1
|
Pacheco-García U, Varela-López E, Serafín-López J. Immune Stimulation with Imiquimod to Best Face SARS-CoV-2 Infection and Prevent Long COVID. Int J Mol Sci 2024; 25:7661. [PMID: 39062904 PMCID: PMC11277483 DOI: 10.3390/ijms25147661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Through widespread immunization against SARS-CoV-2 prior to or post-infection, a substantial segment of the global population has acquired both humoral and cellular immunity, and there has been a notable reduction in the incidence of severe and fatal cases linked to this virus and accelerated recovery times for those infected. Nonetheless, a significant demographic, comprising around 20% to 30% of the adult population, remains unimmunized due to diverse factors. Furthermore, alongside those recovered from the infection, there is a subset of the population experiencing persistent symptoms referred to as Long COVID. This condition is more prevalent among individuals with underlying health conditions and immune system impairments. Some Long COVID pathologies stem from direct damage inflicted by the viral infection, whereas others arise from inadequate immune system control over the infection or suboptimal immunoregulation. There are differences in the serum cytokines and miRNA profiles between infected individuals who develop severe COVID-19 or Long COVID and those who control adequately the infection. This review delves into the advantages and constraints associated with employing imiquimod in human subjects to enhance the immune response during SARS-CoV-2 immunization. Restoration of the immune system can modify it towards a profile of non-susceptibility to SARS-CoV-2. An adequate immune system has the potential to curb viral propagation, mitigate symptoms, and ameliorate the severe consequences of the infection.
Collapse
Affiliation(s)
- Ursino Pacheco-García
- Department of Cardio-Renal Pathophysiology, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico
| | - Elvira Varela-López
- Laboratory of Translational Medicine, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City 14080, Mexico;
| | - Jeanet Serafín-López
- Department of Immunology, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico;
| |
Collapse
|
2
|
Aroffu M, Manca ML, Pedraz JL, Manconi M. Liposome-based vaccines for minimally or noninvasive administration: an update on current advancements. Expert Opin Drug Deliv 2023; 20:1573-1593. [PMID: 38015659 DOI: 10.1080/17425247.2023.2288856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/24/2023] [Indexed: 11/30/2023]
Abstract
INTRODUCTION Vaccination requires innovation to provide effective protection. Traditional vaccines have several drawbacks, which can be overcome with advanced technologies and different administration routes. Over the past 10 years, a significant amount of research has focussed on the delivery of antigens into liposomes due to their dual role as antigen-carrying systems and vaccine adjuvants able to increase the immunogenicity of the carried antigen. AREAS COVERED This review encompasses the progress made over the last 10 years with liposome-based vaccines designed for minimally or noninvasive administration, filling the gaps in previous reviews and providing insights on composition, administration routes, results achieved, and Technology Readiness Level of the most recent formulations. EXPERT OPINION Liposome-based vaccines administered through minimally or noninvasive routes are expected to improve efficacy and complacency of vaccination programs. However, the translation from lab-scale production to large-scale production and collaborations with hospitals, research centers, and companies are needed to allow new products to enter the market and improve the vaccination programs in the future.
Collapse
Affiliation(s)
- Matteo Aroffu
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maria Letizia Manca
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - José Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
- BioAraba, NanoBioCel research Group, Vitoria-Gasteiz, Spain
| | - Maria Manconi
- Department of Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Agallou M, Margaroni M, Tsanaktsidou E, Badounas F, Kammona O, Kiparissides C, Karagouni E. A liposomal vaccine promotes strong adaptive immune responses via dendritic cell activation in draining lymph nodes. J Control Release 2023; 356:386-401. [PMID: 36893900 DOI: 10.1016/j.jconrel.2023.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Subunit proteins provide a safe source of antigens for vaccine development especially for intracellular infections which require the induction of strong cellular immune responses. However, those antigens are often limited by their low immunogenicity. In order to achieve effective immune responses, they should be encapsulated into a stable antigen delivery system combined with an appropriate adjuvant. As such cationic liposomes provide an efficient platform for antigen delivery. In the present study, we describe a liposomal vaccine platform for co-delivery of antigens and adjuvants able to elicit strong antigen-specific adaptive immune responses. Liposomes are composed of the cationic lipid dimethyl dioctadecylammonium bromide (DDAB), cholesterol (CHOL) and oleic acid (OA). Physicochemical characterization of the formulations showed that their size was in the range of ∼250 nm with a positive zeta potential which was affected in some cases by the enviromental pH facilitating endosomal escape of potential vaccine cargo. In vitro, liposomes were effectively taken up by bone marrow dendritic cells (BMDCs) and when encapsulated IMQ they promoted BMDCs maturation and activation. Upon in vivo intramuscular administration, liposomes' active drainage to lymph nodes was mediated by DCs, B cells and macrophages. Thus, mice immunization with liposomes having encapsulated LiChimera, a previously characterized anti-leishmanial antigen, and IMQ elicited infiltration of CD11blow DCs populations in draining LNs followed by increased antigen-specific IgG, IgG2a and IgG1 levels production as well as indcution of antigen-specific CD4+ and CD8+ T cells. Collectively, the present work provides a proof-of-concept that cationic liposomes composed of DDAB, CHOL and OA adjuvanted with IMQ provide an efficient delivery platform for protein antigens able to induce strong adaptive immune responses via DCs targeting and induction of maturation.
Collapse
Affiliation(s)
- Maria Agallou
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Maritsa Margaroni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Evgenia Tsanaktsidou
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Fotis Badounas
- Molecular Genetics Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece
| | - Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece
| | - Costas Kiparissides
- Chemical Process & Energy Resources Institute, Centre for Research and Technology Hellas, P.O. Box 60361, Thessaloniki 57 001, Greece; Department of Chemical Engineering, Aristotle University of Thessaloniki, P.O. Box 472, Thessaloniki 54 124, Greece
| | - Evdokia Karagouni
- Immunology of Infection Laboratory, Hellenic Pasteur Institute, Athens 125 21, Greece.
| |
Collapse
|
4
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Caimi AT, Ramirez C, Perez AP, Romero EL, Morilla MJ. In vitro anti-melanoma activity of imiquimod in ultradeformable nanovesicles. Drug Dev Ind Pharm 2022; 48:657-666. [PMID: 36445155 DOI: 10.1080/03639045.2022.2153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The wide spectrum of antitumoral mechanisms of imiquimod (IMQ), made it a good candidate for topical therapy of melanoma. However, physicochemical properties make IMQ formulation a difficult task. Solubility and skin penetration of IMQ are increased when loaded into ultradeformable nanovesicles. OBJECTIVE Survey the in vitro anti-melanoma activity of IMQ loaded into two types of ultradeformable nanovesicles: archaeosomes (UDA-IMQ) (containing sn-2,3 ether-linked phytanyl saturated archaeolipids extracted from Halorubrum tebenquichense) and liposomes lacking archaeolipids (UDL-IMQ). METHODS We prepared and structurally characterized UDA-IMQ and UDL-IMQ. Cytotoxicity was determined on human melanoma cells (SK-Mel-28) and keratinocytes (HaCaT cells) by MTT assay and LDH release. The cellular uptake was determined by flow cytometry. Apoptosis/necrosis induction was determined by fluorescence microscopy after double staining with YO-PRO-1® and propidium iodide. RESULTS Neither IMQ nor IMQ-nanovesicles reduced the viability of HaCaT cells; but UDL-IMQ (371 nm, -24 mV ζ potential, 31 µg IMQ/mg lipids) and UDA-IMQ (216 nm, -32 mV ζ potential, 61 µg IMQ/mg lipids) showed time and concentration-dependent cytotoxicity on SK-Mel-28 that resulted between 4 and 33 folds higher than free IMQ, respectively. While both UDA-IMQ and UDL-IMQ retained 60% of IMQ against dilution, UDA-IMQ uptaken by SK-Mel-28 cells was nine-fold higher than UDL-IMQ. UDL-IMQ induced early apoptosis, but UDA-IMQ induced both apoptosis and necrosis on SK-Mel-28 cells. CONCLUSIONS UDA-IMQ was innocuous to keratinocytes but was highly uptaken and induced apoptosis and necrosis on melanoma cells, being a candidate for future investigations as adjuvant topical anti-melanoma therapy.
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Cecilia Ramirez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ana Paula Perez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
6
|
Adamiak N, Krawczyk KT, Locht C, Kowalewicz-Kulbat M. Archaeosomes and Gas Vesicles as Tools for Vaccine Development. Front Immunol 2021; 12:746235. [PMID: 34567012 PMCID: PMC8462270 DOI: 10.3389/fimmu.2021.746235] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 12/03/2022] Open
Abstract
Archaea are prokaryotic organisms that were classified as a new domain in 1990. Archaeal cellular components and metabolites have found various applications in the pharmaceutical industry. Some archaeal lipids can be used to produce archaeosomes, a new family of liposomes that exhibit high stability to temperatures, pH and oxidative conditions. Additionally, archaeosomes can be efficient antigen carriers and adjuvants promoting humoral and cellular immune responses. Some archaea produce gas vesicles, which are nanoparticles released by the archaea that increase the buoyancy of the cells and facilitate an upward flotation in water columns. Purified gas vesicles display a great potential for bioengineering, due to their high stability, immunostimulatory properties and uptake across cell membranes. Both archaeosomes and archaeal gas vesicles are attractive tools for the development of novel drug and vaccine carriers to control various diseases. In this review we discuss the current knowledge on production, preparation methods and potential applications of archaeosomes and gas vesicles as carriers for vaccines. We give an overview of the traditional structures of these carriers and their modifications. A comparative analysis of both vaccine delivery systems, including their advantages and limitations of their use, is provided. Gas vesicle- and archaeosome-based vaccines may be powerful next-generation tools for the prevention and treatment of a wide variety of infectious and non-infectious diseases.
Collapse
Affiliation(s)
- Natalia Adamiak
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Krzysztof T Krawczyk
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Tsang JS, Dobaño C, VanDamme P, Moncunill G, Marchant A, Othman RB, Sadarangani M, Koff WC, Kollmann TR. Improving Vaccine-Induced Immunity: Can Baseline Predict Outcome? Trends Immunol 2020; 41:457-465. [PMID: 32340868 PMCID: PMC7142696 DOI: 10.1016/j.it.2020.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
Immune signatures measured at baseline and immediately prior to vaccination may predict the immune response to vaccination. Such pre-vaccine assessment might allow not only population-based, but also more personalized vaccination strategies (‘precision vaccination’). If baseline immune signatures are predictive, the underlying mechanism they reflect may also determine vaccination outcome. Thus, baseline signatures might contribute to identifying interventional targets to be modulated prior to vaccination in order to improve vaccination responses. This concept has the potential to transform vaccination strategies and usher in a new approach to improve global health. Extensive baseline variability in immune responses (e.g., antibody titers) among individuals in given populations is increasingly being appreciated as a major contributor to vaccine response heterogeneity. The concept of ‘baseline may predict outcome’ has recently been reported for human influenza virus, yellow fever virus, and hepatitis B virus, as well as malaria vaccination. This concept might also apply to other vaccines. The ability to predict who might respond to immunization (and to what extent) might offer avenues for optimization of current vaccination strategies. We posit that this simple concept might be useful and significant for vaccine design: if ‘baseline determines outcome, then altering baseline prior to vaccination could alter outcome’. This approach could potentially lead to tailored (precision) vaccines ensuring that the majority, or all individuals vaccinated, respond by eliciting a protective immune response (i.e., devoid of non-responder individuals). Presumably, this approach might also allow the administration of fewer vaccine doses, potentially arriving at one vaccine dose only.
Collapse
Affiliation(s)
- John S Tsang
- Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Pierre VanDamme
- Centre for the Evaluation of Vaccination and Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Gemma Moncunill
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Rym Ben Othman
- Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute and Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | | | - Tobias R Kollmann
- Telethon Kids Institute, Perth Children's Hospital, University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
8
|
Perez AP, Perez N, Lozano CMS, Altube MJ, de Farias MA, Portugal RV, Buzzola F, Morilla MJ, Romero EL. The anti MRSA biofilm activity of Thymus vulgaris essential oil in nanovesicles. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:339-351. [PMID: 30826631 DOI: 10.1016/j.phymed.2018.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/15/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Thymus vulgaris essential oil (T) could be an alternative to classical antibiotics against bacterial biofilms, which show increased tolerance to antibiotics and host defence systems and contribute to the persistence of chronic bacterial infections. HYPOTHESIS A nanovesicular formulation of T may chemically protect the structure and relative composition of its multiple components, potentially improving its antibacterial and antibiofilm activity. STUDY DESIGN We prepared and structurally characterized T in two types of nanovesicles: nanoliposomes (L80-T) made of Soybean phosphatidylcholine (SPC) and Polysorbate 80 (P80) [SPC:P80:T 1:0.75:0.3 w:w], and nanoarchaeosomes (A80-T) made of SPC, P80 and total polar archaeolipids (TPA) extracted from archaebacteria Halorubrum tebenquichense [SPC:TPA:P80:T 0.5:0.50.75:0.7 w:w]. We determined the macrophage cytotoxicity and the antibacterial activity against Staphylococcus aureus ATCC 25,923 and four MRSA clinical strains. RESULTS L80-T (Z potential -4.1 ± 0.6 mV, ∼ 115 nm, ∼ 22 mg/ml T) and A80-T (Z potential -6.6 ± 1.5 mV, ∼ 130 nm, ∼ 42 mg/ml T) were colloidally and chemically stable, maintaining size, PDI, Z potential and T concentration for at least 90 days. While MIC90 of L80-T was > 4 mg/ml T, MIC90 of A80-T was 2 mg/ml T for all S. aureus strains. The antibiofilm formation activity was maximal for A80-T, while L80-T did not inhibit biofilm formation compared to untreated control. A80-T significantly decreased the biomass of preformed biofilms of S. aureus ATCC 25,923 strain and of 3 of the 4 clinical MRSA isolates at 4 mg/ml T. It was found that the viability of J774A.1 macrophages was decreased significantly upon 24 h incubation with A80-T, L80-T and T emulsion at 0.4 mg/ml T. These results show that from 0.4 mg/ml T, a value lower than MIC90 and the one displaying antibiofilm activity, with independence of its formulation, T significantly decreased the macrophages viability. CONCLUSION Overall, because of its lower MIC90 against planktonic bacteria, higher antibiofilm formation capacity and stability during storage, A80-T resulted better antibacterial agent than T emulsion and L80-T. These results open new avenues to explode the A80-T antimicrobial intracellular activity.
Collapse
Affiliation(s)
- Ana Paula Perez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Noelia Perez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Carlos Mauricio Suligoy Lozano
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maria Julia Altube
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | | | | | - Fernanda Buzzola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET), Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Bernal, Buenos Aires, Argentina.
| |
Collapse
|