1
|
Ma S, Jiang L, Yang W, Liu F, Wang D, Wang F, Huang J. Advances of Nanomaterials in Cancer Photocatalysis Therapy. MATERIALS TODAY SUSTAINABILITY 2025; 29:101023. [DOI: 10.1016/j.mtsust.2024.101023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2024; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Angelopoulou A, Papachristodoulou M, Voulgari E, Mouikis A, Zygouri P, Gournis DP, Avgoustakis K. Paclitaxel-Loaded, Pegylated Carboxylic Graphene Oxide with High Colloidal Stability, Sustained, pH-Responsive Release and Strong Anticancer Effects on Lung Cancer A549 Cell Line. Pharmaceutics 2024; 16:1452. [PMID: 39598575 PMCID: PMC11597291 DOI: 10.3390/pharmaceutics16111452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Graphene Oxide (GO) has shown great potential in biomedical applications for cancer therapeutics. The biosafety and stability issues of GO in biological media have been addressed by functionalization with polyethylene glycol (PEG). Methods: In this work, carboxylated, nanosized GO (nCGO) was evaluated as a potential carrier of paclitaxel (PCT). The effect of PEG characteristics on particle size and surface charge, colloidal stability, drug, and release, and the hemolytic potential of nCGO, was investigated. Optimum PEG-nCGO/PCT formulations based on the above properties were evaluated for their anticancer activity (cytotoxicity and apoptosis induction) in the A549 lung cancer cell line. Results: An increase in the length of linear PEG chains and the use of branched (4-arm) instead of linear PEG resulted in a decrease in hydrodynamic diameter and an increase in ζ potential of the pegylated nCGO particles. Pegylated nCGO exhibited high colloidal stability in phosphate-buffered saline and in cell culture media and low hemolytic effect, even at a relatively high concentration of 1 mg/mL. The molecular weight of PEG and branching adversely affected PCT loading. An increased rate of PCT release at an acidic pH of 6.0 compared to the physiological pH of 7.4 was observed with all types of pegylated nCGO/PCT. Pegylated nCGO exhibited lower cytotoxicity and apoptotic activity than non-pegylated nCGO. Cellular uptake of pegylated nCGO increased with incubation time with cells leading to increased cytotoxicity of PEG-nCGO/PCT with incubation time, which became higher than that of free PCT at 24 and 48 h of incubation. Conclusions: The increased biocompatibility of the pegylated nCGO and the enhanced anticancer activity of PEG-nCGO/PCT compared to free PCT are desirable properties with regard to the potential clinical application of PEG-nCGO/PCT as an anticancer nanomedicine.
Collapse
Affiliation(s)
- Athina Angelopoulou
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Myria Papachristodoulou
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Efstathia Voulgari
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Andreas Mouikis
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| | - Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece;
| | - Dimitrios P. Gournis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100 Chania, Greece;
- Institute of GeoEnergy, Foundation for Research and Technology-Hellas, 73100 Chania, Greece
| | - Konstantinos Avgoustakis
- Department of Pharmacy, Medical School, University of Patras, 26504 Patras, Greece (E.V.); (A.M.)
| |
Collapse
|
4
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Valencia Zapata ME, Mina Hernández JH, Zapata PA, Grande-Tovar CD. Graphene Oxide Nanosheets for Bone Tissue Regeneration. Molecules 2024; 29:3263. [PMID: 39064841 PMCID: PMC11279378 DOI: 10.3390/molecules29143263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.
Collapse
Affiliation(s)
- Jorge Iván Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 760001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia; (A.P.-V.); (C.-H.V.-L.)
| | - Carlos-Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B Número 36-00, Cali 760001, Colombia; (A.P.-V.); (C.-H.V.-L.)
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 Número 100-00, Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 Número 100-00, Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Paula A. Zapata
- Grupo de Polímeros, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile 9170020, Chile;
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
5
|
Zygouri P, Tsiodoulos G, Angelidou M, Papanikolaou E, Athinodorou AM, Simos YV, Spyrou K, Subrati M, Kouloumpis A, Kaloudi AS, Asimakopoulos G, Tsamis K, Peschos D, Vezyraki P, Ragos V, Gournis DP. Graphene oxide and oxidized carbon nanodiscs as biomedical scaffolds for the targeted delivery of quercetin to cancer cells. NANOSCALE ADVANCES 2024; 6:2860-2874. [PMID: 38817436 PMCID: PMC11134231 DOI: 10.1039/d3na00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/20/2024] [Indexed: 06/01/2024]
Abstract
Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.
Collapse
Affiliation(s)
- Panagiota Zygouri
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Grigorios Tsiodoulos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Marina Angelidou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Eirini Papanikolaou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Antrea-Maria Athinodorou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Yannis V Simos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Konstantinos Spyrou
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
| | - Mohammed Subrati
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Antonios Kouloumpis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Angela S Kaloudi
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Georgios Asimakopoulos
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
| | - Konstantinos Tsamis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Dimitrios Peschos
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Patra Vezyraki
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina Ioannina 45110 Greece
| | - Vasileios Ragos
- Department of Maxillofacial, Faculty of Medicine, School of Health Sciences, University of Ioannina 45110 Ioannina Greece
| | - Dimitrios P Gournis
- Department of Materials Science and Engineering, University of Ioannina 45110 Ioannina Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina Ioannina 45110 Greece
- School of Chemical and Environmental Engineering, Technical University of Crete (TUC) GR-73100 Chania Crete Greece
| |
Collapse
|
6
|
Castro JI, Payan-Valero A, Valencia-Llano CH, Insuasty D, Rodríguez Macias JD, Ordoñez A, Valencia Zapata ME, Mina Hernández JH, Grande-Tovar CD. Evaluation of the Antibacterial, Anti-Cervical Cancer Capacity, and Biocompatibility of Different Graphene Oxides. Molecules 2024; 29:281. [PMID: 38257194 PMCID: PMC10821421 DOI: 10.3390/molecules29020281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.
Collapse
Affiliation(s)
- Jorge Ivan Castro
- Tribology, Polymers, Powder Metallurgy and Solid Waste Transformations Research Group, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Alana Payan-Valero
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (A.P.-V.); (C.H.V.-L.)
| | - Daniel Insuasty
- Departamento de Química y Biología, División de Ciencias Básicas, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Juan David Rodríguez Macias
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Alejandra Ordoñez
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Jose Herminsul Mina Hernández
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Santiago de Cali 760032, Colombia; (M.E.V.Z.); (J.H.M.H.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| |
Collapse
|
7
|
Chao B, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Wang L, Liu H, Zhang H, Wang Z, Wu M. Application of advanced biomaterials in photothermal therapy for malignant bone tumors. Biomater Res 2023; 27:116. [PMID: 37968707 PMCID: PMC10652612 DOI: 10.1186/s40824-023-00453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/21/2023] [Indexed: 11/17/2023] Open
Abstract
Malignant bone tumors are characterized by severe disability rate, mortality rate, and heavy recurrence rate owing to the complex pathogenesis and insidious disease progression, which seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment offering prominent hyperthermal therapeutic effects to enhance the effectiveness of surgical treatment and avoid recurrence. Simultaneously, various advanced biomaterials with photothermal capacity are currently created to address malignant bone tumors, performing distinctive biological functions, including nanomaterials, bioceramics (BC), polymers, and hydrogels et al. Furthermore, PTT-related combination therapeutic strategies can provide more significant curative benefits by reducing drug toxicity, improving tumor-killing efficiency, stimulating anti-cancer immunity, and improving immune sensitivity relative to monotherapy, even in complex tumor microenvironments (TME). This review summarizes the current advanced biomaterials applicable in PTT and relevant combination therapies on malignant bone tumors for the first time. The multiple choices of advanced biomaterials, treatment methods, and new prospects for future research in treating malignant bone tumors with PTT are generalized to provide guidance. Malignant bone tumors seriously affect the terminal quality of patients' lives. Photothermal therapy (PTT) has emerged as an attractive adjunctive treatment enhancing the effectiveness of surgical treatment and avoiding recurrence. In this review, advanced biomaterials applicable in the PTT of malignant bone tumors and their distinctive biological functions are comprehensively summarized for the first time. Simultaneously, multiple PTT-related combination therapeutic strategies are classified to optimize practical clinical issues, contributing to the selection of biomaterials, therapeutic alternatives, and research perspectives for the adjuvant treatment of malignant bone tumors with PTT in the future.
Collapse
Affiliation(s)
- Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Linfeng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, People's Republic of China.
| |
Collapse
|
8
|
Báez DF. Graphene-Based Nanomaterials for Photothermal Therapy in Cancer Treatment. Pharmaceutics 2023; 15:2286. [PMID: 37765255 PMCID: PMC10535159 DOI: 10.3390/pharmaceutics15092286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Graphene-based nanomaterials (GBNMs), specifically graphene oxide (GO) and reduced graphene oxide (rGO), have shown great potential in cancer therapy owing to their physicochemical properties. As GO and rGO strongly absorb light in the near-infrared (NIR) region, they are useful in photothermal therapy (PTT) for cancer treatment. However, despite the structural similarities of GO and rGO, they exhibit different influences on anticancer treatment due to their different photothermal capacities. In this review, various characterization techniques used to compare the structural features of GO and rGO are first outlined. Then, a comprehensive summary and discussion of the applicability of GBNMs in the context of PTT for diverse cancer types are presented. This discussion includes the integration of PTT with secondary therapeutic strategies, with a particular focus on the photothermal capacity achieved through near-infrared irradiation parameters and the modifications implemented. Furthermore, a dedicated section is devoted to studies on hybrid magnetic-GBNMs. Finally, the challenges and prospects associated with the utilization of GBNM in PTT, with a primary emphasis on the potential for clinical translation, are addressed.
Collapse
Affiliation(s)
- Daniela F. Báez
- Escuela de Medicina, Universidad de Talca, Talca 3460000, Chile;
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
9
|
Khaliq NU, Lee J, Kim S, Sung D, Kim H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023; 15:2102. [PMID: 37631316 PMCID: PMC10458801 DOI: 10.3390/pharmaceutics15082102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Pluronics are amphiphilic triblock copolymers composed of two hydrophilic poly (ethylene oxide) (PEO) chains linked via a central hydrophobic polypropylene oxide (PPO). Owing to their low molecular weight polymer and greater number of PEO segments, Pluronics induce micelle formation and gelation at critical micelle concentrations and temperatures. Pluronics F-68 and F-127 are the only United States (U.S.) FDA-approved classes of Pluronics and have been extensively used as materials for living bodies. Owing to the fascinating characteristics of Pluronics, many studies have suggested their role in biomedical applications, such as drug delivery systems, tissue regeneration scaffolders, and biosurfactants. As a result, various studies have been performed using Pluronics as a tool in nanomedicine and targeted delivery systems. This review sought to describe the delivery of therapeutic cargos using Pluronic F-68 and F-127-based cancer nanomedicines and their composites for combination therapy.
Collapse
Affiliation(s)
- Nisar Ul Khaliq
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Juyeon Lee
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| | - Sangwoo Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Daekyung Sung
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Republic of Korea
| | - Hyungjun Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi 39177, Republic of Korea
| |
Collapse
|
10
|
Uzhviyuk SV, Khramtsov PV, Raev MB, Timganova VP, Bochkova MS, Khaziakhmatova OG, Malashchenko VV, Litvinova LS, Zamorina SA. Interaction of Graphene Oxide Nanoparticles with Human Mononuclear Cells in the Cell-IQ System. Bull Exp Biol Med 2023:10.1007/s10517-023-05830-1. [PMID: 37338769 DOI: 10.1007/s10517-023-05830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 06/21/2023]
Abstract
The interaction of graphene oxide nanoparticles with human peripheral blood mononuclear cells was studied using the Cell-IQ continuous monitoring system for living cells. We used graphene oxide nanoparticles of various sizes coated with linear or branched polyethylene glycol (PEG) in concentrations of 5 and 25 μg/ml. After 24-h incubation with graphene oxide nanoparticles, the increase in the number of peripheral blood mononuclear cells at visualization points decreased; nanoparticles coated with branched PEG more markedly suppressed cell growth in culture. In the presence of graphene oxide nanoparticles, peripheral blood mononuclear cells retained high viability in culture after daily monitoring in the Cell-IQ system. The studied nanoparticles were engulfed by monocytes and the type of PEGylation had no effect on this process. Thus, graphene oxide nanoparticles reduced the increase in peripheral blood mononuclear cell mass during dynamic observation in the Cell-IQ system without reducing their viability.
Collapse
Affiliation(s)
- S V Uzhviyuk
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia.
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M B Raev
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| | - O G Khaziakhmatova
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | | | - L S Litvinova
- I. Kant Baltic Federal University, Kaliningrad, Russia
| | - S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, Ural Division of the Russian Academy of Sciences - Branch of Perm State Research Center, Ural Division of the Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
11
|
Ye T, Yang Y, Bai J, Wu FY, Zhang L, Meng LY, Lan Y. The mechanical, optical, and thermal properties of graphene influencing its pre-clinical use in treating neurological diseases. Front Neurosci 2023; 17:1162493. [PMID: 37360172 PMCID: PMC10288862 DOI: 10.3389/fnins.2023.1162493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Rapid progress in nanotechnology has advanced fundamental neuroscience and innovative treatment using combined diagnostic and therapeutic applications. The atomic scale tunability of nanomaterials, which can interact with biological systems, has attracted interest in emerging multidisciplinary fields. Graphene, a two-dimensional nanocarbon, has gained increasing attention in neuroscience due to its unique honeycomb structure and functional properties. Hydrophobic planar sheets of graphene can be effectively loaded with aromatic molecules to produce a defect-free and stable dispersion. The optical and thermal properties of graphene make it suitable for biosensing and bioimaging applications. In addition, graphene and its derivatives functionalized with tailored bioactive molecules can cross the blood-brain barrier for drug delivery, substantially improving their biological property. Therefore, graphene-based materials have promising potential for possible application in neuroscience. Herein, we aimed to summarize the important properties of graphene materials required for their application in neuroscience, the interaction between graphene-based materials and various cells in the central and peripheral nervous systems, and their potential clinical applications in recording electrodes, drug delivery, treatment, and as nerve scaffolds for neurological diseases. Finally, we offer insights into the prospects and limitations to aid graphene development in neuroscience research and nanotherapeutics that can be used clinically.
Collapse
Affiliation(s)
- Ting Ye
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yi Yang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Jin Bai
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Feng-Ying Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
- Interdisciplinary Program of Biological Functional Molecules, College of Intergration Science, Yanbian University, Yanji, Jilin, China
| | - Lu Zhang
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| | - Long-Yue Meng
- Department of Environmental Science, Department of Chemistry, Yanbian University, Yanji, Jilin, China
| | - Yan Lan
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
12
|
Jacquemin L, Song Z, Le Breton N, Nishina Y, Choua S, Reina G, Bianco A. Mechanisms of Radical Formation on Chemically Modified Graphene Oxide under Near Infrared Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207229. [PMID: 36670336 DOI: 10.1002/smll.202207229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
In this work, the mechanisms of radical generation on different functionalized graphene oxide (GO) conjugates under near-infrared (NIR) light irradiation are investigated. The GO conjugates are designed to understand how chemical functionalization can influence the generation of radicals. Both pristine and functionalized GO are irradiated by a NIR laser, and the production of different reactive oxygen species (ROS) is investigated using fluorimetry and electron paramagnetic resonance to describe the type of radicals present on the surface of GO. The mechanism of ROS formation involves a charge transfer from the material to the oxygen present in the media, via the production of superoxide and singlet oxygen. Cytotoxicity and effects of ROS generation are then evaluated using breast cancer cells, evidencing a concentration dependent cell death associated to the heat and ROS. The study provides new hints to understand the photogeneration of radicals on the surface of GO upon near infrared irradiation, as well as, to assess the impact on these radicals in the context of a combined drug delivery system and phototherapeutic approach. These discoveries open the way for a better control of phototherapy-based treatments employing graphene-based materials.
Collapse
Affiliation(s)
- Lucas Jacquemin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Nolwenn Le Breton
- Institute of Chemistry, UMR 7177, University of Strasbourg, Strasbourg, 67000, France
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Sylvie Choua
- Institute of Chemistry, UMR 7177, University of Strasbourg, Strasbourg, 67000, France
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
13
|
Papanikolaou E, Simos YV, Spyrou K, Patila M, Alatzoglou C, Tsamis K, Vezyraki P, Stamatis H, Gournis DP, Peschos D, Dounousi E. Does Green Exfoliation of Graphene Produce More Biocompatible Structures? Pharmaceutics 2023; 15:pharmaceutics15030993. [PMID: 36986854 PMCID: PMC10051938 DOI: 10.3390/pharmaceutics15030993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Graphene has been studied thoroughly for its use in biomedical applications over the last decades. A crucial factor for a material to be used in such applications is its biocompatibility. Various factors affect the biocompatibility and toxicity of graphene structures, including lateral size, number of layers, surface functionalization, and way of production. In this work, we tested that the green production of few-layer bio-graphene (bG) enhances its biocompatibility compared to chemical-graphene (cG). When tested against three different cell lines in terms of MTT assays, both materials proved to be well-tolerated at a wide range of doses. However, high doses of cG induce long-term toxicity and have a tendency for apoptosis. Neither bG nor cG induced ROS generation or cell cycle modifications. Finally, both materials affect the expression of inflammatory proteins such as Nrf2, NF-kB and HO-1 but further research is required for a safe result. In conclusion, although there is little to choose between bG and cG, bG's sustainable way of production makes it a much more attractive and promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Eirini Papanikolaou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios P Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
14
|
Torres-Vanegas JD, Cifuentes J, Puentes PR, Quezada V, Garcia-Brand AJ, Cruz JC, Reyes LH. Assessing cellular internalization and endosomal escape abilities of novel BUFII-Graphene oxide nanobioconjugates. Front Chem 2022; 10:974218. [PMID: 36186591 PMCID: PMC9521742 DOI: 10.3389/fchem.2022.974218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-penetrating agents based on functionalized nanoplatforms have emerged as a promising approach for developing more efficient and multifunctional delivery vehicles for treating various complex diseases that require reaching different intracellular compartments. Our previous work has shown that achieving full cellular coverage and high endosomal escape rates is possible by interfacing magnetite nanoparticles with potent translocating peptides such as Buforin II (BUF-II). In this work, we extended such an approach to two graphene oxide (GO)-based nanoplatforms functionalized with different surface chemistries to which the peptide molecules were successfully conjugated. The developed nanobioconjugates were characterized via spectroscopic (FTIR, Raman), thermogravimetric, and microscopic (SEM, TEM, and AFM) techniques. Moreover, biocompatibility was assessed via standardized hemocompatibility and cytotoxicity assays in two cell lines. Finally, cell internalization and coverage and endosomal escape abilities were estimated with the aid of confocal microscopy analysis of colocalization of the nanobioconjugates with Lysotracker Green®. Our findings showed coverage values that approached 100% for both cell lines, high biocompatibility, and endosomal escape levels ranging from 30 to 45% and 12–24% for Vero and THP-1 cell lines. This work provides the first routes toward developing the next-generation, carbon-based, cell-penetrating nanovehicles to deliver therapeutic agents. Further studies will be focused on elucidating the intracellular trafficking pathways of the nanobioconjugates to reach different cellular compartments.
Collapse
Affiliation(s)
- Julian Daniel Torres-Vanegas
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
| | - Javier Cifuentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Paola Ruiz Puentes
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | - Valentina Quezada
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| | - Luis H. Reyes
- Department of Chemical and Food Engineering, Grupo de Diseño de Productos y Procesos (GDPP), Universidad de Los Andes, Bogotá, Colombia
- *Correspondence: Juan C. Cruz, ; Luis H. Reyes,
| |
Collapse
|
15
|
Shi X, Tian Y, Liu Y, Xiong Z, Zhai S, Chu S, Gao F. Research Progress of Photothermal Nanomaterials in Multimodal Tumor Therapy. Front Oncol 2022; 12:939365. [PMID: 35898892 PMCID: PMC9309268 DOI: 10.3389/fonc.2022.939365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
The aggressive growth of cancer cells brings extreme challenges to cancer therapy while triggering the exploration of the application of multimodal therapy methods. Multimodal tumor therapy based on photothermal nanomaterials is a new technology to realize tumor cell thermal ablation through near-infrared light irradiation with a specific wavelength, which has the advantages of high efficiency, less adverse reactions, and effective inhibition of tumor metastasis compared with traditional treatment methods such as surgical resection, chemotherapy, and radiotherapy. Photothermal nanomaterials have gained increasing interest due to their potential applications, remarkable properties, and advantages for tumor therapy. In this review, recent advances and the common applications of photothermal nanomaterials in multimodal tumor therapy are summarized, with a focus on the different types of photothermal nanomaterials and their application in multimodal tumor therapy. Moreover, the challenges and future applications have also been speculated.
Collapse
Affiliation(s)
- Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yang Liu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zhengrong Xiong
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Shaobo Zhai
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| | - Fengxiang Gao
- University of Science and Technology of China, Hefei, China
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Shunli Chu, ; Fengxiang Gao,
| |
Collapse
|
16
|
Cao L, Wu Y, Shan Y, Tan B, Liao J. A Review: Potential Application and Outlook of Photothermal Therapy in Oral Cancer Treatment. Biomed Mater 2022; 17. [PMID: 35235924 DOI: 10.1088/1748-605x/ac5a23] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
As one of the most common malignant tumors, oral cancer threatens people's health worldwide. However, traditional therapies, including surgery, radiotherapy, and chemotherapy can't meet the requirement of cancer cure. Photothermal therapy (PTT) has attracted widespread attentions for its advantages of the noninvasive process, few side effects, and promising tumor ablation. Up to now, three types of photothermal agents (PTAs) have been widely employed in oral cancer therapies, which involve metallic materials, carbon-based materials, and organic materials. Previous research mainly introduced hybrid materials due to benefits from the synergistic effect of multiple functions. In this review, we present the advancement of each type PTAs for oral cancer treatment in recent years. In each part, we introduce the properties and synthesis of each PTA, summarize the current studies, and analyze their potential applications. Furthermore, we discuss the status quo and the deficiencies hindering the clinical application of PTT, based on which gives the perspective of its future developing directions.
Collapse
Affiliation(s)
- Liren Cao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yongzhi Wu
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yue Shan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Bowen Tan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Jinfeng Liao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| |
Collapse
|
17
|
|
18
|
Wang B, Guo H, Xu H, Chen Y, Zhao G, Yu H. The Role of Graphene Oxide Nanocarriers in Treating Gliomas. Front Oncol 2022; 12:736177. [PMID: 35155223 PMCID: PMC8831729 DOI: 10.3389/fonc.2022.736177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Gliomas are the most common primary malignant tumors of the central nervous system, and their conventional treatment involves maximal safe surgical resection combined with radiotherapy and temozolomide chemotherapy; however, this treatment does not meet the requirements of patients in terms of survival and quality of life. Graphene oxide (GO) has excellent physical and chemical properties and plays an important role in the treatment of gliomas mainly through four applications, viz. direct killing, drug delivery, immunotherapy, and phototherapy. This article reviews research on GO nanocarriers in the treatment of gliomas in recent years and also highlights new ideas for the treatment of these tumors.
Collapse
Affiliation(s)
- Bin Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Hanfei Guo
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Haiyang Xu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| | - Hongquan Yu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Gang Zhao, ; Hongquan Yu,
| |
Collapse
|
19
|
Graphene as Photothermal Therapeutic Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:177-200. [DOI: 10.1007/978-981-16-4923-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Wu J, Wang M, Pan Y, Pang Y, Tang Y, Song C, Zhu J, Zhang X, Huang Q. Synthesis of manganese-oxide and palladium nanoparticles co-decorated polypyrrole/graphene oxide (MnO 2@Pd@PPy/GO) nanocomposites for anti-cancer treatment. RSC Adv 2022; 12:23786-23795. [PMID: 36093248 PMCID: PMC9394591 DOI: 10.1039/d2ra03860a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
Design and fabrication of novel multifunctional nanomaterials as novel “theranostic nanoagents”with high efficiency and low side effects is important for cancer treatment. Herein, we synthesized manganese-oxide and palladium nanoparticle-co-decorated polypyrrole/graphene oxide (MnO2@Pd@PPy/GO) nanocomposites, which could be used as a novel “theranostic nanoagent” for cancer treatment. Various spectroscopic and microscopic characterizations of the synthesized MnO2@Pd@PPy/GO nanocomposites suggest that the nanocomposites are assembled sequentially by graphene oxide, polypyrrole, palladium nanoparticles and manganese-oxide nanoplates. Further research revealed that the nanocomposites had excellent photothermal conversion performance (reached near 50 °C after 10 min of irradiation), pH responsive enzymatic-like catalytic activity and enhanced magnetic resonance imaging (MRI) performance (r1 = 7.74 mM−1 s−1 at pH 5.0 and glutathione (GSH)). Cell experiments also testified that combined cancer treatment (the viability of cancer cells is 30%) with photothermal therapy (PTT, the viability of cancer cells is 91% only with irradiation) and chemodynamic therapy (CDT, the viability of cancer cells is 74.7% only with nanocomposites) guided by MRI was achieved when the as-prepared nanocomposites were employed as theranostic nanoagents. This work could provide some new ideas for the controllable synthesis and application of multicomponent nanomaterials. Manganese-oxide and palladium nanoparticle-co-decorated polypyrrole/graphene oxide (MnO2@Pd@PPy/GO) nanoenzyme composites were synthesized, and could be as a novel “theranostic nanoagent” for cancer treatment due to excellent performance.![]()
Collapse
Affiliation(s)
- Jiarui Wu
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Meng Wang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yuanjie Pan
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yipeng Pang
- School of Life Science, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Yanyan Tang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chang Song
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Jiahui Zhu
- School of Life Science, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| | - Xian Zhang
- The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qingli Huang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou City, Jiangsu 221004, China
| |
Collapse
|
21
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
22
|
Effects of Metallic and Carbon-Based Nanomaterials on Human Pancreatic Cancer Cell Lines AsPC-1 and BxPC-3. Int J Mol Sci 2021; 22:ijms222212100. [PMID: 34829982 PMCID: PMC8623931 DOI: 10.3390/ijms222212100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer, due to its asymptomatic development and drug-resistance, is difficult to cure. As many metallic and carbon-based nanomaterials have shown anticancer properties, we decided to investigate their potential use as anticancer agents against human pancreatic adenocarcinoma. The objective of the study was to evaluate the toxic properties of the following nanomaterials: silver (Ag), gold (Au), platinum (Pt), graphene oxide (GO), diamond (ND), and fullerenol (C60(OH)40) against the cell lines BxPC-3, AsPC-1, HFFF-2, and HS-5. The potential cytotoxic properties were evaluated by the assessment of the cell morphology, cell viability, and cell membrane damage. The cancer cell responses to GO and ND were analysed by determination of changes in the levels of 40 different pro-inflammatory proteins. Our studies revealed that the highest cytotoxicity was obtained after the ND treatment. Moreover, BxPC-3 cells were more sensitive to ND than AsPC-1 cells due to the ND-induced ROS production. Furthermore, in both of the cancer cell lines, ND caused an increased level of IL-8 and a decreased level of TIMP-2, whereas GO caused only decreased levels of TIMP-2 and ICAM-1 proteins. This work provides important data on the toxicity of various nanoparticles against pancreatic adenocarcinoma cell lines.
Collapse
|
23
|
Zamorina SA, Khramtsov PV, Rayev MB, Timganova VP, Bochkova MS, Nechaev AI, Shunkin EO, Khaziakhmatova OG, Malaschenko VV, Litvinova LS. Graphene Oxide Nanoparticels Interaction with Jurkat Cell Line in Cell-IQ System. DOKL BIOCHEM BIOPHYS 2021; 501:438-443. [PMID: 34966968 DOI: 10.1134/s1607672921060089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022]
Abstract
In recent years, materials based on graphene oxide (GO) have been actively studied for their use in biomedicine. The aim of our study was to investigate the increase in cell mass and viability of Jurkat tumor line T cells during 24 h of contact with GO nanoparticles in the Cell-IQ system of intravital observation. We used nanoparticles of different sizes coated with linear or branched polyethylene glycol (PEG) at concentrations of 5 and 25 μg/mL. It was shown for the first time that direct contact with GO nanoparticles reduced the growth in cell mass at the visualization points by more than twofold, regardless of nanoparticle size and concentration. Moreover, the number of live cells in the culture decreased by 5-9% after 24 h of monitoring. Thus, PEG-coated GO nanoparticles were found to suppress the proliferation and viability of Jurkat cell line T lymphocytes.
Collapse
Affiliation(s)
- S A Zamorina
- Institute of Ecology and Genetics of Microorganisms, UB RAS Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia.
| | - P V Khramtsov
- Institute of Ecology and Genetics of Microorganisms, UB RAS Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - M B Rayev
- Institute of Ecology and Genetics of Microorganisms, UB RAS Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - V P Timganova
- Institute of Ecology and Genetics of Microorganisms, UB RAS Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - M S Bochkova
- Institute of Ecology and Genetics of Microorganisms, UB RAS Branch of the Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - A I Nechaev
- Institute of Technical Chemistry, UB RAS Branch of the Perm Federal Research, Center of the Ural Branch of the Russian Academy of Sciences, Perm, Russia
| | - E O Shunkin
- Kant Baltic Federal University, Kaliningrad, Russia
| | | | | | | |
Collapse
|
24
|
Sattari S, Adeli M, Beyranvand S, Nemati M. Functionalized Graphene Platforms for Anticancer Drug Delivery. Int J Nanomedicine 2021; 16:5955-5980. [PMID: 34511900 PMCID: PMC8416335 DOI: 10.2147/ijn.s249712] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional nanomaterials are emerging as promising candidates for a wide range of biomedical applications including tissue engineering, biosensing, pathogen incapacitation, wound healing, and gene and drug delivery. Graphene, due to its high surface area, photothermal property, high loading capacity, and efficient cellular uptake, is at the forefront of these materials and plays a key role in this multidisciplinary research field. Poor water dispersibility and low functionality of graphene, however, hamper its hybridization into new nanostructures for future nanomedicine. Functionalization of graphene, either by covalent or non-covalent methods, is the most useful strategy to improve its dispersion in water and functionality as well as processability into new materials and devices. In this review, recent advances in functionalization of graphene derivatives by different (macro)molecules for future biomedical applications are reported and explained. In particular, hydrophilic functionalization of graphene and graphene oxide (GO) to improve their water dispersibility and physicochemical properties is discussed. We have focused on the anticancer drug delivery of polyfunctional graphene sheets.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| | - Mohammad Nemati
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, Iran
| |
Collapse
|
25
|
Development of gold nanorods for cancer treatment. J Inorg Biochem 2021; 220:111458. [PMID: 33857697 DOI: 10.1016/j.jinorgbio.2021.111458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 02/06/2023]
Abstract
There has been growing interest in the application of gold nanorods (GNRs) to tumor therapy due to the unique properties they possess. In the past, GNRs were not used in clinical treatments as they lacked stability in vivo and were characterized by potential toxicity. Despite these issues, the significant potential for utilizing GNRs to conduct safe and effective treatments for tumors cannot be ignored. Therefore, it remains crucial to thoroughly investigate the mechanisms behind the toxicity of GNRs in order to provide the means of overcoming obstacles to its full application in the future. This review presents the toxic effects of GNRs, the factors affecting toxicity and the methods to improve biocompatibility, all of which are presently being studied. Finally, we conclude by briefly discussing the current research status of GNRs and provide additional perspective on the challenges involved along with the course of development for GNRs in the future.
Collapse
|
26
|
Zhan X, Teng W, Sun K, He J, Yang J, Tian J, Huang X, Zhou L, Zhou C. CD47-mediated DTIC-loaded chitosan oligosaccharide-grafted nGO for synergistic chemo-photothermal therapy against malignant melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112014. [PMID: 33812633 DOI: 10.1016/j.msec.2021.112014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/11/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
Nano-graphene oxide (nGO), an effective drug nanocarrier, is used for simultaneous photothermal therapy (PTT) and near-infrared fluorescence imaging. Dacarbazine (DTIC) is used in the treatment of melanoma with limited clinical efficacy. PTT shows promise in the treatment of skin cancer. Herein, chitosan oligosaccharide (COS)-grafted nGO was further modified with CD47 antibody, and loaded DTIC was prepared using a versatile nanoplatform (nGO-COS-CD47/DTIC) for the treatment of melanoma as a synergistic targeted chemo-photothermal therapy. The in vitro results demonstrated that nGO-COS-CD47/DTIC nanocarriers have excellent biocompatibility, photothermal conversion efficiency, high targeting efficiency, fast drug release under NIR irradiation, and tumor cell killing efficiency. Notably, nGO-COS-CD47/DTIC plus NIR irradiation significantly promoted early cell apoptosis through the mitochondrial apoptosis pathway and exhibited a significant joint function of antitumor efficacy. The demonstrated nGO-COS-CD47/DTIC can provide a highly efficient malignant melanoma therapy using this multifunctional intelligent nanoplatform.
Collapse
Affiliation(s)
- Xiaozhen Zhan
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Wanqing Teng
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China
| | - Kai Sun
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jiexiang He
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jie Yang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China
| | - Jinhuan Tian
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Xun Huang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, PR China.
| | - Lin Zhou
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, PR China.
| | - Changren Zhou
- College of Chemistry and Material Science, Jinan University, Guangzhou, Guangdong 510632, PR China.
| |
Collapse
|
27
|
Melo BL, Lima-Sousa R, Alves CG, Ferreira P, Moreira AF, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine (Lond) 2021; 16:453-464. [PMID: 33660547 DOI: 10.2217/nnm-2020-0460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Enhance the colloidal stability and photothermal capacity of graphene oxide (GO) by functionalizing it with sulfobetaine methacrylate (SBMA)-grafted bovine serum albumin (BSA; i.e., SBMA-g-BSA) and by loading IR780, respectively. Materials & methods: SBMA-g-BSA coating and IR780 loading into GO was achieved through a simple sonication process. Results: SBMA-g-BSA-functionalized GO (SBMA-BSA/GO) presented an adequate size distribution and cytocompatibility. When in contact with biologically relevant media, the size of the SBMA-BSA/GO only increased by 8%. By loading IR780 into SBMA-BSA/GO, its photothermal capacity increased by twofold. The combination of near infrared light with SBMA-BSA/GO did not induce photocytotoxicity on breast cancer cells. In contrast, the interaction of IR780-loaded SBMA-BSA/GO with near infrared light caused the ablation of cancer cells. Conclusion: IR780-loaded SBMA-BSA/GO displayed an improved colloidal stability and phototherapeutic capacity.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| |
Collapse
|
28
|
Tapeinos C. Graphene‐Based Nanotechnology in Neurodegenerative Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christos Tapeinos
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI-00014 Finland
| |
Collapse
|
29
|
Graphene Oxide as a Nanocarrier for Biochemical Molecules: Current Understanding and Trends. Processes (Basel) 2020. [DOI: 10.3390/pr8121636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The development of an advanced and efficient drug delivery system with significant improvement in its efficacy and enhanced therapeutic value is one of the critical challenges in modern medicinal biology. The integration of nanomaterial science with molecular and cellular biology has helped in the advancement and development of novel drug delivery nanocarrier systems with precision and decreased side effects. The design and synthesis of nanocarriers using graphene oxide (GO) have been rapidly growing over the past few years. Due to its remarkable physicochemical properties, GO has been extensively used in efforts to construct nanocarriers with high specificity, selectivity, and biocompatibility, and low cytotoxicity. The focus of this review is to summarize and address recent uses of GO-based nanocarriers and the improvements as efficient drug delivery systems. We briefly describe the concepts and challenges associated with nanocarrier systems followed by providing critical examples of GO-based delivery of drug molecules and genes. Finally, the review delivers brief conclusions on the current understanding and prospects of nanocarrier delivery systems.
Collapse
|
30
|
Lima-Sousa R, de Melo-Diogo D, Alves CG, Cabral CS, Miguel SP, Mendonça AG, Correia IJ. Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111294. [DOI: 10.1016/j.msec.2020.111294] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/06/2020] [Accepted: 07/21/2020] [Indexed: 02/01/2023]
|
31
|
Effect of Graphene Oxide Nanoparticles on Differentiation of Myeloid Suppressor Cells. Bull Exp Biol Med 2020; 170:84-87. [PMID: 33222087 DOI: 10.1007/s10517-020-05009-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/18/2023]
Abstract
We studied the effect of graphene oxide (GO) nanoparticles on differentiation of human myeloid suppressor cells (MDSC) in an in vitro system. Separated mononuclear cells of healthy donors were induced with cytokines (IL-6 and GM-CSF) into the MDSC phenotype (both polymorphonuclear (PMN-MDSC) and monocyte (M-MDSC) subsets of these cells were taken into account). Pegylated GO nanoparticles (GO-PEG; mean size 569±14 nm, PEG content ~20%) were used. GO-PEG in low concentrations (2.5 and 5 μg/ml) increased the percentage of MDSC in cultures, but reduced their content in high concentration (10 μg/ml). After exposure to GO-PEG (2.5 and 5 μg/ml), the MDSC content increased at the expense of M-MDSC, while the level of PMN-MDSC did not change. The decrease in MDSC levels after exposure to high doses of GO-PEG (10 μg/ml) was due to a decrease in PMN-MDSC. Thus, GO-PEG nanoparticles can oppositely regulate differentiation of MDSC by inhibiting or stimulating differentiation of these cells depending on the concentration.
Collapse
|
32
|
Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01615-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Lan MY, Hsu YB, Lan MC, Chen JP, Lu YJ. Polyethylene Glycol-Coated Graphene Oxide Loaded with Erlotinib as an Effective Therapeutic Agent for Treating Nasopharyngeal Cancer Cells. Int J Nanomedicine 2020; 15:7569-7582. [PMID: 33116488 PMCID: PMC7548234 DOI: 10.2147/ijn.s265437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Nasopharyngeal carcinoma (NPC) is a common cancer in southern China and Taiwan, and radiation therapy combined with or without chemotherapy is its mainstay treatment. Although it is highly sensitive to radiotherapy, local recurrence and distant metastasis remain difficult unsolved problems. In recent years, graphene oxide (GO) has been found to be a promising novel anticancer drug carrier. Here, we present our designed functionalized GO, polyethylene glycol-coated GO (GO-PEG), as a drug carrier, which was loaded with erlotinib and showed promising anticancer effects on NPC cells. Methods The effects of GO-PEG-erlotinib on the proliferation, migration, and invasion of NPC cells were investigated by WST-8 assay, wound healing assay, and invasion assay, respectively. RNA sequencing was conducted and analyzed to determine the molecular mechanisms by which GO-PEG-erlotinib affects NPC cells. Results Our results showed that GO-PEG-erlotinib reduced NPC cell viability in a dose-dependent manner and also inhibited the migration and invasion of NPC cells. The RNA sequencing revealed several related molecular mechanisms. Conclusion GO-PEG-erlotinib effectively suppressed NPC cell proliferation, migration, and invasion, likely by several mechanisms. GO-PEG-erlotinib may be a potential therapeutic agent for treating NPC in the future.
Collapse
Affiliation(s)
- Ming-Ying Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Bin Hsu
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Chin Lan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Materials Engineering, Ming Chi University of Technology, Taipei, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkuo Medical Center and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
34
|
Sharma H, Mondal S. Functionalized Graphene Oxide for Chemotherapeutic Drug Delivery and Cancer Treatment: A Promising Material in Nanomedicine. Int J Mol Sci 2020; 21:E6280. [PMID: 32872646 PMCID: PMC7504176 DOI: 10.3390/ijms21176280] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
The usage of nanomaterials for cancer treatment has been a popular research focus over the past decade. Nanomaterials, including polymeric nanomaterials, metal nanoparticles, semiconductor quantum dots, and carbon-based nanomaterials such as graphene oxide (GO), have been used for cancer cell imaging, chemotherapeutic drug targeting, chemotherapy, photothermal therapy, and photodynamic therapy. In this review, we discuss the concept of targeted nanoparticles in cancer therapy and summarize the in vivo biocompatibility of graphene-based nanomaterials. Specifically, we discuss in detail the chemistry and properties of GO and provide a comprehensive review of functionalized GO and GO-metal nanoparticle composites in nanomedicine involving anticancer drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Horrick Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA;
| | | |
Collapse
|
35
|
Makvandi P, Ghomi M, Ashrafizadeh M, Tafazoli A, Agarwal T, Delfi M, Akhtari J, Zare EN, Padil VVT, Zarrabi A, Pourreza N, Miltyk W, Maiti TK. A review on advances in graphene-derivative/polysaccharide bionanocomposites: Therapeutics, pharmacogenomics and toxicity. Carbohydr Polym 2020; 250:116952. [PMID: 33049857 DOI: 10.1016/j.carbpol.2020.116952] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022]
Abstract
Graphene-based bionanocomposites are employed in several ailments, such as cancers and infectious diseases, due to their large surface area (to carry drugs), photothermal properties, and ease of their functionalization (owing to their active groups). Modification of graphene-derivatives with polysaccharides is a promising strategy to decrease their toxicity and improve target ability, which consequently enhances their biotherapeutic efficacy. Herein, functionalization of graphene-based materials with carbohydrate polymers (e.g., chitosan, starch, alginate, hyaluronic acid, and cellulose) are presented. Subsequently, recent advances in graphene nanomaterial/polysaccharide-based bionanocomposites in infection treatment and cancer therapy are comprehensively discussed. Pharmacogenomic and toxicity assessments for these bionanocomposites are also highlighted to provide insight for future optimized and smart investigations and researches.
Collapse
Affiliation(s)
- Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 14496-14535, Iran.
| | - Matineh Ghomi
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 51666-16471, Iran
| | - Alireza Tafazoli
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tarun Agarwal
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Masoud Delfi
- Department of Chemical Sciences, University of Naples "Federico II", Naples, 80126, Italy
| | - Javad Akhtari
- Toxoplasmosis Research Center, Communicable Diseases Institute, Department of Medical Nanotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská, 1402/2, Liberec, Czech Republic
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey; Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, 34956, Turkey
| | - Nahid Pourreza
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, 6153753843, Iran
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, Białystok, 15-089, Poland
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
36
|
When polymers meet carbon nanostructures: expanding horizons in cancer therapy. Future Med Chem 2020; 11:2205-2231. [PMID: 31538523 DOI: 10.4155/fmc-2018-0540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of hybrid materials, which combine inorganic with organic materials, is receiving increasing attention by researchers. As a consequence of carbon nanostructures high chemical versatility, they exhibit enormous potential for new highly engineered multifunctional nanotherapeutic agents for cancer therapy. Whereas many groups are working on drug delivery systems for chemotherapy, the use of carbon nanohybrids for radiotherapy is rarely applied. Thus, nanotechnology offers a wide range of solutions to overcome the current obstacles of conventional chemo- and/or radiotherapies. Within this review, the structure and properties of carbon nanostructures (carbon nanotubes, nanographene oxide) functionalized preferentially with different types of polymers (synthetic, natural) are discussed. In short, synthesis approaches, toxicity investigations and anticancer efficacy of different carbon nanohybrids are described.
Collapse
|
37
|
Carbonaceous Nanomaterials Employed in the Development of Electrochemical Sensors Based on Screen-Printing Technique—A Review. Catalysts 2020. [DOI: 10.3390/catal10060680] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.
Collapse
|
38
|
Leitão MM, de Melo‐Diogo D, Alves CG, Lima‐Sousa R, Correia IJ. Prototypic Heptamethine Cyanine Incorporating Nanomaterials for Cancer Phototheragnostic. Adv Healthc Mater 2020; 9:e1901665. [PMID: 31994354 DOI: 10.1002/adhm.201901665] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Developing technologies that allow the simultaneous diagnosis and treatment of cancer (theragnostic) has been the quest of numerous interdisciplinary research teams. In this context, nanomaterials incorporating prototypic near infrared (NIR)-light responsive heptamethine cyanines have been showing very promising results for cancer theragnostic. The precisely engineered features of these nanomaterials endow them with the ability to achieve a high tumor accumulation, enabling a tumor's visualization by NIR fluorescence and photoacoustic imaging modalities. Upon interaction with NIR light, the tumor-homed heptamethine cyanine-incorporating nanomaterials can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. This progress report analyses the application of nanomaterials incorporating prototypic NIR-light responsive heptamethine cyanines (IR775, IR780, IR783, IR797, IR806, IR808, IR820, IR825, IRDye 800CW, and Cypate) for cancer photothermal therapy, photodynamic therapy, and imaging. Overall, the continuous development of nanomaterials incorporating the prototypic NIR absorbing heptamethine cyanines will cement their phototheragnostic capabilities.
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Cátia G. Alves
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Rita Lima‐Sousa
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
| | - Ilídio J. Correia
- CICS‐UBI‐Centro de Investigação em Ciências da SaúdeUniversidade da Beira Interior 6200‐506 Covilhã Portugal
- CIEPQPF‐Departamento de Engenharia QuímicaUniversidade de CoimbraRua Sílvio Lima 3030‐790 Coimbra Portugal
| |
Collapse
|
39
|
Pluronic-based graphene oxide-methylene blue nanocomposite for photodynamic/photothermal combined therapy of cancer cells. Photodiagnosis Photodyn Ther 2020; 29:101640. [DOI: 10.1016/j.pdpdt.2019.101640] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 12/08/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
|
40
|
de Melo-Diogo D, Lima-Sousa R, Alves CG, Correia IJ. Graphene family nanomaterials for application in cancer combination photothermal therapy. Biomater Sci 2020; 7:3534-3551. [PMID: 31250854 DOI: 10.1039/c9bm00577c] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Combining hyperthermia with other therapies holds a great potential for improving cancer treatment. In this approach, the increase in the body temperature can exert a therapeutic effect on cells and/or enhance the effectiveness of anticancer agents. However, the conventional methodologies available to induce hyperthermia cannot confine a high temperature increase to the tumor-site while maintaining healthy tissues unexposed and ensuring minimal invasiveness. To overcome these limitations, combination photothermal therapy (PTT) mediated by graphene family nanomaterials (GFN) has been showing promising results. Such is owed to the ability of GFN to accumulate at the tumor site and convert near infrared light into heat, enabling a hyperthermia with a high spatial-temporal resolution. Furthermore, GFN can also incorporate different therapeutic agents on their structure for delivery purposes to cancer cells. In this way, the combination PTT mediated by GFN can result in an improved therapeutic effect. In this review, the combination of GFN mediated PTT with chemo-, photodynamic-, gene-, radio-, and immuno-therapies is examined. Furthermore, the main parameters that influence these types of combination approaches are also analyzed, with emphasis on the photothermal potential of GFN and on the vascular and cellular effects produced by the temperature increase mediated by GFN.
Collapse
Affiliation(s)
- Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal.
| | | | | | | |
Collapse
|
41
|
Demirel E, Karaca E, Yuksel Durmaz Y. Effective PEGylation method to improve biocompatibility of graphene derivatives. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Leitão MM, Alves CG, de Melo-Diogo D, Lima-Sousa R, Moreira AF, Correia IJ. Sulfobetaine methacrylate-functionalized graphene oxide-IR780 nanohybrids aimed at improving breast cancer phototherapy. RSC Adv 2020; 10:38621-38630. [PMID: 35517523 PMCID: PMC9057306 DOI: 10.1039/d0ra07508f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 01/23/2023] Open
Abstract
The application of Graphene Oxide (GO) in cancer photothermal therapy is hindered by its lack of colloidal stability in biologically relevant media and modest Near Infrared (NIR) absorption. In this regard, the colloidal stability of GO has been improved by functionalizing its surface with poly(ethylene glycol) (PEG), which may not be optimal due to the recent reports on PEG immunogenicity. On the other hand, the chemical reduction of GO using hydrazine hydrate has been applied to enhance its photothermal capacity, despite decreasing its cytocompatibility. In this work GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780, for the first time, aiming to improve its colloidal stability and phototherapeutic capacity. The attained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and adequate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biologically relevant media, while its non-SBMA functionalized equivalent promptly precipitated under the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold, leading to a 1.2 times higher photothermal heating. In in vitro cell studies, the combination of SBMA-functionalized GO with NIR light only reduced breast cancer cells' viability to 73%. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells' viability decreased to 20%, hence confirming the potential of this nanomaterial for cancer photothermal therapy. IR780 loaded SBMA-coated GO displayed an improved colloidal stability in biologically relevant media and an enhanced photothermal capacity.![]()
Collapse
Affiliation(s)
- Miguel M. Leitão
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Cátia G. Alves
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Rita Lima-Sousa
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - André F. Moreira
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
| | - Ilídio J. Correia
- CICS-UBI – Centro de Investigação em Ciências da Saúde
- Universidade da Beira Interior
- 6200-506 Covilhã
- Portugal
- CIEPQPF – Departamento de Engenharia Química
| |
Collapse
|
43
|
Wu C, Tian Y, Zhang Y, Xu J, Wang Y, Guan X, Li T, Yang H, Li S, Qin X, Liu Y. Acid-Triggered Charge-Convertible Graphene-Based All-in-One Nanocomplex for Enhanced Genetic Phototherapy of Triple-Negative Breast Cancer. Adv Healthc Mater 2020; 9:e1901187. [PMID: 31800164 DOI: 10.1002/adhm.201901187] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/02/2019] [Indexed: 12/31/2022]
Abstract
Highly efficient and stimulus-responsive nanomedicines for cancer treatment are currently receiving tremendous attention. In this study, an acid-triggered charge-reversible graphene-based all-in-one nanocomplex is appropriately designed by surface modification with multilayer polymers and simultaneous co-transportation of photosensitizer indocyanine green (ICG) and oligonucleotide inhibitor of miR-21 (miR-21i) to achieve highly efficient genetic phototherapy in a controlled manner. The nanocomplex (denoted as GPCP/miR-21i/ICG) effectively protects miR-21i from degradation and exhibits excellent photothermal/photochemical reactive oxygen species (ROS) generation as well as fluorescence imaging ability. The cargoes ICG and miR-21i can significantly be released at acidic pH compared with normal physiological medium and escaped from endosomes/lysosomes due to the acid-triggered charge reversal effect. Typically, the released miR-21i downregulate the endogenous miR-21 and result in the upregulation of the target proteins PTEN and Bax, thus increasing the phototherapeutic efficiency of ICG. High in vivo anticancer efficiency against the MDA-MB-231 triple-negative breast cancer (TNBC) model is obtained due to the combination of genetic regulation of miR-21i and the photokilling effect of ICG. This work highlights the great potential of this smart nanocomplex as an attractive modality of gene-photo combined treatment of cancer, especially for intractable TNBC.
Collapse
Affiliation(s)
- Chunhui Wu
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Yuan Tian
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Yingxue Zhang
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Jiming Xu
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Yikun Wang
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Xiaotian Guan
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Tingting Li
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Hong Yang
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Shun Li
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Xiang Qin
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
| | - Yiyao Liu
- Department of BiophysicsSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Center for Information in BiologyUniversity of Electronic Science and Technology of China Chengdu 610054 P. R. China
- Hospital of Chengdu University of Traditional Chinese Medicine No.39 Shi‐er‐qiao Road Chengdu 610072 Sichuan P. R. China
| |
Collapse
|
44
|
Mansouri N, Al-Sarawi SF, Mazumdar J, Losic D. Advancing fabrication and properties of three-dimensional graphene-alginate scaffolds for application in neural tissue engineering. RSC Adv 2019; 9:36838-36848. [PMID: 35539075 PMCID: PMC9075535 DOI: 10.1039/c9ra07481c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/27/2019] [Indexed: 11/21/2022] Open
Abstract
Neural tissue engineering provides enormous potential for restoring and improving the function of diseased/damaged tissues and promising opportunities in regenerative medicine, stem cell technology, and drug discovery. The conventional 2D cell cultures have many limitations to provide informative and realistic neural interactions and network formation. Hence, there is a need to develop three-dimensional (3D) bioscaffolds to facilitate culturing cells with matched microenvironment for cell growth and interconnected pores for penetration and migration of cells. Herein, we report the synthesis and characterization of 3D composite bioscaffolds based on graphene-biopolymer with porous structure and improved performance for tissue engineering. A simple, eco-friendly synthetic method is introduced and optimized for synthesis of this hybrid fibrous scaffold by combining Graphene Oxide (GO) and Sodium Alginate (Na-ALG) which are specifically selected to match the mechanical strength of the central nervous system (CNS) tissue and provide porous structure for connective tissue engineering. Properties of the developed scaffold in terms of the structure, porosity, thermal stability, mechanical properties, and electrical conductivity are presented. These properties were optimised through key synthesis conditions including GO concentrations, reduction process and crosslinking time. In contrast to other studies, the presented structure maintains its stability in aqueous media and uses a bio-friendly reducing agent which enable the structure to enhance neuron cell interactions and act as nerve conduits for neurological diseases.
Collapse
Affiliation(s)
- Negar Mansouri
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Said F Al-Sarawi
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Jagan Mazumdar
- School of Electrical and Electronic Engineering, University of Adelaide Adelaide Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, University of Adelaide Adelaide Australia
- ARC Research Hub for Graphene Enabled Industry Transformation, University of Adelaide Adelaide Australia
| |
Collapse
|
45
|
Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N. Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123623] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Uskoković V, Tang S, Wu VM. Targeted magnetic separation of biomolecules and cells using earthicle-based ferrofluids. NANOSCALE 2019; 11:11236-11253. [PMID: 31161186 DOI: 10.1039/c9nr01579e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Targeting specific molecular or cell populations within single tissues or multicomponent in vitro systems is a most sought goal in biomedicine. Here we report on targeted magnetic separation of cells and biomolecules using a ferrofluid comprising superparamagnetic iron-oxide/silicate/carbon core/shell/crust nanoparticles in combination with a handheld, 2.5 cm3 NdFeB magnet (≤180 mT) and one minute exposure time. Ferrofluids were highly effective at separating (i) biomolecules, (ii) bacteria and (iii) eukaryotic cells from solutions, and they also exhibited selectivity in the separation of all three families of entities. Specifically, they were more effective at separating the negatively charged protein, albumin in the presence of the external magnetic field, but were more effective at precipitating the positively charged protein, lysozyme without the application of the external field. Because of the more effective sorption of proteins than carbohydrates on carbon and the shielding of peptidoglycans by the transmembrane proteins and hydrophilic heads of the outer membrane amphiphiles in Gram-negative bacteria, they were separated more effectively than their Gram-positive counterparts. Ferrofluids were also more efficient at separating the clinical isolate, methicillin-resistant version of S. aureus (MRSA) than its regular, lab strain and the effect is thought to be due to structural changes to the cell envelope caused by the overexpression of efflux pumps or by the higher rate of conjugation conditioning horizontal gene transfer in MRSA than in the regular, nonresistant strain. Ferrofluids also displayed a greater affinity for the cancer cells than for the normal, primary cells and allowed for targeted separation of the former after the cells were allowed to uptake the nanoparticles for 24 h. This selectivity should allow for an effective separation of cancer cells interspersed within a healthy cell population. Interaction with bacterial and eukaryotic cells was driven neither by electrostatic attraction nor chemisorption, but by weaker, van der Waals and π-interactions. Adsorption was also endothermic, irreversible for the most part, and more favorable at high concentrations, as inferred by comparison with Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. These targeted effects are relevant for numerous fields of biomedicine and biotechnologies and require further insight for optimization and translation.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA. and Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Center for Targeted Drug Delivery, Chapman University, Irvine, CA 92618-1908, USA
| |
Collapse
|
47
|
Pramanik N, Ranganathan S, Rao S, Suneet K, Jain S, Rangarajan A, Jhunjhunwala S. A Composite of Hyaluronic Acid-Modified Graphene Oxide and Iron Oxide Nanoparticles for Targeted Drug Delivery and Magnetothermal Therapy. ACS OMEGA 2019; 4:9284-9293. [PMID: 31460017 PMCID: PMC6648023 DOI: 10.1021/acsomega.9b00870] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/15/2019] [Indexed: 05/27/2023]
Abstract
Graphene oxide (GO) nanoparticles have been developed for a variety of biomedical applications as a number of different therapeutic modalities may be added onto them. Here, we report the development and testing of such a multifunctional GO nanoparticle platform that contains a grafted cell-targeting functionality, active pharmaceutical ingredients, and particulates that enable the use of magnetothermal therapy. Specifically, we demonstrate the ability to covalently attach hyaluronic acid (HA) onto GO, and the resultant nanoparticulates (GO-HA) exhibited low inherent toxicity toward two different breast cancer cell lines, BT-474 and MDA-MB-231. Doxorubicin (Dox) and paclitaxel (Ptx) were successfully loaded onto GO-HA with high and moderate efficiencies, respectively. A GO-HA-Dox/Ptx system was significantly better than the GO-Dox/Ptx system at specifically killing CD44-expressing MDA-MB-231 cells but not BT-474 cells that do not express CD44. Further, modified iron oxide nanoparticles were loaded onto the GO-HA-Dox system, enabling the use of magnetic hyperthermia. Hyperthermia in combination with Dox treatment through the GO-HA system showed significantly better performance in reducing viable tumor cell numbers when compared to the individual systems. In summary, we showcase a multifunctional GO nanoparticle system that demonstrates improved efficacy in killing tumor cells.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Santhalakshmi Ranganathan
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Sunaina Rao
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Kaushik Suneet
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Shilpee Jain
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Annapoorni Rangarajan
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| | - Siddharth Jhunjhunwala
- Centre
for BioSystems Science and Engineering and Molecular Reproduction, Development
and Genetics, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
48
|
Reina G, Ruiz A, Murera D, Nishina Y, Bianco A. "Ultramixing": A Simple and Effective Method To Obtain Controlled and Stable Dispersions of Graphene Oxide in Cell Culture Media. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7695-7702. [PMID: 30693754 DOI: 10.1021/acsami.8b18304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The last decade has seen an increase in the application of graphene oxide (GO) in the biomedical field. GO has been successfully exploited for its ability to deliver many kinds of drugs into target cells. However, GO toxicity assessment is still controversial. Several studies have demonstrated that GO protein coating is crucial to alleviate the material's toxicity. Besides, coronation leads to the formation of big agglomerates, reducing the cellular uptake of the material and thus its therapeutic efficiency. In this work, we propose a simple and efficient method based on rapid (ultra-turrax, UT) mixing to control protein corona formation. Using the UT protocol, we were able to reduce GO agglomeration in the presence of proteins and obtain stable GO dispersions in cell culture media. By labelling GO with luminescent nanoparticles (quantum dots), we studied the GO internalization kinetic and efficiency. Comparing the "classic" and UT protocols, we found that the latter allows faster and more efficient internalization both in macrophages and HeLa cells without affecting cell viability. We believe that the use of UT protocol will be interesting and suitable for the preparation of next-generation GO-based drug-delivery platforms.
Collapse
Affiliation(s)
- Giacomo Reina
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Amalia Ruiz
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | - Diane Murera
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| | | | - Alberto Bianco
- University of Strasbourg, CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 , 67000 Strasbourg , France
| |
Collapse
|
49
|
|
50
|
A simple immunosensor for alpha-fetoprotein determination based on gold nanoparticles-dextran-reduced graphene oxide. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|