1
|
Wen J, Dan Y, Liu X, Li H. Promoting microalgal biofilm formation by crushed oyster shell-hydroxyapatite layer on micropatterned aluminum coating for heavy metal ions removal. Colloids Surf B Biointerfaces 2024; 243:114168. [PMID: 39190939 DOI: 10.1016/j.colsurfb.2024.114168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Microalgal biomass has shown inspiring potential for the heavy metal removal from wastewater, and forming microalgal biofilm is one of the sustainable methods for the microalgal biomass production. Here we report the formation of microalgal biofilm by accelerated colonization of typical algae Chlorella on thermal sprayed aluminum (Al) coatings with biologically modified surfaces. Micro-patterning surface treatment of the Al coatings promotes the attachment of Chlorella from 6.31 % to 17.51 %. Further enhanced algae attachment is achieved through liquid flame spraying a bioactive crushed oyster shell-hydroxyapatite (CaCO3-HA) composite top layer on the micropatterned coating, reaching 46.03-49.62 % of Chlorella attachment ratio after soaking in Chlorella suspension for 5 days. The rapidly formed microalgal biofilm shows an adsorption ratio of 95.43 % and 85.23 % for low concentration Zn2+ and Cu2+ in artificial seawater respectively within 3 days. Quick interaction has been realized between heavy metal ions and the negatively-charged extracellular polymeric substances (EPS) matrix existing in the biofilm. Fourier transform infrared spectroscopy (FTIR) results indicate that both carboxyl and phosphoryl groups of biofilms are crucial in the adsorption of Cu2+ and the adsorption of Zn2+ is due to the hydroxyl and phosphate groups. Meanwhile, the biofilm could act as a barrier to protect Chlorella against the attack of the heavy metal ions with relatively low concentrations in aqueous solution. The route of quick cultivating microalgal biofilm on marine structures through constructing biological layer on their surfaces would give insight into developing new techniques for removing low concentration heavy metal ions from water for environmental bioremediation.
Collapse
Affiliation(s)
- Jianxin Wen
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxin Dan
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xiaomei Liu
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Hua Li
- Zhejiang-Japan Joint Laboratory for Antibacterial and Antifouling Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Andrew M, Jayaraman G. Production optimization and antioxidant potential of exopolysaccharide produced by a moderately halophilic bacterium Virgibacillus dokdonensis VITP14. Prep Biochem Biotechnol 2024:1-19. [PMID: 38963714 DOI: 10.1080/10826068.2024.2370879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
This study aimed to enhance the extracellular polymeric substances (EPS) production of Virgibacillus dokdonensis VITP14 and explore its antioxidant potential. EPS and biomass production by VITP14 strain were studied under different culture parameters and media compositions using one factor at a time method. Among different nutrient sources, glucose and peptone were identified as suitable carbon and nitrogen sources. Furthermore, the maximum EPS production was observed at 5% of inoculum size, 5 g/L of NaCl, and 96 h of fermentation. Response surface methodology was employed to augment EPS production and investigate the optimal levels of nutrient sources with their interaction. The strain was observed to produce actual maximum EPS of about 26.4 g/L for finalized optimum medium containing glucose 20 g/L, peptone 10 g/L, and NaCl 50 g/L while the predicted maximum EPS was 26.5 g/L. There was a nine fold increase in EPS production after optimization study. Additionally, EPS has exhibited significant scavenging, reducing, and chelating potential (>85%) at their higher concentration. This study imparts valuable insights into optimizing moderately halophilic bacterial EPS production and evaluating its natural antioxidant properties. According to findings, V. dokdonensis VITP14 was a promising isolate that will provide significant benefits to biopolymer producing industries.
Collapse
Affiliation(s)
- Monic Andrew
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gurunathan Jayaraman
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Wang B, Wang P, Liu S, Shi H, Teng Y. A commercial humic acid inhibits benzo(a)pyrene biodegradation by Paracoccus aminovorans HPD-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171966. [PMID: 38537831 DOI: 10.1016/j.scitotenv.2024.171966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 03/23/2024] [Indexed: 04/09/2024]
Abstract
Benzo(a)pyrene (BaP) is posing serious threats to soil ecosystems and its bioremediation usually limited by environmental factors and microbial activity. Humic acid (HA), a ubiquitous heterogeneous organic matter, which could affect the fate of environmental pollutants. However, the impact of HA on bioremediation of organic contamination remains controversial. In the present study, the biodegradation of BaP by Paracoccus aminovorans HPD-2 with and without HA was explored. Approximately 87.4 % of BaP was biodegraded in the HPD-2 treatment after 5 days of incubation, whereas the addition of HA dramatically reduced BaP biodegradation to 56.0 %. The limited BaP biodegradation in the HA + HPD-2 treatment was probably due to the decrease of BaP bioavailability which induced by the adsorption of HA with unspecific interactions. The excitation-emission matrix (EEM) of fluorescence characteristics showed that strain HPD-2 was responsible for the presence of protein-like substances and the microbial original humic substances in the HPD-2 treatment. Addition of HA would result in the increase of soluble microbial humic-like material, which should ascribe to the biodegradation of BaP and probably utilization of HA. Furthermore, both the growth and survival of strain HPD-2 were inhibited in the HA + HPD-2 treatment, because of the limited available carbon source (i.e. BaP) at the presence of HA. The expression of gene1789 and gene2589 dramatically decreased in the HA + HPD-2 treatment, and this should be responsible for the decrease of BaP biodegradation as well. This study reveals the mechanism that HA affect the BaP biodegradation, and the decrease of biodegradation should ascribe to the interaction of HA and bacterial strain. Thus, the bioremediation strategies of PAHs need to consider the effects of organic matter in environment.
Collapse
Affiliation(s)
- Beibei Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Peiheng Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanhuan Shi
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land (Arable), Ministry of Natural Resources, Nanjing 210018, China.
| |
Collapse
|
4
|
Pereira-García C, Del Amo EH, Vigués N, Rey-Velasco X, Rincón-Tomás B, Pérez-Cruz C, Sanz-Sáez I, Hu H, Bertilsson S, Pannier A, Soltmann U, Sánchez P, Acinas SG, Bravo AG, Alonso-Sáez L, Sánchez O. Unmasking the physiology of mercury detoxifying bacteria from polluted sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133685. [PMID: 38335604 DOI: 10.1016/j.jhazmat.2024.133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.
Collapse
Affiliation(s)
- Carla Pereira-García
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Elena H Del Amo
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, 17003 Girona, Spain
| | - Núria Vigués
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Xavier Rey-Velasco
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Blanca Rincón-Tomás
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Carla Pérez-Cruz
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Isabel Sanz-Sáez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain; Instituto de Diagnóstico Ambiental y Estudios del Agua (IDAEA-CSIC), Barcelona, Spain
| | - Haiyan Hu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Angela Pannier
- GMBU e.V., Department of Functional Coatings, D-01454 Radeberg, Germany
| | - Ulrich Soltmann
- GMBU e.V., Department of Functional Coatings, D-01454 Radeberg, Germany
| | - Pablo Sánchez
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Silvia G Acinas
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Andrea G Bravo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain
| | - Laura Alonso-Sáez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Txatxarramendi ugartea z/g, 48395 Sukarrieta, Spain
| | - Olga Sánchez
- Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
5
|
Zhang M, Hong M, Wang Z, Jiao X, Wu C. Temperature stress improved exopolysaccharide yield from Tetragenococcus halophilus: Structural differences and underlying mechanisms revealed by transcriptomic analysis. BIORESOURCE TECHNOLOGY 2023; 390:129863. [PMID: 37839647 DOI: 10.1016/j.biortech.2023.129863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to enhance exopolysaccharide production by Tetragenococcus halophilus, and results showed that low temperature (20 °C) significantly improved exopolysaccharide production. Based on the analysis of batch fermentation kinetic parameters, a temperature-shift strategy was proposed, and the exopolysaccharide yield was increased by 28 %. Analysis of the structure of exopolysaccharide suggested that low temperature changed the molecular weight and monosaccharide composition. Transcriptomic analysis was performed to reveal mechanisms of low temperature improving exopolysaccharide production. Results suggested that T. halophilus regulated utilization of carbon sources through phosphotransferase system and increased the expression of key genes in exopolysaccharide biosynthesis to improve exopolysaccharide production. Meanwhile, metabolic pathways involved in glycolysis, amino acids synthesis, two-component system and ATP-binding cassette transporters were affected at low temperature. Results presented in this paper provided a theoretical basis for biosynthetic pathway of exopolysaccharide in T. halophilus and aided to strengthen its production and application in many areas.
Collapse
Affiliation(s)
- Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mengting Hong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Zhang M, Chen Y, Lai J, Wang X, Hu K, Li J, Li Q, He L, Chen S, Liu A, Ao X, Yang Y, Liu S. Cypermethrin adsorption by Lactiplantibacillus plantarum and its behavior in a simulated fecal fermentation model. Appl Microbiol Biotechnol 2023; 107:6985-6998. [PMID: 37702791 DOI: 10.1007/s00253-023-12764-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/15/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023]
Abstract
The presence of cypermethrin in the environment and food poses a significant threat to human health. Lactic acid bacteria have shown promise as effective absorbents for xenobiotics and well behaved in wide range of applications. This study aimed to characterize the biosorption behavior of cypermethrin by Lactiplantibacillus plantarum RS60, focusing on cellular components, functional groups, kinetics, and isotherms. Results indicated that RS60 exopolysaccharides played a crucial role removing cypermethrin, with the cell wall and protoplast contributing 71.50% and 30.29% to the overall removal, respectively. Notably, peptidoglycans exhibited a high affinity for cypermethrin binding. The presence of various cellular surface groups including -OH, -NH, -CH3, -CH2, -CH, -P = O, and -CO was responsible for the efficient removal of pollutants. Additionally, the biosorption process demonstrated a good fit with pseudo-second-order and Langmuir-Freundlich isotherm. The biosorption of cypermethrin by L. plantarum RS60 involved complex chemical and physical interactions, as well as intraparticle diffusion and film diffusion. RS60 also effectively reduced cypermethrin residues in a fecal fermentation model, highlighting its potential in mitigating cypermethrin exposure in humans and animals. These findings provided valuable insights into the mechanisms underlying cypermethrin biosorption by lactic acid bacteria and supported the advancement of their application in environmental and health-related contexts. KEY POINTS: • Cypermethrin adsorption by L. plantarum was clarified. • Cell wall and protoplast showed cypermethrin binding ability. • L. plantarum can reduce cypermethrin in a fecal fermentation model.
Collapse
Affiliation(s)
- Mengmei Zhang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jinghui Lai
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xingjie Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
- Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan, 625014, People's Republic of China.
| |
Collapse
|
7
|
Sakr EAE, Khater DZ, Kheiralla ZMH, El-Khatib KM. Statistical optimization of waste molasses-based exopolysaccharides and self-sustainable bioelectricity production for dual chamber microbial fuel cell by Bacillus piscis. Microb Cell Fact 2023; 22:202. [PMID: 37803422 PMCID: PMC10559494 DOI: 10.1186/s12934-023-02216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND The application of exopolysaccharide-producing bacteria (EPS) in dual chamber microbial fuel cells (DCMFC) is critical which can minimize the chemical oxygen demand (COD) of molasses with bioelectricity production. Hence, our study aimed to evaluate the EPS production by the novel strain Bacillus piscis by using molasses waste. Therefore, statistical modeling was used to optimize the EPS production. Its structure was characterized by UV, FTIR, NMR, and monosaccharides compositions. Eventually, to highlight B. piscis' adaptability in energy applications, bioelectricity production by this organism was studied in the BCMFC fed by an optimized molasses medium. RESULTS B. piscis OK324045 characterized by 16S rRNA is a potent EPS-forming organism and yielded a 6.42-fold increase upon supplementation of molasses (5%), MgSO4 (0.05%), and inoculum size (4%). The novel exopolysaccharide produced by Bacillus sp. (EPS-BP5M) was confirmed by the structural analysis. The findings indicated that the MFC's maximum close circuit voltage (CCV) was 265 mV. The strain enhanced the performance of DCMFC achieving maximum power density (PD) of 31.98 mW m-2, COD removal rate of 90.91%, and color removal of 27.68%. Furthermore, cyclic voltammetry (CV) revealed that anodic biofilms may directly transfer electrons to anodes without the use of external redox mediators. Additionally, CV measurements made at various sweep scan rates to evaluate the kinetic studies showed that the electron charge transfer was irreversible. The SEM images showed the biofilm growth distributed over the electrode's surface. CONCLUSIONS This study offers a novel B. piscis strain for EPS-BP5M production, COD removal, decolorization, and electricity generation of the optimized molasses medium in MFCs. The biosynthesis of EPS-BP5M by a Bacillus piscis strain and its electrochemical activity has never been documented before. The approach adopted will provide significant benefits to sugar industries by generating bioelectricity using molasses as fuel and providing a viable way to improve molasses wastewater treatment.
Collapse
Affiliation(s)
- Ebtehag A E Sakr
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt.
| | - Dena Z Khater
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), El Buhouth St., Cairo, 12622, Dokki, Egypt
| | - Zeinab M H Kheiralla
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Kamel M El-Khatib
- Chemical Engineering and Pilot Plant Department, National Research Centre (NRC), El Buhouth St., Cairo, 12622, Dokki, Egypt
| |
Collapse
|
8
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
9
|
Prasad S, Purohit SR. Microbial exopolysaccharide: Sources, stress conditions, properties and application in food and environment: A comprehensive review. Int J Biol Macromol 2023:124925. [PMID: 37236568 DOI: 10.1016/j.ijbiomac.2023.124925] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Microbial glucan or exopolysaccharides (EPS) have caught an eye of researchers from decades. The unique characteristics of EPS make it suitable for various food and environmental applications. This review overviews the different types of exopolysaccharides, sources, stress conditions, properties, characterization techniques and applications in food and environment. The yield and production condition of EPS is a major factor affecting the cost and its applications. Stress conditions are very important as it stimulates the microorganism for enhanced EPS production and affects its properties. As far as application is concerned specific properties of EPS such as, hydrophilicity, less oil uptake behavior, film forming ability, adsorption potential have applications in both food and environment sector. Novel and improved method of production, feed stock and right choice of microorganisms with stress conditions are critical for desired functionality and yield of the EPS.
Collapse
Affiliation(s)
- Sanstuti Prasad
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India
| | - Soumya Ranjan Purohit
- Food and Bioprocessing Lab, Department of Food Engineering and Technology, Tezpur University, Assam, India.
| |
Collapse
|
10
|
Jaiswal TP, Chakraborty S, Sharma S, Mishra A, Mishra AK, Singh SS. Prospects of a hot spring-originated novel cyanobacterium, Scytonema ambikapurensis, for wastewater treatment and exopolysaccharide-enriched biomass production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53424-53444. [PMID: 36856995 DOI: 10.1007/s11356-023-26032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The present work performs the polyphasic characterization of a novel cyanobacterial species Scytonema ambikapurensis isolated from an Indian hot spring and evaluates its wastewater bioremediation potential. While the physicochemical analyses of the wastewater indicated high load of nutrients and metals, the wastewater bioremediation experiment performed using the test cyanobacterium denoted the removal of 70 and 86% phosphate, 49 and 66% sulfate, 96 and 98% nitrate, 91 and 92% nitrite, 95 and 96% ammonia, 66 and 72% chloride, 79 and 81% zinc, 68 and 80% nickel, 81 and 90% calcium, and 80 and 90% potassium from the autoclaved and un-autoclaved wastewater, respectively, after 20 days of culturing. The kinetics study of zinc and nickel removal from wastewater revealed that the cyanobacterium employed sequential biosorption (by following pseudo-second-order kinetics model) and bioaccumulation methods to remove these two metals. The quality of the autoclaved and un-autoclaved wastewater was further improved by the cyanobacterium through reduction of hardness by 74 and 81%, respectively. In wastewater, the cyanobacterium not only enhanced its biomass, chlorophyll and carbohydrate contents, but also produced small amount of released and high capsular exopolysaccharide (EPS). The FTIR and TGA analyses of capsular EPS unraveled that it was a negatively charged sulfated biomolecule having thermostability up to 240 °C, which suggested its possible use as excellent emulsifying, viscosifying, and biosorption agent. The credibility of this EPS as biosorption agent was ascertained by evaluating its metal chelating ability. Finally, the experimental data denoting the ability of S. ambikapurensis to bioremediate wastewater and simultaneously produce EPS was statistically validated by PCA1-pollutant removal model and the PCA2-cellular constituent model, respectively. Briefly, the study discloses that the cyanobacterium has huge biotechnological and industrial importance as it bioremediates wastewater and simultaneously produces thermostable exopolysaccharide.
Collapse
Affiliation(s)
- Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sanjay Sharma
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
11
|
Wróbel M, Śliwakowski W, Kowalczyk P, Kramkowski K, Dobrzyński J. Bioremediation of Heavy Metals by the Genus Bacillus. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20064964. [PMID: 36981874 PMCID: PMC10049623 DOI: 10.3390/ijerph20064964] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/12/2023]
Abstract
Environmental contamination with heavy metals is one of the major problems caused by human activity. Bioremediation is an effective and eco-friendly approach that can reduce heavy metal contamination in the environment. Bioremediation agents include bacteria of the genus Bacillus, among others. The best-described species in terms of the bioremediation potential of Bacillus spp. Are B. subtilis, B. cereus, or B. thuringiensis. This bacterial genus has several bioremediation strategies, including biosorption, extracellular polymeric substance (EPS)-mediated biosorption, bioaccumulation, or bioprecipitation. Due to the above-mentioned strategies, Bacillus spp. strains can reduce the amounts of metals such as lead, cadmium, mercury, chromium, arsenic or nickel in the environment. Moreover, strains of the genus Bacillus can also assist phytoremediation by stimulating plant growth and bioaccumulation of heavy metals in the soil. Therefore, Bacillus spp. is one of the best sustainable solutions for reducing heavy metals from various environments, especially soil.
Collapse
Affiliation(s)
- Monika Wróbel
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Wojciech Śliwakowski
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Białystok, Kilińskiego 1 Str., 15-089 Białystok, Poland
| | - Jakub Dobrzyński
- Institute of Technology and Life Sciences—National Research Institute, Falenty, 3 Hrabska Avenue, 05-090 Raszyn, Poland
| |
Collapse
|
12
|
Martínez-Herrera RE, Alemán-Huerta ME, Rutiaga-Quiñones OM, de Luna-Santillana EJ, Elufisan TO. A comprehensive view of Bacillus cereus as a polyhydroxyalkanoate (PHA) producer: A promising alternative to Petroplastics. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Cheah C, Cheow YL, Yien Ting AS. Immobilization of exopolymeric substances from bacteria for metal removal: A study on characterization, optimization, reusability and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116244. [PMID: 36116257 DOI: 10.1016/j.jenvman.2022.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the immobilization of exopolymeric substances (EPS) from Bacillus cereus using sodium alginate to form EPS beads for metal removal. The EPS beads were characterized and their optimum biosorption conditions established (biosorbent dosage, initial metal concentration and pH of metal solutions). The EPS beads were also tested for reusability by using them continuously for five metal removal cycles with desorption process in between cycles. The toxicity of the treated metal solutions was tested by phytotoxicity tests. Results revealed that EPS beads demonstrated significantly higher metal removal efficiency (Pb: 99.26%, Cr: 50.73%, Cu: 48.94%, Zn: 29.81%, Cd: 20.29%) compared to plain alginate beads (without EPS) (Pb: 84.45%, Cu: 31%, Cr: 28.37%, Zn: 11.91%, Cd: 9.37%). SEM-EDX analysis detected Cu, Pb, Zn, Cd and Cr on the surface of EPS beads. Optimum conditions for Pb removal by EPS beads were from the use of 0.1 g of biosorbent at 100 mg/L initial metal concentration and pH 5. By contrast, Cu, Zn, Cd and Cr were optimally removed by 0.3 g of biosorbent at 25 mg/L initial metal concentration and pH 5. EPS beads can be reused up to five times while maintaining a high rate of metal removal efficiency (Pb- 99.52%, Cr- 89.23%, Cu- 89.17%, Zn-52.52%, Cd-39.12%). This was achieved through desorption with nitric acid that consistently recovered 76-93% of the metal adsorbed. FTIR analysis reveals that nitric acid is capable of restoring the functional groups present within EPS beads, allowing it to bind with metal ions in repeated cycles. Metal solutions treated with EPS beads were less toxic as seedling shoots (pre-treated: 0-10 cm, post-treated: 1.2-18.1 cm) and roots (pre-treated: 0-7.8 cm, post-treated: 0.8-15.1 cm) grew well, which suggested that reduced levels of metals led to reduced phytotoxicity. This study provides an insight into the use of EPS beads for metal removal, highlighting the benefits and reusability of the beads for future wastewater treatment.
Collapse
Affiliation(s)
- Caleb Cheah
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Yuen Lin Cheow
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 2022; 291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
15
|
Kumar A, Mukhia S, Kumar R. Production, characterisation, and application of exopolysaccharide extracted from a glacier bacterium Mucilaginibacter sp. ERMR7:07. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
16
|
Madline A, Benidire L, Boularbah A. Alleviation of salinity and metal stress using plant growth-promoting rhizobacteria isolated from semiarid Moroccan copper-mine soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:67185-67202. [PMID: 34247350 DOI: 10.1007/s11356-021-15168-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Phytoremediation is an eco-friendly method for rehabilitation of mine tailing. Some heavy metals and salt-tolerant plant growth-promoting rhizobacteria (PGPR) could be beneficial in alleviating soil salinity and heavy metal stress during plant growth. The aim of this work is to select PGPR that could be used in phytoremediation process. Twenty-nine rhizobacteria are examined for their ability to grow at increasing concentrations of NaCl, Zn, Pb, Cu, and Cd. The results showed that seventeen rhizobacteria displayed high salinity and metal tolerance up to 100 g L-1 of NaCl, 5 mM of Cd, 9 mM of Pb, 10 mM of Zn, and 6 mM of Cu. Moreover, almost all tested bacteria maintained their PGP traits under 10% of NaCl and multi-metal stress. Based on seedling bioassay under metallic and salt stress, using Peganum harmala L. and Lactuca sativa L., beneficial effects of seed inoculation with bacterial consortia (Mesorhizobium tamadayense, Enterobacter xiangfangensis, Pseudomonas azotifigens, and Streptomyces caelestis) have been observed in terms of root and shoot elongation. Our results show that the stress-tolerant consortium used has a great potential to sustain plants establishment in heavily disturbed soils.
Collapse
Affiliation(s)
- Atika Madline
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Leila Benidire
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco
| | - Ali Boularbah
- Université Cadi-Ayyad, Faculté des Sciences et Techniques Marrakech, Laboratoire Bioressources et Sécurité Sanitaire des Aliments, BP 549, M-40000, Guéliz, Marrakech, Morocco.
- Center of Excellence for Soil and Africa Research in Africa, AgroBioSciences, Mohammed VI Polytechnique - University Lot 660, Hay Moulay Rachid, Ben Guerir, Morocco.
- Université Cadi Ayyad, Ecole Supérieure de Technologie, El Kelâa des Sraghna, Morocco.
| |
Collapse
|
17
|
Jasu A, Ray RR. Biofilm mediated strategies to mitigate heavy metal pollution: A critical review in metal bioremediation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Banerjee A, Sarkar S, Govil T, González-Faune P, Cabrera-Barjas G, Bandopadhyay R, Salem DR, Sani RK. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol 2021; 12:721365. [PMID: 34489911 PMCID: PMC8417407 DOI: 10.3389/fmicb.2021.721365] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/26/2021] [Indexed: 01/18/2023] Open
Abstract
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
Collapse
Affiliation(s)
- Aparna Banerjee
- Centro de investigación en Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación Y Posgrado, Universidad Católica del Maule, Talca, Chile
- Centro de Biotecnología de los Recursos Naturales (CENBio), Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | - Shrabana Sarkar
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - Tanvi Govil
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Composite and Nanocomposite Advanced Manufacturing – Biomaterials Center, Rapid City, SD, United States
| | - Patricio González-Faune
- Escuela Ingeniería en Biotecnología, Facultad de Ciencias Agrarias Y Forestales, Universidad Católica del Maule, Talca, Chile
| | | | - Rajib Bandopadhyay
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
| | - David R. Salem
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- Department of Materials and Metallurgical Engineering, South Dakota Mines, Rapid City, SD, United States
| | - Rajesh K. Sani
- Department of Botany, UGC-Center of Advanced Study, The University of Burdwan, Golapbag, Burdwan, India
- Department of Chemical and Biological Engineering, South Dakota Mines, Rapid City, SD, United States
- BuGReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, SD, United States
| |
Collapse
|
19
|
Fluorescent Characteristics and Metal Binding Properties of Different Molecular Weight Fractions in Stratified Extracellular Polymeric Substances of Activated Sludge. SEPARATIONS 2021. [DOI: 10.3390/separations8080120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The combination of heavy metals and extracellular polymeric substances (EPSs) affects the distribution of heavy metals in microbial aggregates, soil, and aquatic systems. This paper aimed to explore the binding mechanisms of EPSs of different molecular weights in activated sludge with heavy metals. We extracted the stratification components of activated sludge EPSs and divided the components into five fractions of different molecular weight ranges. In the three-dimensional fluorescence analysis of each fraction, the EPSs of activated sludge had two peaks, peak A (representing low-excitation tryptophan) and peak B (representing high-excitation tryptophan), and static quenching was the main reason for the fluorescence quenching between the compounds attributable to peak A in activated sludge EPSs and Pb2+ and Cu2+. Further exploration suggested that the EPSs of activated sludge interacted with Cd2+, Pb2+, Cu2+, and Zn2+ to form new substances. The quenching effect of the EPSs with the highest molecular weight (100 kDa–0.7 μm) was more significant, and the binding ability was more stable. This study implies that the application of EPSs from activated sludge is promising. While effectively binding heavy metals, it can also reduce the volume of the excess activated sludge.
Collapse
|
20
|
Li R, Ren W, Teng Y, Sun Y, Xu Y, Zhao L, Wang X, Christie P, Luo Y. The inhibitory mechanism of natural soil colloids on the biodegradation of polychlorinated biphenyls by a degrading bacterium. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125687. [PMID: 34088185 DOI: 10.1016/j.jhazmat.2021.125687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/05/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
In spite of extensive studies of soil model components, the role of natural soil colloids in the biodegradation of organic pollutants remain poorly understood. Accordingly, the present study selected Mollisol colloids (MCs) and Ultisol colloids (UCs) to investigate their effects on the biodegradation of 3, 3', 4, 4'-tetrachlorobiphenyl (PCB77) by Bradyrhizobium diazoefficiens USDA 110. Results demonstrated that both natural soil colloids significantly decreased the biodegradation of PCB77, which partly resulted from the significant decrease in the bioaccessibility of PCB77. Furthermore, the activity of Bradyrhizobium diazoefficiens USDA 110 was remarkably inhibited under the exposure to the two types of soil colloids, which was mainly ascribed to the inhibition of cell reproduction but not the lethal effect of reactive oxygen species. The calculated results from Ex-DLVO theory further indicated that the repulsion between UCs and biodegrading bacteria retarded the effective contact of cells with adsorbed PCB77 from UCs, resulting in the decline of the rate of cell reproduction. In general, the inhibition of MCs was limited to PCB77 bioaccessibility, whereas the negative effect of UCs was controlled by PCB77 bioaccessibility and the effective contact of cells with colloids. This study could provide implication for the enhancement of microbial remediation in contaminated soil.
Collapse
Affiliation(s)
- Ran Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Yi Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomi Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Zhang C, Li J, Wu X, Long Y, An H, Pan X, Li M, Dong F, Zheng Y. Rapid degradation of dimethomorph in polluted water and soil by Bacillus cereus WL08 immobilized on bamboo charcoal-sodium alginate. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122806. [PMID: 32497856 DOI: 10.1016/j.jhazmat.2020.122806] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
The presence of hazardous dimethomorph residues in the environment poses a threat to birds, aquatic organisms and mammals. The novel pure strain Bacillus cereus WL08 responsible for detoxifying dimethomorph was isolated from dimethomorph-polluted soils. The immobilized system of WL08 was developed using bamboo charcoal (BC) and sodium alginate (SA). Immobilization significantly improved tolerance and stability of strain WL08. Under optimal conditions of pH 7.0 and 30 ℃, free and immobilized WL08 degraded 66.95% and 96.88% of 50 mg/L dimethomorph within 72 h, respectively. Moreover, strain WL08 effectively degraded dimethomorph to simple products which were lower toxic than dimethomorph. In a continuous reactor system, immobilized WL08 removed 85.61% of dimethomorph for 30 d at an influent concentration of 50-100 mg/L. In the field soil sprayed with 4.20 kg a.i./ha 80% dimethomorph water dispersible granule (WDG) was treated by immobilized WL08, the lower half-life (1.93 d) was observed, as compared with free WL08 (4.28 d) and natural dissipation (23.82 d). Immobilized WL08 can be considered as a tool for the removal of dimethomorph in water-soil systems. This study provides a feasible microbe-based strategy for bioremediation of dimethomorph-polluted environments.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China; Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, College of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiaohong Li
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Xiaomao Wu
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Youhua Long
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Huaming An
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Xinglu Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ming Li
- Department of Plant Protection, Institute of Corp Protection, Research Center for Engineering Technology of Kiwifruit, Guizhou Engineering Research Center of Fruit Crops, College of Agriculture, Guizhou University, Guiyang, Guizhou, 550025, PR China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| |
Collapse
|
22
|
Singh S, Kumar V. Mercury detoxification by absorption, mercuric ion reductase, and exopolysaccharides: a comprehensive study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27181-27201. [PMID: 31001776 DOI: 10.1007/s11356-019-04974-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg), the environmental toxicant, is present in the soil, water, and air as it is substantially distributed throughout the environment. Being extremely toxic even at low concentration, its remediation is utterly important. Therefore, it is necessary to detoxify the contaminant within the acceptable limits before threatening the environment. Although various conventional methods are being used, irrespective of high cost, it produces intermediate toxic by-product too. Biological methods are eco-friendly, clean, greener, and safer for the remediation of heavy metals corresponding to the conventional remediation due to their economic and high-tech constraints. Bioremediation is now being used for Hg (II) removal, which involves biosorption and bioaccumulation mechanisms or both, also mercuric ion reductase, exopolysaccharide play significant role in detoxification of mercury by acting a potential instrument for the remediation of heavy metals. In this review paper, we shed light on problems caused by mercury pollution, mercury cycle, and its global scenario and detoxification approaches by biological methods and result found in the literature.
Collapse
Affiliation(s)
- Shalini Singh
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science & Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826 004, India.
| |
Collapse
|
23
|
Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, Phongthai S, You S, Regenstein JM, Seesuriyachan P. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100564] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Asgher M, Urooj Y, Qamar SA, Khalid N. Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. Int J Biol Macromol 2020; 151:984-992. [DOI: 10.1016/j.ijbiomac.2019.11.094] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/28/2019] [Accepted: 11/10/2019] [Indexed: 10/25/2022]
|
25
|
Ali P, Shah AA, Hasan F, Hertkorn N, Gonsior M, Sajjad W, Chen F. A Glacier Bacterium Produces High Yield of Cryoprotective Exopolysaccharide. Front Microbiol 2020; 10:3096. [PMID: 32117080 PMCID: PMC7026135 DOI: 10.3389/fmicb.2019.03096] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas sp. BGI-2 is a psychrotrophic bacterium isolated from the ice sample collected from Batura glacier, Pakistan. This strain produces highly viscous colonies on agar media supplemented with glucose. In this study, we have optimized growth and production of exopolysaccharide (EPS) by the cold-adapted Pseudomonas sp. BGI-2 using different nutritional and environmental conditions. Pseudomonas sp. BGI-2 is able to grow in a wide range of temperatures (4-35°C), pH (5-11), and salt concentrations (1-5%). Carbon utilization for growth and EPS production was extensively studied and we found that glucose, galactose, mannose, mannitol, and glycerol are the preferable carbon sources. The strain is also able to use sugar waste molasses as a growth substrate, an alternative for the relatively expensive sugars for large scale EPS production. Maximum EPS production was observed at 15°C, pH 6, NaCl (10 g L-1), glucose as carbon source (100 g L-1), yeast extract as nitrogen source (10 g L-1), and glucose/yeast extract ratio (10/1). Under optimized conditions, EPS production was 2.01 g L-1, which is relatively high for a Pseudomonas species compared to previous studies using the same method for quantification. High-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) analysis of EPS revealed glucose, galactose, and glucosamine as the main sugar monomers. Membrane protection assay using human RBCs revealed significant reduction in cell lysis (∼50%) in the presence of EPS, suggesting its role in membrane protection. The EPS (5%) also conferred significant cryoprotection for a mesophilic Escherichia coli k12 which was comparable to glycerol (20%). Also, improvement in lipid peroxidation inhibition (in vitro) resulted when lipids from the E. coli was pretreated with EPS. Increased EPS production at low temperatures, freeze thaw tolerance of the EPS producing strain, and increased survivability of E. coli in the presence of EPS as cryoprotective agent supports the hypothesis that EPS production is a strategy for survival in extremely cold environments such as the glacier ice.
Collapse
Affiliation(s)
- Pervaiz Ali
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Norbert Hertkorn
- Research Unit Analytical Biogeochemistry, Helmholtz Zentrum München, Munich, Germany
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, United States
| |
Collapse
|
26
|
Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohydr Polym 2020; 227:115369. [DOI: 10.1016/j.carbpol.2019.115369] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
|
27
|
Wang C, Liu Z, Huang Y, Zhang Y, Wang X, Hu Z. Cadmium-resistant rhizobacterium Bacillus cereus M4 promotes the growth and reduces cadmium accumulation in rice (Oryza sativa L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 72:103265. [PMID: 31563731 DOI: 10.1016/j.etap.2019.103265] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/27/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Rice farmland cadmium pollution is an increasing problem for food safety. Cd-resistant bacterial strain was isolated from rice rhizosphere soil and identified as Bacillus cereus M4. Treatment with M4 fermentation broth increased rice seedlings growth in vermiculite, while reduced Cd accumulation in grains of rice grown in Cd-contaminated potted soil from 0.309 to 0.186 mg/kg. Indoleacetic acid (IAA) was detected in M4 metabolites and in potted soil solutions supplemented with M4 broth. M4 broth increased the abundance of Bacillus from 0.54% to 0.95% and changed the soil bacterial community composition. These findings indicate that M4 promotes rice growth by secreting IAA and altering the rhizospheric soil microenvironment, via soil solution composition and microbial community, which may affect Cd translocation from soil to rice roots, thereby decreasing grain Cd accumulation. Therefore, B. cereus M4 is potentially suitable for the bioremediation of Cd-contaminated paddy soils.
Collapse
Affiliation(s)
- Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China.
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, People's Republic of China
| | - Yeni Zhang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Xiaohan Wang
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| | - Zhouyue Hu
- College of Food Science and Biotechnology, Tianjin Agricultural University, Tianjin, 300384, People's Republic of China
| |
Collapse
|