1
|
Di Natale C, Russo S, Graziano F, Vespini V, Luciani G, Vitiello G, Lombardi L, Ferranti F, Mari S, Luca Maffettone P, Grilli S, Coppola S, Ferraro P. Sensitive colorimetric immunosensor using AuNP-functionalized polymer film for picogram-level detection of Tau protein intermediate aggregates. J Colloid Interface Sci 2025; 678:1052-1059. [PMID: 39236434 DOI: 10.1016/j.jcis.2024.08.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Here we demonstrate for the first time that an antibody-gold nanoparticles (AuNPs)-polymer conjugate thin-film biosensor can easily be fabricated to selectively capture Tau protein. Gold nanoparticles (AuNPs) are employed as sensing elements, thus capitalizing on their propensity to undergo assembly or disassembly in response to the adsorption or conjugation of various biomolecules on their surface, thereby forming robust interactions with the target analyte. We show that the Tau protein in its different aggregation phases can be detected, by restricting the reaction area on the solid thin polymer film and thus reducing the diffusion effects usually encountered in immunosensors. A limit of detection (LOD) of 460 pg/mL was reached, demonstrating a great potential for detecting Tau in aggregation states. This sensor based on thin polymer film could open new routes for sensing and monitoring Tau protein in biological assays and biomedical diagnosis.
Collapse
Affiliation(s)
- Concetta Di Natale
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy.
| | - Simone Russo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Fabiana Graziano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy; University of Campania "Luigi Vanvitelli" - Department of Mathematics and Physics, Via Abramo Lincoln 5, 81100 Caserta, Napoli, Italy
| | - Veronica Vespini
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Giuseppina Luciani
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Giuseppe Vitiello
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Center for Colloid and Surface Science (CSGI), via della Lastruccia, Sesto Fiorentino, FI 80078, Italy
| | - Lorenzo Lombardi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | | | - Silvia Mari
- Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Rome, Italy
| | - Pier Luca Maffettone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Simonetta Grilli
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| | - Sara Coppola
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy.
| | - Pietro Ferraro
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council of Italy (CNR), Pozzuoli, NA 80078, Italy
| |
Collapse
|
2
|
Ayyari N, Vaezi Z, Ashin ZF, Karimi E, Mohsenzadeh Haji F, Nikkhah M, Naderi-Manesh H. Porphysome Engineered With Specific Protein Binding Sites as a Multimodal Theranostic Nanocarrier for Targeted Protein Delivery. Chem Biodivers 2024; 21:e202400348. [PMID: 38616166 DOI: 10.1002/cbdv.202400348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
The immobilization of proteins on the surface of carriers is challenging due to the loss of protein structure and function in this process. Here, we report the development of the protein immobilization on the surface of the metallated-porphyrin complex in the porphysome nanocarrier. The conjugated Ni-porphyrin to fatty acid (as a tail) has been synthesized and independently placed at the depth of the bilayer center of Dipalmitoylphosphatidylcholine (DPPC) in which the Ni-porphyrin was at the polar region of the membrane and is thus superficial. This porphysome (DPPC: Ni-porphyrin, 4 : 1 mole ratio) was formed by supramolecular self-assembly with a diameter of 173±7 nm and zeta potential -8.5±3.4 mv, which exhibited no significant toxicity at the experimental concentrations and acceptable cellular uptake on MCF-7 cells. The physicochemical properties and specific protein binding sites of the firefly luciferase as a model protein into the porphysome (1 : 2 mole ratio) show the conjugation efficiency about 80 % and the conformation of protein was completely maintained. Furthermore, bioluminescence assay and SDS-PAGE confirmed the preservation of protein function. The stabilized platform of porphyrin-lipid structure can potentially improve the efficacy of protein functionality for a particular display, shifting porphysomes from a simple carrier to a therapeutic agent.
Collapse
Affiliation(s)
- Niloofar Ayyari
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, PO Box, 14115-154, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Postal codes, 14115-154, Tehran, Iran
| | - Zeinab Fotouhi Ashin
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, PO Box, 14115-154, Tehran, Iran
| | - Elham Karimi
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, PO Box, 14115-154, Tehran, Iran
| | - Fatemeh Mohsenzadeh Haji
- Department of Organic chemistry, Faculty of Chemistry, Tarbiat Modares University, Postal codes, 14115-154, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, PO Box, 14115-154, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, PO Box, 14115-154, Tehran, Iran
- Department of Bioactive compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Postal codes, 14115-154, Tehran, Iran
| |
Collapse
|
3
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
4
|
Izzi M, Oliver M, Mateos H, Palazzo G, Cioffi N, Miró M. Analytical probing of membranotropic effects of antimicrobial copper nanoparticles on lipid vesicles as membrane models. NANOSCALE ADVANCES 2023; 5:6533-6541. [PMID: 38024310 PMCID: PMC10662242 DOI: 10.1039/d3na00608e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Copper nanoparticles (CuNPs) are antimicrobial agents that are increasingly being used in several real-life goods. However, concerns are arising about their potential toxicity and thus, appropriate legislation is being issued in various countries. In vitro exploration of the permeability and the distribution of nanoparticles in cell membranes should be explored as the first step towards the investigation of the toxicity mechanisms of metal nanoantimicrobials. In this work, phosphatidylcholine-based large unilamellar vesicles have been explored as mimics of cellular membranes to investigate the effect of ultra-small CuNPs on the physicochemical features of phospholipid membranes. 4 nm-sized CuNPs were synthesized by a wet-chemical route that involves glutathione as a stabilizer, with further characterization by UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared (FTIR) spectroscopy. Two fluorescent membrane probes bearing naphthalene moieties (laurdan and prodan) were used to monitor the bilayer structure and dynamics, as well as to demonstrate the strong membranotropic effects of CuNPs. The fluorescence spectroscopic studies were supported by dynamic light scattering (DLS) measurements and the calcein leakage assay. Additionally, the degree of perturbation of the phospholipid bilayer by CuNPs was compared against that of Cu2+ ions, the latter resulting in negligible effects. The findings suggested that CuNPs are able to damage the phospholipid membranes, leading to their agglomeration or disruption.
Collapse
Affiliation(s)
- Margherita Izzi
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Miquel Oliver
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 E-07122 Palma de Mallorca Spain
| | - Helena Mateos
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Gerardo Palazzo
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Nicola Cioffi
- Chemistry Department, University of Bari Aldo Moro Via Orabona, 4 70126 Bari Italy
| | - Manuel Miró
- FI-TRACE Group, Department of Chemistry, University of the Balearic Islands Carretera de Valldemossa km 7.5 E-07122 Palma de Mallorca Spain
| |
Collapse
|
5
|
Sami AJ, Bilal S, Ahsan NUA, Hameed N, Saleem S. Rhodamine B functionalized silver nanoparticles paper discs as turn-on fluorescence sensor, coupled with a smartphone for the detection of microbial contamination in drinking water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1442. [PMID: 37945767 DOI: 10.1007/s10661-023-12077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
The precise detection of pathogenic microorganisms is crucial for the reduction of water-borne diseases. Herein, a filter-paper-based florescent chemosensor was fabricated for the detection of Escherichia coli and Staphylococcus aureus contamination exploiting protein-DNA interaction between the target and a specific probe. The sensing mechanism involved the self-assembly of Rhodamine B (RhB) on silver nanoparticles (AgNPs) surface that was labeled with a single-stranded DNA probe. This causes the fluorescence quenching of RhB by a distant-dependant process. The hybridization between pathogen-specific probe and bacterial surface protein causes the release of fluorescence of RhB, which was observed under UV light. For paper-based bio-surface preparation, the mixture comprising RhB-AgNP-ssDNA was drop-casted on filter paper discs. The conditions were optimized using isolated genomic DNA of the microbes. The method was applied for E.coli detection using an eae gene-based probe targeting intimin protein and S. aureus detection using tuf gene-based probe targeting EF-tuf protein on the microbe's surface. The chemosensor had a notable specificity and selectivity for E.coli, and S. aureus, with detection limits of 0.6 × 108 and 0.37 × 103 CFU/mL respectively. Moreover, the sensor was tested on real water samples, which presented excellent reproducibility of results (RSD ≤ 0.24%). Furthermore, the gradient change of fluorescence was captured by a smartphone, which allows direct detection of pathogens in a sensitive semi-quantitative way without the need for expensive instruments. The designed chemosensor can serve as a simple, inexpensive, and rapid method for the on-site detection of microbial contamination in drinking water.
Collapse
Affiliation(s)
- Amtul Jamil Sami
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan.
- Center for Biosensor Research and Development (CBRD), University of the Punjab, Lahore, 54590, Pakistan.
| | - Sehrish Bilal
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Biochemistry, Gulab Devi Educational Complex, Lahore, Pakistan
| | - Noor-Ul-Ain Ahsan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Nayyab Hameed
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Shaifa Saleem
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Maneri AH, Varode SS, Maibam A, Ranjan P, Krishnamurty S, Joshi K. Quantum dot (Au n/Ag n, n = 3-8) capped single lipids: interactions and physicochemical properties. Phys Chem Chem Phys 2023; 25:22294-22303. [PMID: 37578075 DOI: 10.1039/d3cp01131c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Realizing the potential of nano-hybrid biomaterials in various applications (nanoprobes to drug delivery), special attention has been devoted towards their synthesis and development. Nonetheless, several questions pertaining to the interface chemistry between the constituent entities (biomolecules and organic/inorganic part) of these hybrids, still remain unresolved. Keeping these unsolved issues in mind, the present theoretical investigation focuses on determining the electronic/physicochemical properties and interactions within gold and silver quantum dot-capped single lipid molecules. Quantum dots of varying sizes and shapes have been chosen and then coupled with lipid molecules (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG)), at the choline/glycerol, carboxylate and phosphate site. It has been identified that Au Qds interact strongly as compared to Ag clusters. In addition to the type, the shape and size of the Qd also influences their attachment with lipids. Among various sites, the phosphate site provides a considerably stronger platform for the coupling of Qds. On the other hand, attachment at the choline site leads to significantly lower interaction energies. The trend noted in interaction energies coincides with the structure-electronic property analysis (interatomic bond distances, charge transfer, PO2- stretching frequencies), which further helps in deducing the nature of interactions. The molecular dynamics simulations performed on selected Qd-lipid complexes established that the Qd interacting with lipids at the phosphate site remains fairly stable at room temperature without undergoing fragmentation into individual components. On the other hand, at the choline site, the Qd-to-lipid coupling is unstable and therefore they experience disintegration at 300 K temperature. Additionally, a unique glycerol-to-phosphate site crossover is evidenced, which reaffirms that the phosphate site is selectively preferred by Qds for binding with lipid molecules.
Collapse
Affiliation(s)
- Asma H Maneri
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Shruti Suhas Varode
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- D. Y. Patil International University, Pune, India
| | - Ashakiran Maibam
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | | | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Krati Joshi
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Pune 411008, India.
| |
Collapse
|
7
|
Recent advances in optical biosensors for specific detection of E. coli bacteria in food and water. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Vaezi Z, Asadzadeh Aghdaei H, Sedghi M, Mahdavian R, Molakarimi M, Hashemi N, Naderi-Manesh H. Hemoglobin bio-adhesive nanoparticles as a colon-specific delivery system for sustained release of 5-aminosalicylic acid in the effective treatment of inflammatory bowel disease. Int J Pharm 2022; 616:121531. [PMID: 35121044 DOI: 10.1016/j.ijpharm.2022.121531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
A colonic drug delivery system was developed to specifically deliver 5-aminosalicylic acid (5-ASA) to the inflamed site by conjugating with hemoglobin nanoparticles (HbNPs). The 5-ASA-HbNPs (eight 5-ASA molecules per Hb molecule) with the size of 220 nm and zeta potential of -14.6 mV is a tailored nanoparticle able to pass through the mucus layer. The 5-ASA-HbNPs do not undergo chemical and enzymatic hydrolysis in the simulated gastrointestinal fluids over 6 h. Significantly higher cellular uptakes and prolonged release was seen for the 5-ASA-HbNPs in Caco-2 cells, compared to free 5-ASA over 72 h. In addition, 5-ASA-HbNPs revealed similar therapeutic effectiveness with free 5-ASA against tumor necrosis factor and showed less inhibitory concentration (IC50) for myeloperoxidase enzyme activity. In vivo imaging of mouse demonstrated the localization of drug in the descending colon after oral administration and about 15% of the administered dose was recovered as 5-ASA from urine in 6 h. The use of these nanoparticles with the mucus adhesion properties and permeability to intestinal epithelial cells can be a good candidate with potential application in the colonic drug delivery field.
Collapse
Affiliation(s)
- Zahra Vaezi
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, P.O.BOX: 1985717411, Tehran, Iran.
| | - Mosslim Sedghi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Reza Mahdavian
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Maryam Molakarimi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran
| | - Naimeh Hashemi
- Ludwig Boltzmann Institute for Traumatology, Research Centre in coopoeration with AUVA, DonaueschingenstraBe 13, 1200 Vienna, Austria
| | - Hossein Naderi-Manesh
- Department of Bioactive Compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, 14115-154 Tehran, Iran; Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, 14115-154 Tehran, Iran.
| |
Collapse
|
9
|
Xu L, Wang X, Liu Y, Yang G, Falconer RJ, Zhao CX. Lipid Nanoparticles for Drug Delivery. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Letao Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Xing Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Yun Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
| | - Robert J. Falconer
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology (AIBN) The University of Queensland Brisbane QLD 4072 Australia
- School of Chemical Engineering and Advanced Materials The University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
10
|
Sadeghi Mohammadi S, Vaezi Z, Naderi-Manesh H. Improvement of anti-biofilm activities via co-delivery of curcumin and gentamicin in lipid-polymer hybrid nanoparticle. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:174-196. [PMID: 34605363 DOI: 10.1080/09205063.2021.1982159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa is the most common pathogen that causes chronic lung infections and recurrence of the disease in cystic fibrosis patients by hiding inside cells and biofilm matrix. Herein, we developed gentamicin and curcumin-loaded lipid-polymer hybrid nanoparticle- (termed CG-HNPs) to evaluate in vitro activities against biofilm-embedded P. aeruginosa and compared with lipid nanoparticles containing the same drugs (CG-Lip). The nanoparticles were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), fluorescence spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy, which demonstrated that HNPs with a diameter of approximately 340 nm were uniform. The optimal CG-HNPs formulation illustrated high encapsulation (∼70%) and controlled release characteristics (gradually released in 72 h). The antibacterial activities of generated nanoparticles are maintained against planktonic and biofilm bacteria and it is effective in damage established biofilms. Besides, HNPs were biocompatible and nontoxic to J774 and HFF cell lines and uptake by the macrophages (J774), which facilitated the killing of intracellular bacteria in macrophages. These results introduced CG-HNPs as a promising antibacterial agent for the treatment of chronic infections and intracellular bacteria due to excellent antibacterial activity.
Collapse
Affiliation(s)
- Sanam Sadeghi Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Vaezi
- Department of Bioactive compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Hossein Naderi-Manesh
- Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.,Department of Bioactive compounds, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Yin C, Wang Z, Ding X, Chen X, Wang J, Yang E, Wang W, Martin LL, Sun D. Crystalline ruthenium polypyridine nanoparticles: a targeted treatment of bacterial infection with multifunctional antibacterial, adhesion and surface-anchoring photosensitizer properties. J Mater Chem B 2021; 9:3808-3825. [PMID: 33979422 DOI: 10.1039/d1tb00103e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photodynamic antibacterial therapy employs nanocomposites as an alternative to traditional antibiotics for the treatment of bacterial infections. However, many of these antibacterial materials are less effective towards bacteria than traditional drugs, either due to poor specificity or antibacterial activity. This can result in needless and excessive drug use in treatments. This paper describes a multifunctional drug delivery nanoparticle (MDD-NP), Sph-Ru-MMT@PZ, based on the nanostructured-form of [Ru(bpy)2dppz] (PF6)2 (Sph-Ru), which has adhesive properties towards its microbial targets as well as surface-anchoring photosensitizer effects. The design and construction of MDD-NP is based on the adhesive properties of the outer layers of montmorillonite (MMT), which allows Sph-Ru-MMT@PZ to successfully reach its bacterial target; the outer layer of the E. coli. In addition, under 670 nm red irradiation therapy (R-IT), the surface-anchoring properties use the photosensitizer phthalocyanine zinc (PZ) to destroy the bacteria by producing reactive oxygen species (ROS) which causes cell lysis of E. coli. More importantly, Sph-Ru-MMT@PZ has no fluorescence response to live E. coli with intact cell membranes but selectively stained and demonstrated fluorescence during membrane damage of early-stage cells as well as exposure of nuclear materials at late-stage of cell lysis. Sph-Ru-MMT@PZ showed beneficial and synergistic anti-infective effects in vivo by inhibiting the E. coli infection-induced inflammatory response and eventually promoting wound healing in mice. This new strategy for high precision antibacterial therapy towards specific targets, provides an exciting opportunity for the application of multifunctional nanocomposites towards microbial infections.
Collapse
Affiliation(s)
- Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoyuan Ding
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqing Chen
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Jingyuan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
12
|
Vitiello G, Oliva R, Petraccone L, Vecchio PD, Heenan RK, Molinaro A, Silipo A, D'Errico G, Paduano L. Covalently bonded hopanoid-Lipid A from Bradyrhizobium: The role of unusual molecular structure and calcium ions in regulating the lipid bilayers organization. J Colloid Interface Sci 2021; 594:891-901. [DOI: 10.1016/j.jcis.2021.03.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/01/2021] [Accepted: 03/13/2021] [Indexed: 01/31/2023]
|
13
|
Simeral ML, Zhang A, Demers SME, Hughes HJ, Abdul-Moqueet M, Mayer KM, Hafner JH. Effects of Conformational Variation on Structural Insights from Solution-Phase Surface-Enhanced Raman Spectroscopy. J Phys Chem B 2021; 125:2031-2041. [PMID: 33617719 PMCID: PMC8046088 DOI: 10.1021/acs.jpcb.0c10576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Surface-enhanced Raman scattering (SERS) spectra contain information on the chemical structure on nanoparticle surfaces through the position and alignment of molecules with the electromagnetic near field. Time-dependent density functional theory (TDDFT) can provide the Raman tensors needed for a detailed interpretation of SERS spectra. Here, the impact of molecular conformations on SERS spectra is considered. TDDFT calculations of the surfactant cetyltrimethylammonium bromide with five conformers produced more accurate unenhanced Raman spectra than a simple all-trans structure. The calculations and measurements also demonstrated a loss of structural information in the CH2/CH3 scissor vibration band at 1450 cm-1 in the SERS spectra. To study lipid bilayers, TDDFT calculations on conformers of methyl phosphorylcholine and cis-5-decene served as models for the symmetric choline stretch in the lipid headgroup and the C═C stretch in the acyl chains of 1,2-oleoyl-glycero-3-phosphocholine. Conformer considerations enabled a measurement of the distribution of double-bond orientations with an order parameter of SC═C = 0.53.
Collapse
Affiliation(s)
| | - Aobo Zhang
- Department of Physics & Astronomy, Rice University, Houston, TX
| | | | | | | | - Kathryn M. Mayer
- Department of Physics & Astronomy, University of Texas at San Antonio, San Antonio, TX
| | - Jason H. Hafner
- Department of Physics & Astronomy, Rice University, Houston, TX
- Department of Chemistry, Rice University, Houston, TX
| |
Collapse
|
14
|
Gallucci N, Vitiello G, Di Girolamo R, Imbimbo P, Monti DM, Tarallo O, Vergara A, Russo Krauss I, Paduano L. Towards the Development of Antioxidant Cerium Oxide Nanoparticles for Biomedical Applications: Controlling the Properties by Tuning Synthesis Conditions. NANOMATERIALS 2021; 11:nano11020542. [PMID: 33672757 PMCID: PMC7924622 DOI: 10.3390/nano11020542] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023]
Abstract
In this work CeO2 nanoparticles (CeO2-NPs) were synthesized through the thermal decomposition of Ce(NO3)3·6H2O, using as capping agents either octylamine or oleylamine, to evaluate the effect of alkyl chain length, an issue at 150 °C, in the case of octylamine and at 150 and 250 °C, in the case of oleylamine, to evaluate the effect of the temperature on NPs properties. All the nanoparticles were extensively characterized by a multidisciplinary approach, such as wide-angle X-ray diffraction, transmission electron microscopy, dynamic light scattering, UV-Vis, fluorescence, Raman and FTIR spectroscopies. The analysis of the experimental data shows that the capping agent nature and the synthesis temperature affect nanoparticle properties including size, morphology, aggregation and Ce3+/Ce4+ ratio. Such issues have not been discussed yet, at the best of our knowledge, in the literature. Notably, CeO2-NPs synthesized in the presence of oleylamine at 250 °C showed no tendency to aggregation and we made them water-soluble through a further coating with sodium oleate. The obtained nanoparticles show a less tendency to clustering forming stable aggregates (ranging between 14 and 22 nm) of few NPs. These were tested for biocompatibility and ROS inhibiting activity, demonstrating a remarkable antioxidant activity, against oxidative stress.
Collapse
Affiliation(s)
- Noemi Gallucci
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Vitiello
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
- Correspondence: (G.V.); (L.P.)
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
| | - Oreste Tarallo
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; (N.G.); (R.D.G.); (P.I.); (D.M.M.); (O.T.); (A.V.); (I.R.K.)
- CSGI, Center for Colloid and Surface Science, 50019 Sesto Fiorentino, Italy
- Correspondence: (G.V.); (L.P.)
| |
Collapse
|
15
|
Karanth S, Meesaragandla B, Delcea M. Changing surface properties of artificial lipid membranes at the interface with biopolymer coated gold nanoparticles under normal and redox conditions. Biophys Chem 2020; 267:106465. [DOI: 10.1016/j.bpc.2020.106465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022]
|
16
|
A novel iron quantum cluster confined in hemoglobin as fluorescent sensor for rapid detection of Escherichia coli. Talanta 2020; 218:121137. [PMID: 32797894 DOI: 10.1016/j.talanta.2020.121137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
A new method based on fluorescent probe of iron quantum cluster has been proposed for rapid detection of Escherichia coli (E. coli). The iron quantum cluster was synthesized using hemoglobin as both a source of iron and a protective agent (Hb-FeQCs). The investigation of the sensitivity of Hb-FeQCs towards metal ions showed a highly selective turn off fluorescence for Cu2+. It suggests that Cu2+ can induce fluorescence quenching by binding to amino acids of Hb. The ability of E. coli bacteria to capture and reduce of Cu ions caused to efficient recovery of the fluorescence of Hb-FeQCs from Cu2+-caused quenching. This probe has a satisfactorily linear range of 0.35-35 μM for Cu2+ under the optimal iron quantum cluster concentration (500 μg/mL) with an 85 nM detection limit. Rapid and facile detection of E.coli bacteria with the limit of detection around 8.3 × 103 CFU/mL was successfully achieved in the artificially contaminated urine, tap water, and DMEM samples within 30 min. The fluorescence recovery was investigated by different types of bacteria and only E. coli revealed 56% recovery which related to its capability to Cu2+ reduction and the great potential of the fluorescent probe for rapid detection of pathogenic E. coli bacteria. Furthermore, the Hb-FeQCs can detect E. coli bacteria in an infected urine sample by retrieving up to 74% of its fluorescence which is helpful to accelerate the diagnosis and treatment of urinary tract infection (UTI).
Collapse
|
17
|
Peyvand P, Vaezi Z, Sedghi M, Dalir N, Ma’mani L, Naderi-Manesh H. Imidazolium-based ionic liquid functionalized mesoporous silica nanoparticles as a promising nano-carrier: response surface strategy to investigate and optimize loading and release process for Lapatinib delivery. Pharm Dev Technol 2020; 25:1150-1161. [DOI: 10.1080/10837450.2020.1803909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Parvaneh Peyvand
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Vaezi
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mosslim Sedghi
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Nima Dalir
- Department of Physical Chemistry, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran
| | - Leila Ma’mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics/Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
19
|
Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020; 10:8497-8517. [PMID: 35497832 PMCID: PMC9050015 DOI: 10.1039/c9ra10921h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
One of the most important health concerns in society is the development of pathogen-causing nosocomial infections. Since the first discovery of antibiotics, bacterial infections have been highly treatable. However, with evolution and the nondiscretionary usage of antibiotics, pathogens have also found new ways to survive the onslaught of antibiotics by surviving intracellularly or through the formation of obstinate biofilms, and through these, the outcomes of regular antibiotic treatments may now be unsatisfactory. Lipid-coated hybrid nanoparticles (LCHNPs) are the next-generation core–shell structured nanodelivery system, where an inorganic or organic core, loaded with antimicrobials, is enveloped by lipid layers. This core–shell structure, with multifarious decorations, not only improves the loading capabilities of therapeutics but also has the potential to improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections. Although there has been significant interest in the development of LCHNPs, they have yet to be widely exploited for bacterial infections. In this review, we will provide an overview on the latest development of LCHNPs and the various approaches in synthesizing this nano-delivery system. In addition, a discussion on future perspectives of LCHNPs, in combination with other novel anti-bacterial technologies, will be provided towards the end of this review. Lipid-coated hybrid nanoparticles are next-generation core–shell structured nanodelivery systems, which improve the loading capabilities of therapeutics and can improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections.![]()
Collapse
Affiliation(s)
- Lai Jiang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Hiang Wee Lee
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Say Chye Joachim Loo
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
20
|
Luchini A, Vitiello G. Understanding the Nano-bio Interfaces: Lipid-Coatings for Inorganic Nanoparticles as Promising Strategy for Biomedical Applications. Front Chem 2019; 7:343. [PMID: 31165058 PMCID: PMC6534186 DOI: 10.3389/fchem.2019.00343] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/25/2019] [Indexed: 12/26/2022] Open
Abstract
Inorganic nanoparticles (NPs) exhibit relevant physical properties for application in biomedicine and specifically for both the diagnosis and therapy (i.e. theranostic) of severe pathologies, such as cancer. The inorganic NP core is often not stable in aqueous suspension and can induce cytotoxic effects. For this reason, over the years, several coating strategies were suggested to improve the NP stability in aqueous solutions as well as the NP biocompatibility. Among the various components which can be used for NP coatings, lipids, and in particular phospholipids emerged as versatile molecular building blocks for the production of NP coatings suitable for biomedical application. The recent synthetic efforts in NP lipid coatings allows today to introduce on the NP surface a large variety of lipid molecules eventually in mixture with amphiphilic or hydrophobic drugs or active molecules for cell targeting. In this review, the most relevant examples of NP lipid-coatings are presented and grouped in two main categories: supported lipid bilayers (SLB) and hybrid lipid bilayers (HLB). The discussed scientific cases take into account the most commonly used inorganic NP for biomedical applications in cancer therapy and diagnosis.
Collapse
Affiliation(s)
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- CSGI, Center for Colloids and Surface Science, Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Vitiello G, Zanfardino A, Tammaro O, Di Napoli M, Caso MF, Pezzella A, Varcamonti M, Silvestri B, D'Errico G, Costantini A, Luciani G. Bioinspired hybrid eumelanin–TiO2 antimicrobial nanostructures: the key role of organo–inorganic frameworks in tuning eumelanin's biocide action mechanism through membrane interaction. RSC Adv 2018; 8:28275-28283. [PMID: 35542468 PMCID: PMC9084248 DOI: 10.1039/c8ra04315a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 11/21/2022] Open
Abstract
Intrinsic biocide efficacy of eumelanins can be markedly enhanced through a templated formation in the presence of a TiO2-sol, leading to hybrid TiO2–melanin nanostructures. However, mechanisms and processes behind biocide activity still remain poorly understood. This paper discloses the fundamental mechanism of action of these systems providing mechanistic information on their peculiar interaction with Escherichia coli strains. To this purpose biocide characterization is combined with Electron Paramagnetic Resonance (EPR) spectroscopy to investigate radical species produced by the hybrids as well as their interactions with Gram(−) external bacterial membranes. Experimental results indicate that TiO2 mediated eumelanin polymerization leads to a peculiar mechanism of action of hybrid nanostructures, whose strong interactions with bacterial membranes enhance the action of reactive oxygen species (ROS) produced by eumelanin degradation itself, also concurring with the final biocide action. These findings provide strategic information for the development of eumelanin-based systems with enhanced activity against drug-resistant strains. Hybrid TiO2/eumelanin nanostructures showed a peculiar biocide mechanism against Gram(−) bacteria, based on the ROS action, produced by eumelanin degradation under visible light irradiation, and the interactions with external bacterial membranes.![]()
Collapse
|