1
|
Bor G, Jin W, Douka D, Borthwick NJ, Liu X, Jansman MMT, Hosta-Rigau L. In vitro and in vivo investigations of hemoglobin-loaded PEGylated ZIF-8 nanoparticles as oxygen carriers for emergency transfusion. BIOMATERIALS ADVANCES 2025; 168:214118. [PMID: 39580988 DOI: 10.1016/j.bioadv.2024.214118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024]
Abstract
The limitations of traditional blood supply systems, particularly where ideal storage is unfeasible, challenge the efficacy of transfusion medicine, especially in emergencies and battlefield scenarios. This study investigates a novel hemoglobin-based oxygen carrier (HBOC) using a dual-coating approach with metal phenolic networks (MPNs) and polyethylene glycol (PEG). Utilizing zeolitic imidazolate framework-8 (ZIF-8) nanoparticles for their porosity and biocompatibility, the addition of MPN and PEG coatings enhances biocompatibility and stabilizes encapsulated hemoglobin (Hb). This reduces Hb release and minimizes interactions with the coagulation cascade, as evidenced by stable prothrombin and activated partial thromboplastin times. Complement activation studies showed slight increases in C5a levels, indicating low potential for severe immune reactions. In vivo evaluations demonstrated that both MPN-coated and PEGylated Hb-loaded ZIF-8 NPs have enhanced circulation times, with significantly longer half-lives than free Hb. However, PEGylation did not offer additional benefits over MPN coating alone, possibly due to suboptimal PEG density or shielding. Biodistribution studies indicated similar accumulation patterns in the liver and kidneys for both NP types, suggesting common clearance pathways. These findings suggest our PEGylated Hb-loaded ZIF-8 NPs as promising alternatives to traditional transfusions. Future research will assess their efficacy in resuscitation from hemorrhagic shock to validate their clinical application.
Collapse
Affiliation(s)
- Gizem Bor
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Weiguang Jin
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Despoina Douka
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Neil Jean Borthwick
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | | | - Leticia Hosta-Rigau
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby 2800, Denmark.
| |
Collapse
|
2
|
Li S, Sun W, Ouyang M, Yu B, Chen Y, Wang Y, Zhou D. Hemoglobin‐Related Biomaterials and their Applications. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Shaobing Li
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Wei Sun
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Min Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| | - Bo Yu
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yan Chen
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Yupeng Wang
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
| | - Dongfang Zhou
- Department of Ultrasonic Diagnosis Department of Orthopedics Zhujiang Hospital Southern Medical University Guangzhou 510282 P.R. China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 P.R. China
| |
Collapse
|
3
|
Narayanan KB, Bhaskar R, Han SS. Recent Advances in the Biomedical Applications of Functionalized Nanogels. Pharmaceutics 2022; 14:2832. [PMID: 36559325 PMCID: PMC9782855 DOI: 10.3390/pharmaceutics14122832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol-ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Kannan Badri Narayanan
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021; 7:228. [PMID: 34842728 PMCID: PMC8628665 DOI: 10.3390/gels7040228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, research in nanoparticles as a drug delivery system has broadened to include their use as a delivery system for bioactive substances and a diagnostic or theranostic system. Nanogels, nanoparticles containing a high amount of water, have gained attention due to their advantages of colloidal stability, core-shell structure, and adjustable structural components. These advantages provide the potential to design and fabricate multifunctional nanosystems for various biomedical applications. Modified or functionalized polymers and some metals are components that markedly enhance the features of the nanogels, such as tunable amphiphilicity, biocompatibility, stimuli-responsiveness, or sensing moieties, leading to specificity, stability, and tracking abilities. Here, we review the diverse designs of core-shell structure nanogels along with studies on the fabrication and demonstration of the responsiveness of nanogels to different stimuli, temperature, pH, reductive environment, or radiation. Furthermore, additional biomedical applications are presented to illustrate the versatility of the nanogels.
Collapse
Affiliation(s)
- Tisana Kaewruethai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
6
|
Strategies to load therapeutics into polysaccharide-based nanogels with a focus on microfluidics: A review. Carbohydr Polym 2021; 266:118119. [PMID: 34044935 DOI: 10.1016/j.carbpol.2021.118119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 01/05/2023]
Abstract
Nowadays nanoparticles are increasingly investigated for the targeted and controlled delivery of therapeutics, as suggested by the high number of research articles (2400 in 2000 vs 8500 in 2020). Among them, almost 2% investigated nanogels in 2020. Nanogels or nanohydrogels (NGs) are nanoparticles formed by a swollen three-dimensional network of synthetic polymers or natural macromolecules such as polysaccharides. NGs represent a highly versatile nanocarrier, able to deliver a number of therapeutics. Currently, NGs are undergoing clinical trials for the delivery of anti-cancer vaccines. Herein, the strategies to load low molecular weight drugs, (poly)peptides and genetic material into polysaccharide NGs as well as to formulate NGs-based vaccines are summarized, with a focus on the microfluidics approach.
Collapse
|
7
|
Jansman MMT, Liu X, Kempen P, Clergeaud G, Andresen TL, Thulstrup PW, Hosta-Rigau L. Hemoglobin-Based Oxygen Carriers Incorporating Nanozymes for the Depletion of Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50275-50286. [PMID: 33124811 DOI: 10.1021/acsami.0c14822] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While transfusion of donor blood is a reasonably safe and well-established procedure, artificial oxygen carriers offer several advantages over blood transfusions. These benefits include compatibility with all blood types, thus avoiding the need for cross matching, availability, lack of infection, and long-term storage. Hemoglobin (Hb)-based oxygen carriers (HBOCs) are being explored as an "oxygen bridge" to replace or complement standard blood transfusions in extreme, life-threatening situations such as trauma in remote locations or austere battlefield or when blood is not an option due to compatibility issues or patient refusal due to religious objections. Herein, a novel HBOC was prepared using the layer-by-layer technique. A poly(lactide-co-glycolide) core was fabricated and subsequently decorated with Hb and nanozymes. The Hb was coated with poly(dopamine), and preservation of the protein structure and functionality was demonstrated. Next, cerium oxide nanoparticles were incorporated as nanozymes, and their ability to deplete reactive oxygen species (ROS) was shown. Finally, decorating the nanocarrier surface with poly(ethylene glycol) decreased protein adsorption and cell association/uptake. The as-prepared Hb-based oxygen nanocarriers were shown to be hemo- and bio-compatible. Their catalytic potential was furthermore demonstrated in terms of superoxide radical- and peroxide-scavenging abilities, which were retained over multiple cycles. Overall, these results demonstrate that the reported nanocarriers show potential as novel oxygen delivery systems with prolonged catalytic activity against ROS.
Collapse
Affiliation(s)
- Michelle Maria Theresia Jansman
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Xiaoli Liu
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Paul Kempen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Gael Clergeaud
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Thomas Lars Andresen
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Leticia Hosta-Rigau
- Department of Health Technology, Center for Nanomedicine and Theranostics, Technical University of Denmark, Nils Koppels Allé, Building 423, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Ari B, Yetiskin B, Okay O, Sahiner N. Preparation of dextran cryogels for separation processes of binary dye and pesticide mixtures from aqueous solutions. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Betul Ari
- Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
| | - Berkant Yetiskin
- Department of ChemistryIstanbul Technical University Maslak Turkey
| | - Oguz Okay
- Department of ChemistryIstanbul Technical University Maslak Turkey
| | - Nurettin Sahiner
- Department of ChemistryCanakkale Onsekiz Mart University Canakkale Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Terzioglu Campus Canakkale Turkey
- Department of OphthalmologyUniversity of South Florida Tampa Florida USA
| |
Collapse
|
9
|
Wang C, You J, Gao M, Zhang P, Xu G, Dou H. Bio-inspired gene carriers with low cytotoxicity constructed via the assembly of dextran nanogels and nano-coacervates. Nanomedicine (Lond) 2020; 15:1285-1296. [PMID: 32468909 DOI: 10.2217/nnm-2020-0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Aim: To achieve safe and biocompatible gene carriers. Materials & methods: A core/shell-structured hierarchical carrier with an internal peptide/gene coacervate 'core' and a dextran nanogel 'shell' on the surface has been designed. Results: The dextran nanogels shield coacervate (DNSC) can effectively condense genes and release them in reducing environments. The dextran nanogel-based 'shell' can effectively shield the positive charge of the peptide/gene coacervate 'core', thus reducing the side effects of cationic gene carriers. In contrast with the common nonviral gene carriers that had high cytotoxicities, the DNSC showed a high transfection efficiency while maintaining a low cytotoxicity. Conclusion: The DNSC provides an effective environmentally responsive gene carrier with potential applications in the fields of gene therapy and gene carrier development.
Collapse
Affiliation(s)
- Chenglong Wang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Miaomiao Gao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peipei Zhang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, PR China
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
10
|
Peng S, Liu J, Qin Y, Wang H, Cao B, Lu L, Yu X. Metal-Organic Framework Encapsulating Hemoglobin as a High-Stable and Long-Circulating Oxygen Carriers to Treat Hemorrhagic Shock. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35604-35612. [PMID: 31495166 DOI: 10.1021/acsami.9b15037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As an oxygen-transporting protein, free hemoglobin (Hb) often suffers from the disadvantage of undesirable stability and short blood circulation, which severely impairs the potential clinical applications as the blood substitute. In this work, Hb was facilely encapsulated into a kind of metal-organic frameworks (MOFs) (ZIF-8) inspired by the natural biomineralization process. The obtained ZIF-8 encapsulating Hb (ZIF-8@Hb) showed the small hydrodynamic size of 180.8 nm and neutral zeta potential of -2.1 mV by adjusting the ratio of Hb in ZIF-8 frameworks. Intriguingly, Hb encapsulated by ZIF-8 exhibited significantly enhanced stability in alkaline, oxidation, high temperature, or enzymatic environment compared with free Hb because of the excellent protective MOF coatings. More importantly, the negative charge of Hb neutralized the original positive charge of ZIF-8, which led to the better biocompatibility, lower protein adsorption, and macrophage uptake of ZIF-8@Hb than bare ZIF-8 nanoparticles. Furthermore, ZIF-8@Hb displayed extended blood circulation with the elimination half-life of 13.9 h as well as reduced nonspecific distribution in normal organs compared with free Hb or ZIF-8 nanoparticles. With the above advantages, ZIF-8@Hb showed significantly extended survival time of mice in a disease model of hemorrhagic shock compared with free Hb or bare ZIF-8 nanoparticles. Overall, this work offers a high-stable and long-circulating oxygen carrier platform, which may find wide applications as a blood substitute to treat various oxygen-relevant diseases.
Collapse
|
11
|
Abstract
Introduction: The development of more efficacious vaccines, especially subunit vaccines administered via non-invasive routes, is a priority in vaccinology. Nanogels are materials that can meet the requirements to serve as efficient vaccine delivery vehicles (in terms of thermo-sensitivity, biocompatibility, and pH-responsiveness; among others); thus there is a growing interest in exploring the potential of nanogels for vaccine development. Areas covered: Herein, a critical analysis of nanogel synthesis methodologies is presented and nanogel-based vaccines under development are summarized and placed in perspective. Promising vaccine candidates based on nanogels have been reported for cancer, obesity, and infectious diseases (mainly respiratory diseases). Some of the candidates were administered by mucosal routes which are highly attractive in terms of simple administration and induction of protective responses at both mucosal and systemic levels. Expert opinion: The most advanced models of nanogel-based vaccines comprise candidates against cancer, based on cholesteryl pullulan nanogels evaluated in clinical trials with promising findings; as well as some vaccines against respiratory pathogens tested in mice thus far. Nonetheless, the challenge for this field is advancing in clinical trials and proving the protective potential in test animals for many other candidates. Implementing green synthesis approaches for nanogels is also required.
Collapse
|
12
|
Liu Y, Guo Z, Li F, Xiao Y, Zhang Y, Bu T, Jia P, Zhe T, Wang L. Multifunctional Magnetic Copper Ferrite Nanoparticles as Fenton-like Reaction and Near-Infrared Photothermal Agents for Synergetic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31649-31660. [PMID: 31407880 DOI: 10.1021/acsami.9b10096] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Synergistic therapeutic strategies for bacterial infection have attracted extensive attentions owing to their enhanced therapeutic effects and less adverse effects compared with monotherapy. Herein, we report a novel synergistic antibacterial platform that integrates the nanocatalytic antibacterial therapy and photothermal therapy (PTT) by hemoglobin-functionalized copper ferrite nanoparticles (Hb-CFNPs). In the presence of a low concentration of hydrogen peroxide (H2O2), the excellent Fenton and Fenton-like reaction activity of Hb-CFNPs can effectively catalyze the decomposition of H2O2 to produce hydroxyl radicals (·OH), rendering an increase in the permeability of the bacterial cell membrane and the sensitivity to heat. With the assistance of NIR irradiation, hyperthermia generated by Hb-CFNPs can induce the death of the damaged bacteria. Additionally, owing to the outstanding magnetic property of Hb-CFNPs, it can improve the photothermal efficiency by about 20 times via magnetic enrichment, which facilitates to realize excellent bactericidal efficacy at a very low experimental dose (20 μg/mL). In vitro antibacterial experiment shows that this synergistic antibacterial strategy has a broad-spectrum antibacterial property against Gram-negative Escherichia coli (E. coli, 100%) and Gram-positive Staphylococcus aureus (S. aureus, 96.4%). More importantly, in vivo S. aureus-infected abscess treatment studies indicate that Hb-CFNPs can serve as an antibacterial candidate with negligible toxicity to realize synergistic treatment of bacterial infections through catalytic and photothermal effects. Accordingly, this study proposes a novel, high-efficiency, and multifunctional therapeutic system for the treatment of bacterial infection, which will open up a new avenue for the design of synergistic antibacterial systems in the future.
Collapse
Affiliation(s)
- Yingnan Liu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Zhirong Guo
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Fan Li
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yaqing Xiao
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Yalan Zhang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Tong Bu
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Pei Jia
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Taotao Zhe
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| | - Li Wang
- College of Food Science and Engineering , Northwest A&F University , Yangling 712100 , Shaanxi , China
| |
Collapse
|
13
|
Gim S, Zhu Y, Seeberger PH, Delbianco M. Carbohydrate-based nanomaterials for biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1558. [PMID: 31063240 DOI: 10.1002/wnan.1558] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Carbohydrates are abundant biomolecules, with a strong tendency to form supramolecular networks. A host of carbohydrate-based nanomaterials have been exploited for biomedical applications. These structures are based on simple mono- or disaccharides, as well as on complex, polymeric systems. Chemical modifications serve to tune the shapes and properties of these materials. In particular, carbohydrate-based nanoparticles and nanogels were used for drug delivery, imaging, and tissue engineering applications. Due to the reversible nature of the assembly, often based on a combination of hydrogen bonding and hydrophobic interactions, carbohydrate-based materials are valuable substrates for the creations of responsive systems. Herein, we review the current research on carbohydrate-based nanomaterials, with a particular focus on carbohydrate assembly. We will discuss how these systems are formed and how their properties are tuned. Particular emphasis will be placed on the use of carbohydrates for biomedical applications. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soeun Gim
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Yuntao Zhu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
14
|
Mukwaya V, Wang C, Dou H. Saccharide-based nanocarriers for targeted therapeutic and diagnostic applications. POLYM INT 2018. [DOI: 10.1002/pi.5702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Chenglong Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering; Shanghai Jiao Tong University; Shanghai PR China
| |
Collapse
|
15
|
Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Adv Colloid Interface Sci 2018; 260:65-84. [PMID: 30177214 DOI: 10.1016/j.cis.2018.08.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Blood transfusions, which usually consist in the administration of isolated red blood cells (RBCs), are crucial in traumatic injuries, pre-surgical conditions and anemias. Although RBCs transfusion from donors is a safe procedure, donor RBCs can only be stored for a maximum of 42 days under refrigerated conditions and, therefore, stockpiles of RBCs for use in acute disasters do not exist. With a worldwide shortage of donor blood that is expected to increase over time, the creation of oxygen-carriers with long storage life and compatibility without typing and cross-matching, persists as one of the foremost important challenges in biomedicine. However, research has so far failed to produce FDA approved RBCs substitutes (RBCSs) for human usage. As such, due to unacceptable toxicities, the first generation of oxygen-carriers has been withdrawn from the market. Being hemoglobin (Hb) the main component of RBCs, a lot of effort is being devoted in assembling semi-synthetic RBCS utilizing Hb as the oxygen-carrier component, the so-called Hb-based oxygen carriers (HBOCs). However, a native RBC also contains a multi-enzyme system to prevent the conversion of Hb into non-functional methemoglobin (metHb). Thus, the challenge for the fabrication of next-generation HBOCs relies in creating a system that takes advantage of the excellent oxygen-carrying capabilities of Hb, while preserving the redox environment of native RBCs that prevents or reverts the conversion of Hb into metHb. In this review, we feature the most recent advances in the assembly of the new generation of HBOCs with emphasis in two main approaches: the chemical modification of Hb either by cross-linking strategies or by conjugation to other polymers, and the Hb encapsulation strategies, usually in the form of lipidic or polymeric capsules. The applications of the aforementioned HBOCs as blood substitutes or for oxygen-delivery in tissue engineering are highlighted, followed by a discussion of successes, challenges and future trends in this field.
Collapse
|
16
|
Kaur M, Sudhakar K, Mishra V. Fabrication and biomedical potential of nanogels: An overview. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1445629] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Maninderjeet Kaur
- Department of Pharmaceutics, Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
| | - Kalvatala Sudhakar
- Department of Pharmaceutics, Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
| | - Vijay Mishra
- Department of Pharmaceutics, Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
17
|
Yu C, Huang X, Qian D, Han F, Xu L, Tang Y, Bao N, Gu H. Fabrication and evaluation of hemoglobin-based polydopamine microcapsules as oxygen carriers. Chem Commun (Camb) 2018; 54:4136-4139. [DOI: 10.1039/c8cc00095f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polydopamine-hemoglobin (PDA-Hb) microcapsules possess a high oxygen affinity and could bind and release oxygen reversibly as demonstrated by electrochemical methods.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Xin Huang
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Dongping Qian
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Fengfeng Han
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Linyi Xu
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Yuejing Tang
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Ning Bao
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| | - Haiying Gu
- School of Public Health
- Nantong University
- Nantong 226019
- P. R. China
| |
Collapse
|