retained the pristine inverse spinel crystalline structure of MIONs, and it has not significantly altered the average nanoparticle size (ca.∼7.1 ± 1.6 nm). Thus, the incorporation of cobalt into magnetite-polymer nanostructures may constitute a smart strategy for tuning their magnetothermal capability towards cancer therapy by heat generation.
Collapse
Affiliation(s)
- Alice G Leonel
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| | - Luis Eugenio F Outon
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - José Domingos Ardisson
- Centro de Desenvolvimento da Tecnologia Nuclear - CDTN Av. Antônio Carlos 6627 - Belo Horizonte MG Brazil
| | - Klaus Krambrock
- Departament of Physics, Federal University of Minas Gerais - UFMG Av. Antônio Carlos, 6627 - Escola de Engenharia, Bloco 2 - Sala 2233 Belo Horizonte/MG 31.270-901 Brazil +55-31-34091843 +55-31-34091843
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais - UFMG Av. Antônio Carlos 6627 - Belo Horizonte/MG Brazil
| |
Collapse
|
23
|
Sánchez-Oseguera A, López-Meléndez A, Lucio-Porto R, Arredondo-Espinoza EU, González-Santiago O, Ramírez-Cabrera MA. Anticancer activity of VOHPO4·2H2O nanoparticles in vitro. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Fagundes DA, Leonel LV, Fernandez-Outon LE, Ardisson JD, Dos Santos RG. Radiosensitizing effects of citrate-coated cobalt and nickel ferrite nanoparticles on breast cancer cells. Nanomedicine (Lond) 2020; 15:2823-2836. [PMID: 33241971 DOI: 10.2217/nnm-2020-0313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aim: Evaluation of the biocompatibility and radiosensitizer potential of citrate-coated cobalt (cit-CF) and nickel (cit-NF) ferrite nanoparticles (NPs). Materials & methods: Normal fibroblast and breast cancer cells were treated with different concentrations of citrate-coated ferrite NPs (cit-NPs) and irradiated with a cobalt-60 source at doses of 1 and 3 Gy. After 24 h, cell metabolism, morphology alterations and nanoparticle uptake were evaluated. Results: Cit-CF and cit-NF NPs showed no toxicity to normal cells up to 250 and 100 μg.ml-1, respectively. Combination of cit-NP and ionizing radiation resulted in up to fivefold increase in the radiation therapeutic efficacy against breast cancer cells. Conclusion: Cit-CF and cit-NF NPs are suitable candidates for application as breast cancer cell radiosensitizers.
Collapse
Affiliation(s)
- Daniele A Fagundes
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil.,Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Liliam V Leonel
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Luis E Fernandez-Outon
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil.,Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - José D Ardisson
- Serviço de Nanotecnologia, Centro de Desenvolvimento da Tecnologia Nuclear, Belo Horizonte, 31270-901, Brazil
| | - Raquel G Dos Santos
- Unidade de Radiobiologia, Centro de Desenvolvimento da Tecnologia Nuclear, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
25
|
Liu Y, Zhu W, Ni D, Zhou Z, Gu JH, Zhang W, Sun H, Liu F. Alpha lipoic acid antagonizes cytotoxicity of cobalt nanoparticles by inhibiting ferroptosis-like cell death. J Nanobiotechnology 2020; 18:141. [PMID: 33008409 PMCID: PMC7532644 DOI: 10.1186/s12951-020-00700-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
As a main element in the hard metal industry, cobalt is one of the major components of human metal implants. Cobalt-containing implants, especially joint prostheses used for artificial joint replacement, can be corroded due to the complex physiological environment in vivo, producing a large number of nanoscale cobalt particles (Cobalt Nanoparticles, CoNPs). These CoNPs can be first accumulated around the implant to cause adverse local reactions and then enter into the blood vessels followed by reaching the liver, heart, brain, kidney, and other organs through systematic circulation, which leads to multi-system toxicity symptoms. To ensure the long-term existence of cobalt-containing implants in the body, it is urgently required to find out a safe and effective detoxification drug. Herein, we have demonstrated that CoNPs could induce the ferroptosis-like cell death through the enhancement of intracellular reactive oxygen species (ROS) level, cytoplasmic Fe2+ level, lipid peroxidation, and consumption of reduced glutathione (GSH) as well as inhibition of glutathione peroxidase 4 (GPX4) activity. Importantly, α-lipoic acid (ALA), a natural antioxidant with the capability to scavenge free radicals and chelate toxic metals, was found to efficiently alleviate the adverse effects of CoNPs. The present study illustrates a new mechanism of CoNPs mediated by ferroptosis-like cytotoxicity and discloses an effective method for the detoxification of CoNPs by employing the natural antioxidant of ALA, providing a basis for further in vivo detoxification study.![]()
Collapse
Affiliation(s)
- Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.,Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wenfeng Zhu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, 11111 Highland Avenue, Madison, WI, 53705, USA
| | - Zihua Zhou
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.,Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
26
|
Xu Y, Li X, Gong W, Huang HB, Zhu BW, Hu JN. Construction of Ginsenoside Nanoparticles with pH/Reduction Dual Response for Enhancement of Their Cytotoxicity Toward HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8545-8556. [PMID: 32686932 DOI: 10.1021/acs.jafc.0c03698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aim of this study is to construct a pH- and reduction-responsive nanodrug delivery system to effectively deliver a ginsenoside (Rh2) and enhance its cytotoxicity against human hepatocarcinoma cells (HepG2). Here, pullulan polysaccharide was grafted by urocanic acid and α-lipoic acid (α-LA) to obtain a copolymer, α-LA-conjugated N-urocanyl pullulan (LA-URPA), which was expected to have pH and redox dual response. Then, the copolymer LA-URPA was used to encapsulate ginsenoside Rh2 to form Rh2 nanoparticles (Rh2 NPs). The results showed that Rh2 NPs exhibited an average size of 119.87 nm with a uniform spherical morphology. Of note, Rh2 NPs showed a high encapsulation efficiency of 86.00%. Moreover, Rh2 NPs possessed excellent pH/reduction dual-responsive drug release under acidic conditions (pH 5.5) and glutathione (GSH) stimulation with a low drug leakage of 14.8% within 96 h. Furthermore, Rh2 NPs with pH/reduction dual response had higher cytotoxicity than Rh2 after incubation with HepG2 cells for 72 h, indicating that Rh2 NPs had a longer circulation time. After the treatment with Rh2 NPs, the excessive increase of reactive oxygen species and the decrease of superoxide dismutase, glutathione (GSH), and mitochondrial membrane potential suggested that the mitochondrial pathway mediated by oxidative stress played a role in this Rh2 NP-induced apoptosis. In conclusion, this study provides a new strategy for improving the application of ginsenoside Rh2 in the food and pharmaceutical fields.
Collapse
Affiliation(s)
- Yu Xu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Xiang Li
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Wei Gong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Hai-Bo Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Bei-Wei Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, P. R. China
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jiang-Ning Hu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China
| |
Collapse
|
27
|
He Y, Li J, Chen J, Miao X, Li G, He Q, Xu H, Li H, Wei Y. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138180. [PMID: 32224412 DOI: 10.1016/j.scitotenv.2020.138180] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 06/10/2023]
Abstract
Nanoplastics in the environment lead to the human exposure to these particles. However, the consequences of this exposure are not yet fully understood. Here, the cytotoxicity of polystyrene nanoparticles (PS-NPs) with a uniform size (50 nm) but distinct surface functionalization (pristine polystyrene, PS; carboxy and amino functionalized, PS-COOH and PS-NH2, respectively), and at an exposure dosage of 10, 50 and 100 μg/mL, were assessed in the human hepatocellular carcinoma (HepG2) cell line. Although all PS-NPs could be internalized by the HepG2 cells, according to the fluorescent intensities, more of PS-COOH and PS-NH2 than PS, accumulated in the cells. The cell viability was significantly affected in a positively dose-related manner. Functionalized PS-NPs exhibited greater inhibition of cell viability than PS, and the viability inhibition peaked (46%) at 100 μg/mL of PS-NH2 exposure. Superoxide dismutase (SOD) activity was maximum when HepG2 cells were exposed to 10 μg/mL of PS-COOH (1.8 folds higher than that without PS-COOH exposure). The glutathione (GSH) content was maximum when the cells were treated with 50 μg/mL of PS (3.75 fold increase compared to untreated cells). Although the difference in inhibition of cell viability was not significant between PS-NH2 and PS-COOH exposure, 100 μg/mL of PS-NH2 exposure caused the most severe oxidative stress due to dramatically increased accumulation of malondialdehyde (MDA); however, a decrease in the antioxidants levels as the SOD activity and GSH content were also found. The results demonstrated that the cellular oxidative damage occurred and that the antioxidation enzymes may not be able to maintain the balance between the generation of oxidant species and the antioxidant defense. Consequently, 100 μg/mL of PS-NH2 exposure triggered the destruction of antioxidant structures. This study defines the cytotoxic effects of PS-NPs on HepG2 cells and emphasizes the significance of investigating the cytotoxic outcomes of nanoplastics in humans.
Collapse
Affiliation(s)
- Yixin He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Jing Li
- Hunan Provincial Key Laboratory of Shale Gas Resource Exploitation, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jiancheng Chen
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaojun Miao
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Guo Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Qiang He
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China
| | - Haizhao Xu
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
| | - Yanyan Wei
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
28
|
Sen GT, Ozkemahli G, Shahbazi R, Erkekoglu P, Ulubayram K, Kocer-Gumusel B. The Effects of Polymer Coating of Gold Nanoparticles on Oxidative Stress and DNA Damage. Int J Toxicol 2020; 39:328-340. [DOI: 10.1177/1091581820927646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold nanoparticles (AuNPs) have been widely used in many biological and biomedical applications. In this regard, their surface modification is of paramount importance in order to increase their cellular uptake, delivery capability, and optimize their distribution inside the body. The aim of this study was to examine the effects of AuNPs on cytotoxicity, oxidant/antioxidant parameters, and DNA damage in HepG2 cells and investigate the potential toxic effects of different surface modifications such as polyethylene glycol (PEG) and polyethyleneimine (PEI; molecular weights of 2,000 (low molecular weight [LMW]) and 25,000 (high molecular weight [HMW]). The study groups were determined as AuNPs, PEG-coated AuNPs (AuNPs/PEG), low-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI LMW), and high-molecular weight polyethyleneimine-coated gold nanoparticles (AuNPs/PEI HMW). After incubating HepG2 cells with different concentrations of nanoparticles for 24 hours, half maximal inhibitory concentrations (the concentration that kills 50% of the cells) were determined as 166.77, 257.73, and 198.44 µg/mL for AuNPs, AuNPs/PEG, and AuNPs/PEI LMW groups, respectively. Later, inhibitory concentration 30 (IC30, the concentration that kills 30% of the cells) doses were calculated, and further experiments were performed on cells that were exposed to IC30 doses. Although intracellular reactive oxygen species levels significantly increased in all nanoparticles, AuNPs as well as AuNPs/PEG did not cause any changes in oxidant/antioxidant parameters. However, AuNPs/PEI HMW particularly induced oxidative stress as evidence of alterations in lipid peroxidation and protein oxidation. These results suggest that at IC30 doses, AuNPs do not affect oxidative stress and DNA damage significantly. Polyethylene glycol coating does not have an impact on toxicity, however PEI coating (particularly HMW) can induce oxidative stress.
Collapse
Affiliation(s)
- Gamze Tilbe Sen
- Biomedical Engineering Program, Başkent University, Ankara, Turkey
| | - Gizem Ozkemahli
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Department of Toxicology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Reza Shahbazi
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Pınar Erkekoglu
- Faculty of Pharmacy, Department of Toxicology, Hacettepe University, Ankara, Turkey
| | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
- Graduate Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Belma Kocer-Gumusel
- Faculty of Pharmacy, Department of Toxicology, Lokman Hekim University, Ankara, Turkey
| |
Collapse
|
29
|
Fu Q, Tang H, Zhang P, Que K, Liu Z, Zhou Y. [Anti-CD206 antibody-conjugated Fe 3O 4-based PLGA nanoparticles selectively promotes M1 polarization of tumorassociated macrophages in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:246-254. [PMID: 32376536 DOI: 10.12122/j.issn.1673-4254.2020.02.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To enhance the anti-tumor immunity of macrophages by increasing iron concentration in the macrophages using nanospheres. METHODS Anti-CD206 antibody-conjugated Fe3O4-based polylactic acid glycolic acid (CD206- Fe3O4-PLGA) nanoparticles were prepared with the W/O/W method. The particle diameter was measured using Malvern particle size detector, the Zeta potential was determined using Zeta potentiometry, and the encapsulation efficiency of Fe3O4 was determined using an iron determination kit. The macrophage-binding and targeting abilities of the conjugated nanoparticles were evaluated using immunofluorescence assay, and the polarization index of macrophages was determined with Western blotting and qRT-PCR. BALB/C-57 mouse models bearing subcutaneous tumors were used to verify the efficacy of the nanoparticles to promote polarization of the tumor-associated macrophages (TAMs). RESULTS The conjugated nanoparticles had a mean diameter of 260-295 nm with Zeta potential values ranging from -19 mV to -33 mV, encapsulation efficiency of Fe3O4 ranging from 65% to 75%, and anti-CD206 conjunction efficiency of 65%-70%. Immunofluorescence assay verified the targeted binding ability of the nanoparticles with M2 macrophages. Western blotting and qRT-PCR confirmed that both CD206-Fe3O4-PLGA and Fe3O4-PLGA nanoparticles promoted the expression of TNF-α, iNOS and IL-1β (P < 0.05). In the tumor-bearing mouse models, CD206-Fe3O4-PLGA nanoparticles were confirmed to promote CD86 expression in the TAMs. CONCLUSIONS CD206-Fe3O4-PLGA nanoparticles are capable of targeted binding to M2 macrophages and reversing the M2 macrophages to M1 phenotype by releasing coated iron oxide particles.
Collapse
Affiliation(s)
- Qianmei Fu
- Oncology Department, Kaizhou District People's Hospital, Chongqing 405400, China
| | - Huaming Tang
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| | - Peng Zhang
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| | - Keting Que
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zuojin Liu
- Department of Hepatobiliary Surgery, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yun Zhou
- Department of Hepatobiliary Cardiothoracic Surgery, Kaizhou District People's Hospital, Chongqing 405400
| |
Collapse
|
30
|
Wang J, Xue X, Fan K, Liu Q, Zhang S, Peng M, Zhou J, Cao Z. Moderate hypoxia modulates ABCG2 to promote the proliferation of mouse spermatogonial stem cells by maintaining mild ROS levels. Theriogenology 2019; 145:149-157. [PMID: 31733931 DOI: 10.1016/j.theriogenology.2019.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/25/2022]
Abstract
The aim of this study was to investigate the effects of different oxygen (O2) concentrations on the growth of mouse spermatogonial stem cells (SSCs) and the possible mechanisms of cell proliferation in vitro. The SSCs from testicular cells were cultured in various O2 concentrations (1%, 2.5%, 5%, and 20% O2) for 7 days. Colonies of SSCs were identified morphologically and by immunofluorescence. The number of mouse SSC colonies and the area covered by them were measured. Cell cycle progression of the SSCs was analyzed to identify the state of cell proliferation. The effects of O2 concentrations on the levels of intracellular reactive oxygen species (ROS) and expression of ATP binding cassette subfamily G member 2 (ABCG2) were also analyzed in the SSCs. Following culturing for 7 days, the SSCs were treated with Ko143 (a specific inhibitor of ABCG2) for 1 h, and the ROS level and expression of bcl-2, bax, and p53 were analyzed. The results showed that mouse SSCs formed compact colonies and had unclear borders in different O2 concentrations for 7 days, and there were no major morphologic differences between the O2 treatment groups. The expression of the SSC marker, GFR α1 was studied in each O2 treatment group. The number and area of SSC colonies, and the number of GFR α1 positive cells were the highest in the 2.5% O2 treatment group. Compared with other O2 concentrations, the number of cells in G0 cycle was significantly higher, while the level of intracellular ROS was lower at 1% O2. Moreover, the intracellular ROS levels gradually increased with increasing O2 concentration from 1% to 20%. The expression of ABCG2 in the SSCs cultured at 2.5% O2 was higher than in the other O2 groups. Inhibition of ABCG2 increased intracellular ROS generation, and the expression of the pro-apoptotic genes bax and p53, and decreased the expression of the anti-apoptotic gene bcl-2. In conclusion, moderate to low O2 tension increases ABCG2 expression to maintain mild ROS levels, triggers the expression of the anti-apoptotic genes, suppresses the proapoptotic gene pathway, and further promotes the proliferation of mouse SSCs in vitro.
Collapse
Affiliation(s)
- Juhua Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding in Anhui Provincial, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China.
| | - Xiuheng Xue
- College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Kai Fan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qi Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Suzi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Mengling Peng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Jie Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Key Laboratory of Veterinary Pathobiology and Disease Control in Anhui Provincial, Hefei, China
| | - Zubing Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China; Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding in Anhui Provincial, Hefei, China
| |
Collapse
|
31
|
Ecotoxicity Assessment of Fe 3O 4 Magnetic Nanoparticle Exposure in Adult Zebrafish at an Environmental Pertinent Concentration by Behavioral and Biochemical Testing. NANOMATERIALS 2019; 9:nano9060873. [PMID: 31181856 PMCID: PMC6631370 DOI: 10.3390/nano9060873] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
Magnetic Nanoparticles (MNPs) are widely being investigated as novel promising multifunctional agents, specifically in the fields of development for theranostics, electronics, waste water treatment, cosmetics, and energy storage devices. Unique, superior, and indispensable properties of magnetization, heat transfer, and melting temperature make MNPs emerge in the field of therapeutics in future healthcare industries. However, MNPs ecotoxicity as well as behavioral toxicity is still unexplored. Ecotoxicity analysis may assist investigate MNPs uptake mechanism and its influence on bioavailability under a given set of environmental factors, which can be followed to investigate the biomagnification of MNPs in the environment and health risk possessed by them in an ecological food chain. In this study, we attempted to determine the behavioral changes in zebrafishes at low (1 ppm) or high (10 ppm) concentration levels of Fe3O4 MNPs. The synthesized Fe3O4 MNPs sized at 15 nm were characterized by the transmission electron microscope (TEM), the superconducting quantum interference device (SQUID) magnetometer, and the multiple behavior tests for novel tank, mirror biting, conspecific social interaction, shoaling, circadian rhythm, and short-term memory of zebrafish under MNPs chronic exposure were demonstrated. Low concentration MNP exposure did not trigger alteration for majority behavioral and biochemical tests in adult zebrafish. However, tight shoal groups were observed at a high concentration of MNPs exposure along with a modest reduction in fish exploratory behavior and a significant reduction in conspecific social interaction behavior. By using enzyme-linked immunosorbent assays (ELISA), we found a high dose of MNPs exposure significantly elevated cortisol, acetylcholine, and catalase levels while reducing serotonin, acetylcholine esterase, and dopamine levels in the brain. Our data demonstrates chronic MNPs exposure at an environmentally-relevant dose is relatively safe by supporting evidence from an array of behavioral and biochemical tests. This combinational approach using behavioral and biochemical tests would be helpful for understanding the MNPs association with anticipated colloids and particles effecting bioavailability and uptake into cells and organisms.
Collapse
|
32
|
Evaluation of DNA interaction, genotoxicity and oxidative stress induced by iron oxide nanoparticles both in vitro and in vivo: attenuation by thymoquinone. Sci Rep 2019; 9:6912. [PMID: 31061500 PMCID: PMC6502885 DOI: 10.1038/s41598-019-43188-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 12/20/2022] Open
Abstract
Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat’s lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 μg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose–dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.
Collapse
|
33
|
Martínez-Rodríguez NL, Tavárez S, González-Sánchez ZI. In vitro toxicity assessment of zinc and nickel ferrite nanoparticles in human erythrocytes and peripheral blood mononuclear cell. Toxicol In Vitro 2019; 57:54-61. [PMID: 30771471 DOI: 10.1016/j.tiv.2019.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Ferrite nanoparticles (NPs) have gained attention in biomedicine due to their many potential applications, such as targeted drug delivery, their use as contrast agents for magnetic resonance imaging and oncological treatments. The information about the risk effects of ferrite NPs in human blood cells is, however, scarce. To assess their potential toxicity, in vitro studies were carried out with magnetite and zinc, nickel and nickel‑zinc ferrites NPs at different concentrations (50, 100 and 200 μg·ml-1). The toxicity of the ferrite NPs was evaluated in humans by determining red blood hemolysis, by measuring the content of total proteins, and by assaying catalase and glutathione-S-transferase activities. Our results show that nickel‑zinc ferrite lead to hemolysis, and that magnetite, zinc and nickel‑zinc ferrites increase glutathione-S-transferase activity. No significant changes in human peripheral blood mononuclear cells viability were observed after the treatment with the four different ferrite NPs in vitro.
Collapse
Affiliation(s)
- Nelson Leonel Martínez-Rodríguez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Sara Tavárez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic
| | - Zaira Isabel González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic.
| |
Collapse
|
34
|
Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing Gram negative bacteria and HepG 2 human liver carcinoma cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Silva MA, Romo AI, Abreu DS, Carepo MS, Lemus L, Jafelicci M, Paulo TF, Nascimento OR, Vargas E, Denardin JC, Diógenes IC. Magnetic nanoparticles as a support for a copper (II) complex with nuclease activity. J Inorg Biochem 2018; 186:294-300. [DOI: 10.1016/j.jinorgbio.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 06/24/2018] [Indexed: 11/16/2022]
|
36
|
Ghasemi A, Jafari S, saeidi J, mohtashami M, Salehi I. Synthesis and characterization of polyglycerol coated superparamagnetic iron oxide nanoparticles and cytotoxicity evaluation on normal human cell lines. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
37
|
Zhou Y, Que K, Zhang Z, Yi ZJ, Zhao PX, You Y, Gong J, Liu Z. Iron overloaded polarizes macrophage to proinflammation phenotype through ROS/acetyl-p53 pathway. Cancer Med 2018; 7:4012-4022. [PMID: 29989329 PMCID: PMC6089144 DOI: 10.1002/cam4.1670] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
Purpose Macrophages play critical roles in inflammation and wound healing and can be divided into two subtypes: classically activated (M1) and alternatively activated (M2) macrophages. Macrophages also play important roles in regulating iron homeostasis, and intracellular iron accumulation induces M1‐type macrophage polarization which provides a potential approach to tumor immunotherapy through M2 tumor‐associated macrophage repolarization. However, the mechanisms underlying iron‐induced M1 polarization remain unclear. Methods Western blotting, qRT‐PCR, and flow cytometry were used to detect the polarization indexes in RAW 264.7 murine macrophages treated with iron, and Western bloting and qRT‐PCR were used to detect p21 expression. The compound 2,7‐dichlorofluorescein diacetate was used to measure reactive oxygen species (ROS) levels in macrophages after iron or N‐acetyl‐l‐cysteine (NAC) treatment. The p300/CREB‐binding protein (CBP) inhibitor C646 was used to inhibit p53 acetylation, and Western bloting, qRT‐PCR, and immunofluorescence were used to detect p53 expression and acetylation. BALB/c mice were subcutaneously injected with H22 hepatoma cells, and macrophage polarization status was investigated after tail intravenous injection of iron. Immunohistochemical staining was used to evaluate the protein expression of cluster of differentiation 86 (CD86) and EGF‐like module‐containing mucin‐like hormone receptor‐like 1 (F4/80) in the subcutaneous tumors. Results Iron overload induced M1 polarization by increasing ROS production and inducing p53 acetylation in RAW cells, and reduction in ROS levels by NAC repressed M1 polarization and p53 acetylation. Inhibition of acetyl‐p53 by a p300/CBP inhibitor prevented M1 polarization and inhibited p21 expression. These results showed that high ROS levels induced by iron overload polarized macrophages to the M1 subtype by enhancing p300/CBP acetyltransferase activity and promoting p53 acetylation.
Collapse
Affiliation(s)
- Yun Zhou
- Chongqing Medical UniversityChongqingChina
| | | | - Zhen Zhang
- Chongqing Medical UniversityChongqingChina
| | - Zu J. Yi
- Chongqing Medical UniversityChongqingChina
| | | | - Yu You
- Chongqing Medical UniversityChongqingChina
| | | | | |
Collapse
|
38
|
Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond) 2018; 13:1221-1238. [PMID: 29882719 DOI: 10.2217/nnm-2017-0379] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.
Collapse
Affiliation(s)
- Sumithra Y Srinivasan
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| |
Collapse
|
39
|
Cellular and Molecular Toxicity of Iron Oxide Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:199-213. [DOI: 10.1007/978-3-319-72041-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Mirzaei S, Hadadi Z, Attar F, Mousavi SE, Zargar SS, Tajik A, Saboury AA, Rezayat SM, Falahati M. ROS-mediated heme degradation and cytotoxicity induced by iron nanoparticles: hemoglobin and lymphocyte cells as targets. J Biomol Struct Dyn 2017; 36:4235-4245. [DOI: 10.1080/07391102.2017.1411832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sepideh Mirzaei
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Zari Hadadi
- Department of Cellular and Molecular Biology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahaboddin Zargar
- Department of Toxicology–Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Aida Tajik
- Department of Toxicology–Pharmacology, Faculty of Pharmacy, Pharmaceutical Science Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
41
|
Ahamed M, Akhtar MJ, Khan MM, Alhadlaq HA, Aldalbahi A. Nanocubes of indium oxide induce cytotoxicity and apoptosis through oxidative stress in human lung epithelial cells. Colloids Surf B Biointerfaces 2017; 156:157-164. [DOI: 10.1016/j.colsurfb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023]
|
42
|
Ahmad J, Siddiqui MA, Akhtar MJ, Alhadlaq HA, Alshamsan A, Khan ST, Wahab R, Al-Khedhairy AA, Al-Salim A, Musarrat J, Saquib Q, Fareed M, Ahamed M. Copper doping enhanced the oxidative stress-mediated cytotoxicity of TiO 2 nanoparticles in A549 cells. Hum Exp Toxicol 2017. [PMID: 28621211 DOI: 10.1177/0960327117714040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Physicochemical properties of titanium dioxide nanoparticles (TiO2 NPs) can be tuned by doping with metals or nonmetals. Copper (Cu) doping improved the photocatalytic behavior of TiO2 NPs that can be applied in various fields such as environmental remediation and nanomedicine. However, interaction of Cu-doped TiO2 NPs with human cells is scarce. This study was designed to explore the role of Cu doping in cytotoxic response of TiO2 NPs in human lung epithelial (A549) cells. Characterization data demonstrated the presence of both TiO2 and Cu in Cu-doped TiO2 NPs with high-quality lattice fringes without any distortion. The size of Cu-doped TiO2 NPs (24 nm) was lower than pure TiO2 NPs (30 nm). Biological results showed that both pure and Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in a dose-dependent manner. Low mitochondrial membrane potential and higher caspase-3 enzyme (apoptotic markers) activity were also observed in A549 cells exposed to pure and Cu-doped TiO2 NPs. We further observed that cytotoxicity caused by Cu-doped TiO2 NPs was higher than pure TiO2 NPs. Moreover, antioxidant N-acetyl cysteine effectively prevented the reactive oxygen species generation, glutathione depletion, and cell viability reduction caused by Cu-doped TiO2 NPs. This is the first report showing that Cu-doped TiO2 NPs induced cytotoxicity and oxidative stress in A549 cells. This study warranted further research to explore the role of Cu doping in toxicity mechanisms of TiO2 NPs.
Collapse
Affiliation(s)
- J Ahmad
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M A Siddiqui
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M J Akhtar
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| | - H A Alhadlaq
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.,4 Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Alshamsan
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia.,5 Department of Pharmaceutics, Nanomedicine Research Unit, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - S T Khan
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - R Wahab
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - A A Al-Khedhairy
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Al-Salim
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - J Musarrat
- 6 Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Q Saquib
- 1 Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.,2 Al-Jeraisy Chair for DNA Research, King Saud University, Riyadh, Saudi Arabia
| | - M Fareed
- 7 College of Medicine, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - M Ahamed
- 3 King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
43
|
Liang DY, Hou YQ, Lou XL. Effect of silencing decoy receptor 3 on biological features of hepatoma cells. Shijie Huaren Xiaohua Zazhi 2017; 25:234-240. [DOI: 10.11569/wcjd.v25.i3.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of decoy receptor 3 (DcR3) in hepatoma cells, and to investigate its role in the biological features of hepatoma cells.
METHODS Real-time PCR and Western blot were used to detect the expression of DcR3 mRNA and protein in human hepatoma cell lines HepG2 and Huh7 and normal hepatocytes (HL-7702 and Chang liver). ELISA was used to detect the level of DcR3 protein in the supernatant of these four cell lines. A lentiviral vector carrying shRNA against DcR3 (LV-shDcR3) was synthesized and used to infect HepG2 and Huh7 cells, with the empty lentiviral vector as a control. After infection, the interference effects were determined by Western blot, cell proliferation was assessed by CCK-8 assay and colony forming assay, cell apoptosis was examined by flow cytometry, and the expression of apoptosis related protein like PARP was detected by Western blot. The expression of TRAIL, FasL and LIGHT before and after infection was also detected by Western blot.
RESULTS The expression of DcR3 was significantly increased in hepatoma cell lines HepG2 and Huh7 both at the mRNA and protein levels compared with normal hepatocytes. The levels of DcR3 in the supernatants of HepG2 and Huh7 cells were also increased. Compared with the mock group and empty lentiviral vector infected group, the LV-shDcR3 infected group showed reduced expression of DcR3, lower cell viability rate, and higher cell apoptosis rate. The expression of TRAIL and FasL was increased after infection with LV-shDcR3 in HepG2 and Huh7 cells.
CONCLUSION The expression of DcR3 is elevated in hepatoma cells. Down-regulation of the expression of DcR3 inhibits cell proliferation and induces cell apoptosis in hepatoma cells, via mechanisms that may be related with the TRAIL and FasL apoptosis pathway.
Collapse
|
44
|
Sun C, Liang Y, Hao N, Xu L, Cheng F, Su T, Cao J, Gao W, Pu Y, He B. A ROS-responsive polymeric micelle with a π-conjugated thioketal moiety for enhanced drug loading and efficient drug delivery. Org Biomol Chem 2017; 15:9176-9185. [DOI: 10.1039/c7ob01975k] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As the implications of reactive oxygen species (ROS) are elucidated in many diseases, ROS-responsive nanoparticles are attracting great interest from researchers.
Collapse
Affiliation(s)
- Changzhen Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yan Liang
- Department of Pharmaceutics
- School of Pharmacy
- Qingdao University
- Qingdao 266021
- China
| | - Na Hao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Long Xu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Furong Cheng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Ting Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jun Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325027
- China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Bin He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
45
|
Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol In Vitro 2016; 40:94-101. [PMID: 28024936 DOI: 10.1016/j.tiv.2016.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/27/2016] [Accepted: 12/21/2016] [Indexed: 01/02/2023]
Abstract
There are very few studies regarding the biological activity of cobalt-based nanoparticles (NPs) and, therefore, the possible mechanism behind the biological response of cobalt NPs has not been fully explored. The present study was designed to explore the potential mechanisms of the cytotoxicity of cobalt NPs in human breast cancer (MCF-7) cells. The shape and size of cobalt NPs were characterized by scanning and transmission electron microscopy (SEM and TEM). The crystallinity of NPs was determined by X-ray diffraction (XRD). The dissolution of NPs was measured in phosphate-buffered saline (PBS) and culture media by atomic absorption spectroscopy (AAS). Cytotoxicity parameters, such as [3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), neutral red uptake (NRU), and lactate dehydrogenase (LDH) release suggested that cobalt NPs were toxic to MCF-7 cells in a dose-dependent manner (50-200μg/ml). Cobalt NPs also significantly induced reactive oxygen species (ROS) generation, lipid peroxidation (LPO), mitochondrial outer membrane potential loss (MOMP), and activity of caspase-3 enzymes in MCF-7 cells. Moreover, cobalt NPs decreased intracellular antioxidant glutathione (GSH) molecules. The exogenous supply of antioxidant N-acetyl cysteine in cobalt NP-treated cells restored the cellular GSH level and prevented cytotoxicity that was also confirmed by microscopy. Similarly, the addition of buthionine-[S, R]-sulfoximine, which interferes with GSH biosynthesis, potentiated cobalt NP-mediated toxicity. Our data suggested that low solubility cobalt NPs could exert toxicity in MCF-7 cells mainly through cobalt NP dissolution to Co2+.
Collapse
|