1
|
Vedarethinam V, Jeevanandam J. Role of nanotechnology in microbiome drug development. HUMAN MICROBIOME DRUG TARGETS 2025:245-263. [DOI: 10.1016/b978-0-443-15435-5.00018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Haider M, Jagal J, Ali Alghamdi M, Haider Y, Hassan HAFM, Najm MB, Jayakuma MN, Ezzat H, Greish K. Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. Int J Pharm 2024; 666:124825. [PMID: 39401579 DOI: 10.1016/j.ijpharm.2024.124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remain a major oncological challenge with significant morbidity and mortality rates. Erlotinib (Er) and Curcumin (Cm) are potential therapeutic agents for HNSCC, yet they are hindered by poor solubility and bioavailability. This study explored the optimization of poly(lactic-co-glycolic acid) nanoparticles co-loaded with Er and Cm (Er/Cm-NP), prepared via a D-optimal response surface design-guided nanoprecipitation process. The optimized formulation, optEr/Cm-NP, was then incorporated into chitosan/β-glycerophosphate hydrogels (optEr/Cm-NP-HG) to create an injectable intratumoral (IT) nanocomposite hydrogel (HG) delivery system. Physicochemical properties of the formulations, including gelation time, injectability, mechanical strength and drug release profiles were assessed alongside hemolytic activity. Compared to optEr/Cm-NP alone, the NP-loaded HG formulation exhibited a more pronounced modulation effect, enabling sustained and controlled drug release. The cytotoxicity of the developed formulations was evaluated using the FaDu HNSCC cancer cell line. Both optEr/Cm-NP and optEr/Cm-NP-HG21 displayed enhanced cytotoxicity compared to free drugs. Confocal laser microscopy and flow cytometry confirmed superior cellular uptake of Er and Cm when delivered via NPs or NP-loaded HG. Furthermore, a significant increase in apoptotic cell death upon treatment with optEr/Cm-NP was observed, highlighting its potential for HNSCC therapy. In vivo studies conducted on a xenograft HNSCC mouse model revealed the significant capacity of the intratumorally-injected optEr/Cm-NP-HG21 formulation to retard the tumor growth. Conclusively, the results presented herein report the successful development of a nanocomposite HG system incorporating NPs co-loaded with Er and Cm that could be efficiently utilized in the treatment of HNSCC.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Kingdom of Saudi Arabia; Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Youssef Haider
- College of Engineering, Boston University, Boston, MA, USA
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Muna B Najm
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Manju N Jayakuma
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Helal Ezzat
- Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates; Civil Engineering Department, Delta Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
3
|
Yin M, Liu L, Yan Y, Wang H, Li W, Dong Y, Kong G. A targeting nanoplatform for chemo-photothermal synergistic therapy of small-cell lung cancer. Int J Cancer 2024; 155:2094-2106. [PMID: 38985144 DOI: 10.1002/ijc.35065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 07/11/2024]
Abstract
The precise delivery of drugs to tumor sites and the thermoresistance of tumors remain major challenges in photothermal therapy (PTT). Somatostatin receptor 2 (SSTR2) is proposed as an ideal target for the precise treatment of SCLC. We developed a targeting nano-drug delivery system comprising anti-SSTR2 monoclonal antibody (MAb) surface-modified nanoparticles co-encapsulating Cypate and gambogic acid (GA). The formed SGCPNs demonstrated excellent monodispersity, physiological stability, preferable biocompatibility, and resultant efficient photothermal conversion efficacy. SGCPNs were quickly internalized by SSTR2-overexpressing SCLC cells, triggering the release of GA under acidic and near-infrared (NIR) laser irradiation environments, leading to their escape from lysosomes to the cytosol and then diffusion into the nucleus. SGCPNs can not only decrease the cell survival rate but also inhibit the activity of heat shock protein 90 (HSP90). SGCPNs can be precisely delivered to xenograft tumors of SSTR2-positive SCLC in vivo. Upon NIR laser irradiation, therapy of SGCPNs showed significant tumor regression. In conclusion, SGCPNs provide a new chemo-photothermal synergistic treatment strategy for targeting SCLC.
Collapse
Affiliation(s)
- Moli Yin
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Lei Liu
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yu Yan
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Huiyan Wang
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Wenliang Li
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
| | - Yuan Dong
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Guangyao Kong
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Ganapathy S, Bharathi M, Hirad AH, Alarfaj AA, Thangavelu I, Arulselvan P, Jaganathan R, Ravindran R, Suriyaprakash J, Boopathi TS. Carboplatin-loaded zeolitic imidazolate framework-8: Induction of antiproliferative activity and apoptosis in breast cancer cell. Biotechnol Appl Biochem 2024. [PMID: 39491814 DOI: 10.1002/bab.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The challenge with breast cancer is its ongoing high prevalence and difficulties in early detection and access to effective care. A solution lies in creating tailored metal-organic frameworks to encapsulate anticancer drugs, enabling precise and targeted treatment with less adverse effects and improved effectiveness. Zeolitic imidazolate framework-8 (ZIF-8) and carboplatin (CP)-loaded ZIF-8 were synthesized and characterized using various analytical techniques. High Resolution-transmission electron microscopy of ZIF-8 and CP@ZIF-8 indicates that the particles had a spherical shape and were nanosized. The drug release rate of CP is 98% under an acidic medium (pH 5.5) because of the dissolution of ZIF-8 into its coordinating ions, whereas 35% in a physiological medium (pH 7.4) with the addition of CP, the high porosity, and pore diameter of ZIF-8 decrease from 1243 to 1041 m2/g. Breast cancer MCF-7 cells were shown greater IC50 in CP@ZIF-8 (15.01 ± 3.03 µg/mL) than free CP (34.98 ± 4.25 µg/mL) in an in vitro cytotoxicity assessment. The cytotoxicity of the CP@ZIF-8 against MCF-7 cells was studied using the methylthiazolyldiphenyl-tetrazolium bromide method. The morphological changes were examined using fluorescent staining (acridine orange-ethidium bromide and Hoechst 33258) methods. The comet assay assessed the DNA fragmentation (single-cell gel electrophoresis). The results from the study revealed that CP@ZIF-8 can be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Saravanan Ganapathy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Thalakulam Shanmugam Boopathi
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
5
|
Min Y, Chen Y, Wang L, Ke Y, Rong F, He Q, Paerhati P, Zong H, Zhu J, Wang Y, Zhang B. Supramolecular antibody-drug conjugates for combined antibody therapy and photothermal therapy targeting HER2-positive cancers. Int J Biol Macromol 2024; 278:134622. [PMID: 39127267 DOI: 10.1016/j.ijbiomac.2024.134622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Antibody therapy of anti-HER2 monoclonal antibody (mAb) has been an important strategy in treating HER2-positive cancers. However, the efficacy is restricted by many factors, including the level of HER2 expressed by tumor cells and antibody resistance. To overcome these and boost the efficacy, a novel nanoparticle (NP) was constructed in this study for combined antibody therapy of antibody and photothermal therapy (PTT). This novel NP was assembled from 1-pyrenecarboxylic acid (PCA) functionalized anti-HER2 mAb and indocyanine green (ICG), a photothermal transduction agents (PTA), by non-covalent interactions, which was named as Anti-HER2 mAb-pyrene-indocyanine green (H-P-I). Notably, the constructed H-P-I NP not only maintained the affinity and cytotoxicity of anti-HER2 mAb, but also exhibited high photothermal conversion efficiency mediated by ICG. Both in vitro and in vivo assessments confirmed that compared with monotherapy of antibody or ICG, H-P-I demonstrated preferable efficacy in treating HER2-positive cancers. Further biochemistry analysis and pathological analysis ensured the biosafety of H-P-I administration. Taked together, this study proposes a feasible method for constructing tumor-targeted nano PTA based on anti-HER2 mAb through supramolecular self-assembly strategy, achieving synergistic antibody photothermal anticancer treatment, which has the potential to be a promising candidate for combination therapy of HER2-positive cancers.
Collapse
Affiliation(s)
- Yijia Min
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Ke
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fan Rong
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qunye He
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Jecho Institute, Shanghai 200240, China.
| | - Yin Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Baohong Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Marecki EK, Oh KW, Knight PR, Davidson BA. Poly(lactic-co-glycolic acid) nanoparticle fabrication, functionalization, and biological considerations for drug delivery. BIOMICROFLUIDICS 2024; 18:051503. [PMID: 39296325 PMCID: PMC11410388 DOI: 10.1063/5.0201465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Nanoparticles can be used for drug delivery and consist of many sizes and chemical compositions. They can accommodate a diverse population of drugs and can be made to target specific areas of the body. Fabrication methods generally follow either top-down or bottom-up manufacturing techniques, which have differing production controls, which determine nanoparticle characteristics including but not limited to size and encapsulation efficiency. Functionalizing these nanoparticles is done to add drugs, prevent aggregation, add positive charge, add targeting, etc. As the nanoparticles reach the target cells, cellular uptake occurs, drug is released, and the nanoparticle is broken down. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles have often been used for drug delivery applications as they have shown minimal toxicity, which has helped with US FDA approval. This review breaks down PLGA nanoparticle fabrication, functionalization, and biological considerations.
Collapse
Affiliation(s)
| | | | - Paul R Knight
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| | - Bruce A Davidson
- Department of Anesthesiology, The State University of New York at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
7
|
Gralewska P, Gajek A, Marczak A, Rogalska A. Targeted Nanocarrier-Based Drug Delivery Strategies for Improving the Therapeutic Efficacy of PARP Inhibitors against Ovarian Cancer. Int J Mol Sci 2024; 25:8304. [PMID: 39125873 PMCID: PMC11312858 DOI: 10.3390/ijms25158304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/20/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
The current focus of ovarian cancer (OC) research is the improvement of treatment options through maximising drug effectiveness. OC remains the fifth leading cause of cancer-induced mortality in women worldwide. In recent years, nanotechnology has revolutionised drug delivery systems. Nanoparticles may be utilised as carriers in gene therapy or to overcome the problem of drug resistance in tumours by limiting the number of free drugs in circulation and thereby minimising undesired adverse effects. Cell surface receptors, such as human epidermal growth factor 2 (HER2), folic acid (FA) receptors, CD44 (also referred to as homing cell adhesion molecule, HCAM), and vascular endothelial growth factor (VEGF) are highly expressed in ovarian cancer cells. Generation of active targeting nanoparticles involves modification with ligands that recognise cell surface receptors and thereby promote internalisation by cancer cells. Several poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are currently used for the treatment of high-grade serous ovarian carcinomas (HGSOC) or platinum-sensitive relapsed OC. However, PARP resistance and poor drug bioavailability are common challenges, highlighting the urgent need to develop novel, effective strategies for ovarian cancer treatment. This review evaluates the utility of nanoparticles in ovarian cancer therapy, with a specific focus on targeted approaches and the use of PARPi nanocarriers to optimise treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Aneta Rogalska
- Department of Medical Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90–236 Lodz, Poland; (P.G.); (A.G.); (A.M.)
| |
Collapse
|
8
|
Silva B, Marques EF, Gomes AC. Recent advances in in vitro models simulating the female genital tract toward more effective intravaginal therapeutic delivery. Expert Opin Drug Deliv 2024; 21:1007-1027. [PMID: 39001669 DOI: 10.1080/17425247.2024.2380338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Intravaginal drug delivery has emerged as a promising avenue for treating a spectrum of systemic and local female genital tract (FGT) conditions, using biomaterials as carriers or scaffolds for targeted and efficient administration. Much effort has been made to understand the natural barriers of this route and improve the delivery system to achieve an efficient therapeutic response. AREAS COVERED In this review, we conducted a comprehensive literature search using multiple databases (PubMed Scopus Web of Science Google Scholar), to discuss the potential of intravaginal therapeutic delivery, as well as the obstacles unique to this route. The in vitro cell models of the FGT and how they can be applied to probing intravaginal drug delivery are then analyzed. We further explore the limitations of the existing models and the possibilities to make them more promising for delivery studies or biomaterial validation. Complementary information is provided by in vitro acellular techniques that may shed light on mucus-drug interaction. EXPERT OPINION Advances in 3D models and cell cultures have enhanced our understanding of the FGT, but they still fail to replicate all variables. Future research should aim to use complementary methods, ensure stability, and develop consistent protocols to improve therapy evaluation and create better predictive in vitro models for women's health.
Collapse
Affiliation(s)
- Bruna Silva
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Eduardo F Marques
- CIQUP, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia C Gomes
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, Campus of Gualtar, University of Minho, Braga, Portugal
| |
Collapse
|
9
|
Babunagappan KV, Seetharaman A, Ariraman S, Santhosh PB, Genova J, Ulrih NP, Sudhakar S. Doxorubicin loaded thermostable nanoarchaeosomes: a next-generation drug carrier for breast cancer therapeutics. NANOSCALE ADVANCES 2024; 6:2026-2037. [PMID: 38633044 PMCID: PMC11019490 DOI: 10.1039/d3na00953j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
Breast cancer has a poor prognosis due to the toxic side effects associated with high doses of chemotherapy. Liposomal drug encapsulation has resulted in clinical success in enhancing chemotherapy tolerability. However, the formulation faces severe limitations with a lack of colloidal stability, reduced drug efficiency, and difficulties in storage conditions. Nanoarchaeosomes (NA) are a new generation of highly stable nanovesicles composed of the natural ether lipids extracted from archaea. In our study, we synthesized and characterized the NA, evaluated their colloidal stability, drug release potential, and anticancer efficacy. Transmission electron microscopy images have shown that the NA prepared from the hyperthermophilic archaeon Aeropyrum pernix K1 was in the size range of 61 ± 3 nm. The dynamic light scattering result has confirmed that the NA were stable at acidic pH (pH 4) and high temperature (70 °C). The NA exhibited excellent colloidal stability for 50 days with storage conditions at room temperature. The cell viability results have shown that the pure NA did not induce cytotoxicity in NIH 3T3 fibroblast cells and are biocompatible. Then NA were loaded with doxorubicin (NAD), and FTIR and UV-vis spectroscopy results have confirmed high drug loading efficiency of 97 ± 1% with sustained drug release for 48 h. The in vitro cytotoxicity studies in MCF-7 breast cancer cell lines showed that NAD induced cytotoxicity at less than 10 nM concentration. Fluorescence-activated cell sorting (FACS) results confirmed that NAD induced late apoptosis in nearly 92% of MCF-7 cells and necrosis in the remaining cells with cell cycle arrest at the G0/G1 phase. Our results confirmed that the NA could be a potential next-generation carrier with excellent stability, high drug loading efficiency, sustained drug release ability, and increased therapeutic efficacy, thus reducing the side effects of conventional drugs.
Collapse
Affiliation(s)
| | - Abirami Seetharaman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Subastri Ariraman
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| | - Poornima Budime Santhosh
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Julia Genova
- Institute of Solid State Physics, Bulgarian Academy of Sciences Tzarigradsko Chausee Sofia Bulgaria
| | - Natasa Poklar Ulrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana Ljubljana Slovenia
| | - Swathi Sudhakar
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras Chennai India
| |
Collapse
|
10
|
Marques AC, Costa PC, Velho S, Amaral MH. Analytical Techniques for Characterizing Tumor-Targeted Antibody-Functionalized Nanoparticles. Life (Basel) 2024; 14:489. [PMID: 38672759 PMCID: PMC11051252 DOI: 10.3390/life14040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The specific interaction between cell surface receptors and corresponding antibodies has driven opportunities for developing targeted cancer therapies using nanoparticle systems. It is challenging to design and develop such targeted nanomedicines using antibody ligands, as the final nanoconjugate's specificity hinges on the cohesive functioning of its components. The multicomponent nature of antibody-conjugated nanoparticles also complicates the characterization process. Regardless of the type of nanoparticle, it is essential to perform physicochemical characterization to establish a solid foundation of knowledge and develop suitable preclinical studies. A meaningful physicochemical evaluation of antibody-conjugated nanoparticles should include determining the quantity and orientation of the antibodies, confirming the antibodies' integrity following attachment, and assessing the immunoreactivity of the obtained nanoconjugates. In this review, the authors describe the various techniques (electrophoresis, spectroscopy, colorimetric assays, immunoassays, etc.) used to analyze the physicochemical properties of nanoparticles functionalized with antibodies and discuss the main results.
Collapse
Affiliation(s)
- Ana Camila Marques
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paulo C. Costa
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sérgia Velho
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria Helena Amaral
- UCIBIO—Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
11
|
Yaman S, Ramachandramoorthy H, Iyer P, Chintapula U, Nguyen T, Sabnani M, Kotadia T, Ghaffari S, Pop LM, Hannan R, Weidanz JA, Nguyen KT. Targeted chemotherapy via HER2-based chimeric antigen receptor (CAR) engineered T-cell membrane coated polymeric nanoparticles. Bioact Mater 2024; 34:422-435. [PMID: 38282968 PMCID: PMC10821609 DOI: 10.1016/j.bioactmat.2023.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Cell membrane-derived nanoparticles (NPs) have recently gained popularity due to their desirable features in drug delivery such as mimicking properties of native cells, impeding systemic clearance, and altering foreign body responses. Besides NP technology, adoptive immunotherapy has emerged due to its promise in cancer specificity and therapeutic efficacy. In this research, we developed a biomimetic drug carrier based on chimeric antigen receptor (CAR) transduced T-cell membranes. For that purpose, anti-HER2 CAR-T cells were engineered via lentiviral transduction of anti-HER2 CAR coding lentiviral plasmids. Anti-HER2 CAR-T cells were characterized by their specific activities against the HER2 antigen and used for cell membrane extraction. Anti-cancer drug Cisplatin-loaded poly (D, l-lactide-co-glycolic acid) (PLGA) NPs were coated with anti-human epidermal growth factor receptor 2 (HER2)-specific CAR engineered T-cell membranes. Anti-HER2 CAR-T-cell membrane-coated PLGA NPs (CAR-T-MNPs) were characterized and confirmed via fluorescent microscopy and flow cytometry. Membrane-coated NPs showed a sustained drug release over the course of 21 days in physiological conditions. Cisplatin-loaded CAR-T-MNPs also inhibited the growth of multiple HER2+ cancer cells in vitro. In addition, in vitro uptake studies revealed that CAR-T-MNPs showed an increased uptake by A549 cells. These results were also confirmed via in vivo biodistribution and therapeutic studies using a subcutaneous lung cancer model in nude mice. CAR-T-MNPs localized preferentially at tumor areas compared to those of other studied groups and consisted of a significant reduction in tumor growth in tumor-bearing mice. In Conclusion, the new CAR modified cell membrane-coated NP drug-delivery platform has demonstrated its efficacy both in vitro and in vivo. Therefore, CAR engineered membrane-coated NP system could be a promising cell-mimicking drug carrier that could improve therapeutic outcomes of lung cancer treatments.
Collapse
Affiliation(s)
- Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, TX, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, TX, USA
| | - Harish Ramachandramoorthy
- Department of Bioengineering, University of Texas at Arlington, TX, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, TX, USA
| | - Priyanka Iyer
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, TX, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, TX, USA
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| | - Manoj Sabnani
- Department of Biology, University of Texas at Arlington, TX, USA
| | - Tanviben Kotadia
- Department of Biology, University of Texas at Arlington, TX, USA
| | - Soroush Ghaffari
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Laurentiu M. Pop
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, TX, USA
| | - Raquibul Hannan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, TX, USA
| | - Jon A. Weidanz
- Department of Bioengineering, University of Texas at Arlington, TX, USA
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, TX, USA
| |
Collapse
|
12
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
13
|
Nguyen TTA, Demeestere I. A Journey to Reach the Ovary Using Next-Generation Technologies. Int J Mol Sci 2023; 24:16593. [PMID: 38068916 PMCID: PMC10705884 DOI: 10.3390/ijms242316593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Although effective in terms of the chances of future live birth, the current methods for fertility preservation, such as oocyte, embryo, or ovarian tissue cryopreservation, cannot be offered to all cancer patients in all clinical contexts. Expanding options for fertility preservation is crucial to addressing the need to encompass all situations. One emerging strategy is pharmacoprotection, a non-invasive approach that has the potential to fill existing gaps in fertility preservation. In addition to the identification of the most effective therapeutic agents, the potential for off-target effects remains one of the main limitations of this strategy for clinical application, particularly when healthy ovarian tissue is targeted. This review focuses on the advances in pharmacoprotective approaches and the challenge of targeting the ovaries to deliver these agents. The unique properties of gold nanoparticles (AuNPs) make them an attractive candidate for this purpose. We discuss how AuNPs meet many of the requirements for an ideal drug delivery system, as well as the existing limitations that have hindered the progression of AuNP research into more clinical trials. Additionally, the review highlights microRNA (miRNA) therapy as a next-generation approach to address the issues of fertility preservation and discusses the obstacles that currently impede its clinical availability.
Collapse
Affiliation(s)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| |
Collapse
|
14
|
Chang CS, Ryu JY, Choi JK, Cho YJ, Choi JJ, Hwang JR, Choi JY, Noh JJ, Lee CM, Won JE, Han HD, Lee JW. Anti-cancer effect of fenbendazole-incorporated PLGA nanoparticles in ovarian cancer. J Gynecol Oncol 2023; 34:e58. [PMID: 37170725 PMCID: PMC10482585 DOI: 10.3802/jgo.2023.34.e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Fenbendazole (FZ) has potential anti-cancer effects, but its poor water solubility limits its use for cancer therapy. In this study, we investigated the anti-cancer effect of FZ with different drug delivery methods on epithelial ovarian cancer (EOC) in both in vitro and in vivo models. METHODS EOC cell lines were treated with FZ and cell proliferation was assessed. The effect of FZ on tumor growth in cell line xenograft mouse model of EOC was examined according to the delivery route, including oral and intraperitoneal administration. To improve the systemic delivery of FZ by converting fat-soluble drugs to hydrophilic, we prepared FZ-encapsulated poly(D,L-lactide-co-glycolide) acid (PLGA) nanoparticles (FZ-PLGA-NPs). We investigated the preclinical efficacy of FZ-PLGA-NPs by analyzing cell proliferation, apoptosis, and in vivo models including cell lines and patient-derived xenograft (PDX) of EOC. RESULTS FZ significantly decreased cell proliferation of both chemosensitive and chemoresistant EOC cells. However, in cell line xenograft mouse models, there was no effect of oral FZ treatment on tumor reduction. When administered intraperitoneally, FZ was not absorbed but aggregated in the intraperitoneal space. We synthesized FZ-PLGA-NPs to obtain water solubility and enhance drug absorption. FZ-PLGA-NPs significantly decreased cell proliferation in EOC cell lines. Intravenous injection of FZ-PLGA-NP in xenograft mouse models with HeyA8 and HeyA8-MDR significantly reduced tumor weight compared to the control group. FZ-PLGA-NPs showed anti-cancer effects in PDX model as well. CONCLUSION FZ-incorporated PLGA nanoparticles exerted significant anti-cancer effects in EOC cells and xenograft models including PDX. These results warrant further investigation in clinical trials.
Collapse
Affiliation(s)
- Chi-Son Chang
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - June-Kuk Choi
- Department of Obstetrics and Gynecology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joseph J Noh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chan Mi Lee
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Ji Eun Won
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Korea
| | - Hee Dong Han
- Innovative Discovery Center, Prestige Biopharma Korea, Busan, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
15
|
Quiñones J, Miranda-Castro FC, Encinas-Basurto D, Ibarra J, Moran-Palacio EF, Zamora-Alvarez LA, Almada M. Gold Nanorods with Mesoporous Silica Shell: A Promising Platform for Cisplatin Delivery. MICROMACHINES 2023; 14:mi14051031. [PMID: 37241654 DOI: 10.3390/mi14051031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/07/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023]
Abstract
The versatile combination of metal nanoparticles with chemotherapy agents makes designing multifunctional drug delivery systems attractive. In this work, we reported cisplatin's encapsulation and release profile using a mesoporous silica-coated gold nanorods system. Gold nanorods were synthesized by an acidic seed-mediated method in the presence of cetyltrimethylammonium bromide surfactant, and the silica-coated state was obtained by modified Stöber method. The silica shell was modified first with 3-aminopropyltriethoxysilane and then with succinic anhydride to obtain carboxylates groups to improve cisplatin encapsulation. Gold nanorods with an aspect ratio of 3.2 and silica shell thickness of 14.74 nm were obtained, and infrared spectroscopy and ζ potential studies corroborated surface modification with carboxylates groups. On the other hand, cisplatin was encapsulated under optimal conditions with an efficiency of ~58%, and it was released in a controlled manner over 96 h. Furthermore, acidic pH promoted a faster release of 72% cisplatin encapsulated compared to 51% in neutral pH.
Collapse
Affiliation(s)
- Jaime Quiñones
- Posgrado en Nanotecnología, Departamento de Física, Universidad de Sonora, Unidad Regional Centro, Hermosillo 83000, Mexico
| | | | - David Encinas-Basurto
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Mexico
| | - Jaime Ibarra
- Departamento de Física, Matemáticas e Ingeniería, Universidad de Sonora, Campus Navojoa, Navojoa 85880, Mexico
| | - Edgar Felipe Moran-Palacio
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| | - Luis Alberto Zamora-Alvarez
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Mexico
| |
Collapse
|
16
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
17
|
Minerva, Bhat A, Verma S, Chander G, Jamwal RS, Sharma B, Bhat A, Katyal T, Kumar R, Shah R. Cisplatin-based combination therapy for cancer. J Cancer Res Ther 2023; 19:530-536. [PMID: 37470570 DOI: 10.4103/jcrt.jcrt_792_22] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Cisplatin, that is, cis-diamminedichloroplatinum is a coordinate compound that is mainly preferred as prior treatment against several solid tumors and malignancies like ovaries, head and neck, testicular, and lung cancers because of its anticancer activity. Cisplatin binds at the N7 position of purine and forms adducts, leading to altered activity of DNA that triggers apoptosis. DNA damage is followed by several signaling pathways like induced oxidative stress, upregulated p53, mitogen-activated protein kinase (MAPK), and Jun N-terminal kinases (JNK) or Akt pathways along with induced apoptosis. Additionally, cisplatin treatment comes with few disadvantages such as toxic effects, that is, hepatotoxicity, cardiotoxicity, neurotoxicity, etc., and drug resistance. Furthermore, to overcome cisplatin resistance and toxicological effects, combination drug therapy has been considered. The aim of the review is to focus on the molecular mechanism of action of cisplatin and combination drug therapy to reduce the side effects in cancer therapy.
Collapse
Affiliation(s)
- Minerva
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | - Amrita Bhat
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | - Sonali Verma
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | - Gresh Chander
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | | | - Bhawani Sharma
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | - Audesh Bhat
- Department of Molecular Biology, Central University of Jammu, Jammu and Kashmir, India
| | - Taruna Katyal
- Reproductive Biology Maternal, Child Health and Nutrition Division, ICMR, New Delhi, India
| | - Rakesh Kumar
- ICMR-CAR, School of Biotechnology, SMVDU, Katra, Jammu and Kashmir, India
| | - Ruchi Shah
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
18
|
Functionalization of Nanosystems in Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
19
|
Babaye Abdollahi B, Ghorbani M, Hamishehkar H, Malekzadeh R, Farajollahi A. Synthesis and characterization of actively HER-2 Targeted Fe 3O 4@Au nanoparticles for molecular radiosensitization of breast cancer. BIOIMPACTS : BI 2023; 13:17-29. [PMID: 36816996 PMCID: PMC9923814 DOI: 10.34172/bi.2022.23682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Introduction: The present study was done to assess the effect of molecularly-targeted core/shell of iron oxide/gold nanoparticles (Fe3O4@AuNPs) on tumor radiosensitization of SKBr-3 breast cancer cells. Methods: Human epidermal growth factor receptor-2 (HER-2)-targeted Fe3O4@AuNPs were synthesized by conjugating trastuzumab (TZ, Herceptin) to PEGylated (PEG)-Fe3O4@AuNPs (41.5 nm). First, the Fe3O4@Au core-shell NPs were decorated with PEG-SH to synthesize PEG-Fe3O4@AuNPs. Then, the TZ was reacted to OPSS-PEG-SVA to conjugate with the PEG-Fe3O4@AuNPs. As a result, structure, size and morphology of the developed NPs were assessed using Fourier-transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy. The SKBr-3 cells were treated with different concentrations of TZ, Fe3O4@Au, and TZ-PEG-Fe3O4@AuNPs for irradiation at doses of 2, 4, and 8 Gy (from X-ray energy of 6 and 18 MV). Cytotoxicity was assessed by MTT assay, BrdU assay, and flow cytometry. Results: Results showed that the targeted TZ-PEG-Fe3O4@AuNPs significantly improved cell uptake. The cytotoxic effects of all the studied groups were increased in a higher concentration, radiation dose and energy-dependent manner. A combination of TZ, Fe3O4@Au, and TZ-PEG-Fe3O4@AuNPs with radiation reduced cell viability by 1.35 (P=0.021), 1.95 (P=0.024), and 1.15 (P=0.013) in comparison with 8 Gy dose of 18 MV radiation alone, respectively. These amounts were obtained as 1.27, 1.58, and 1.10 for 8 Gy dose of 6 MV irradiation, respectively. Conclusion: Radiosensitization of breast cancer to mega-voltage radiation therapy with TZ-PEG-Fe3O4@AuNPs was successfully obtained through an optimized therapeutic approach for molecular targeting of HER-2.
Collapse
Affiliation(s)
- Behnaz Babaye Abdollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutration Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Malekzadeh
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Farajollahi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran,Imam Reza Educational Hospital, Radiotherapy Department, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Ali Reza Farajollahi,
| |
Collapse
|
20
|
HER-2-mediated nano-delivery of molecular targeted drug potently suppresses orthotopic epithelial ovarian cancer and metastasis. Int J Pharm 2022; 625:122126. [PMID: 35995316 DOI: 10.1016/j.ijpharm.2022.122126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022]
Abstract
The treatment of epithelial ovarian cancer (EOC) has made slow progress due to absence of effective adjuvant chemotherapy that is capable of preventing tumor relapse and metastasis. Molecular targeted drugs such as PARP and PLK1 inhibitors appear to be promising new treatments for EOC. The low EOC cell uptake, poor selectivity and pronounced toxicity, however, greatly compromise their clinical efficacy. Herein, we report that HER-2-mediated nano-delivery of clinical PLK1-targeted drug, volasertib (Vol), while causing little toxicity potently suppresses orthotopic EOC and metastasis. Anti-HER-2 antibody, trastuzumab (Tra), was conjugated onto Vol-loaded polymersomes via click chemistry yielding Tra-PVol with a size of 33 nm and optimally about 5 Tra per polymersome. Tra-PVol exhibited clearly stronger uptake and anti-tumor activity (IC50 = 59 nM) in HER-2 overexpressing SKOV-3 cells than free Vol and non-targeted PVol controls. Both biodistribution and therapeutic studies in orthotopic SKOV-3-Luc tumor-bearing mice displayed that Tra-PVol induced significantly better tumor deposition and retardation than PVol and that intraperitoneal administration outperformed intravenous administration. More interestingly, Tra-PVol was shown to effectively suppress the intraperitoneal metastasis and to markedly prolong the survival time of SKOV-3-Luc tumor-bearing mice. This HER-2 directed molecular therapy emerges as a potential treatment strategy toward EOC.
Collapse
|
21
|
Bai B, Weng S, Wu Z, Xie Z, Tang J, Yang Q. Fabrication of Dual-Responsive pH and Reduction of Dual Anticancer Drugs Conjugates Dextran Self-Assembly for Osteosarcoma Cancer Treatment. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic- co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic- co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022; 10:4127-4141. [PMID: 35593381 DOI: 10.1039/d2tb00469k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Tomáš Remiš
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Sadiku Rotimi
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
24
|
Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S. HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment. Cancers (Basel) 2022; 14:2424. [PMID: 35626028 PMCID: PMC9139811 DOI: 10.3390/cancers14102424] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years. However, despite the initial enthusiasm, a major issue emerged limiting HER-2 targeted therapy efficacy, i.e., the evolution of drug resistance, which could be tackled by nanotechnology. The aim of this review is to provide a first critical update on the different types of HER-2-targeted nanoparticles that have been proposed in the literature in the last decade for therapeutic purposes. We focus on the different targeting strategies that have been explored, their relative outcomes and current limitations that still need to be improved. Then, we review the nanotools developed as diagnostic kits, focusing on the most recent techniques, which allow accurate quantification of HER-2 levels in tissues, with the aim of promoting more personalized medicinal approaches in patients.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Chesi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
- IRCCS Istituti Clinici Scientifici Salvatore Maugeri, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| |
Collapse
|
25
|
Deng H, Liu W, Yang X, Li K, Liao W, Zhao P, Yang Y, Wei H, Wang J, Chen Y. Preliminary evaluation and in vitro cytotoxicity studies of [131I]I-trastuzumab in HER2 expressing ovarian cancer cells. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
26
|
El-Hammadi MM, Arias JL. Recent Advances in the Surface Functionalization of PLGA-Based Nanomedicines. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:354. [PMID: 35159698 PMCID: PMC8840194 DOI: 10.3390/nano12030354] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
Therapeutics are habitually characterized by short plasma half-lives and little affinity for targeted cells. To overcome these challenges, nanoparticulate systems have entered into the disease arena. Poly(d,l-lactide-co-glycolide) (PLGA) is one of the most relevant biocompatible materials to construct drug nanocarriers. Understanding the physical chemistry of this copolymer and current knowledge of its biological fate will help in engineering efficient PLGA-based nanomedicines. Surface modification of the nanoparticle structure has been proposed as a required functionalization to optimize the performance in biological systems and to localize the PLGA colloid into the site of action. In this review, a background is provided on the properties and biodegradation of the copolymer. Methods to formulate PLGA nanoparticles, as well as their in vitro performance and in vivo fate, are briefly discussed. In addition, a special focus is placed on the analysis of current research in the use of surface modification strategies to engineer PLGA nanoparticles, i.e., PEGylation and the use of PEG alternatives, surfactants and lipids to improve in vitro and in vivo stability and to create hydrophilic shells or stealth protection for the nanoparticle. Finally, an update on the use of ligands to decorate the surface of PLGA nanomedicines is included in the review.
Collapse
Affiliation(s)
- Mazen M. El-Hammadi
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
27
|
Ghandehari S, Homayouni Tabrizi M, Izadi Nia J, Goodarzi MT. Anti-inflammatory and Antioxidant Properties of PLGA Nanoparticles Produced From Kombucha Extract on A2780 Human Ovarian Cancer Cell Line. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Anti-cancer agents encapsulated in nanoparticles (NPs) can result in higher efficiency. Kombucha is a fermented tea beverage, and previous reports support its anti-cancer properties. Objectives: The present study aimed to evaluate the anti-cancer and anti-inflammatory properties of poly (lactic-co-glycolic acid) loaded Kombucha NPs (PLGA-K-NPs) against the A2780 human ovarian cancer cell line. Methods: The antioxidant activity was analyzed using ferric reducing ability of plasma and 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) assays, along with the measurement of catalase (CAT) gene expression. The gene expression of three interleukins (IL-1β, IL-6, and IL-10) was also determined to demonstrate the anti-inflammatory properties of NPs. Results: The results revealed the antioxidant effects of PLGA-K-NPs on the studied cell lines by increasing Fe3+ reduction, inhibiting the free radical formation (P<0.001), and increasing the expression of the CAT gene (P<0.001). In addition, NPs could significantly elevate the gene expression of IL-10 (P<0.01) as an anti-inflammatory cytokine at a 40 µg/mL concentration, while reducing the expression of IL-1β and IL-6, and inflammatory cytokines at all tested concentrations (P<0.01). Conclusion: According to the obtained results, PLGA-K-NPs have anti-inflammatory and anti-oxidant properties, therefore, they can be considered as a compound in the treatment of ovarian cancer. However, it needs to be further investigated in animal studies to clarify more details.
Collapse
Affiliation(s)
- Sara Ghandehari
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Jafar Izadi Nia
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | |
Collapse
|
28
|
Rasouli M, Fallah N, Bekeschus S. Combining Nanotechnology and Gas Plasma as an Emerging Platform for Cancer Therapy: Mechanism and Therapeutic Implication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2990326. [PMID: 34745414 PMCID: PMC8566074 DOI: 10.1155/2021/2990326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
Nanomedicine and plasma medicine are innovative and multidisciplinary research fields aiming to employ nanotechnology and gas plasma to improve health-related treatments. Especially cancer treatment has been in the focus of both approaches because clinical response rates with traditional methods that remain improvable for many types of tumor entities. Here, we discuss the recent progress of nanotechnology and gas plasma independently as well as in the concomitant modality of nanoplasma as multimodal platforms with unique capabilities for addressing various therapeutic issues in oncological research. The main features, delivery vehicles, and nexus between reactivity and therapeutic outcomes of nanoparticles and the processes, efficacy, and mechanisms of gas plasma are examined. Especially that the unique feature of gas plasma technology, the local and temporally controlled deposition of a plethora of reactive oxygen, and nitrogen species released simultaneously might be a suitable additive treatment to the use of systemic nanotechnology therapy approaches. Finally, we focus on the convergence of plasma and nanotechnology to provide a suitable strategy that may lead to the required therapeutic outcomes.
Collapse
Affiliation(s)
- Milad Rasouli
- Plasma Medicine Group, Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Jalale-Al-Ahmad Ave, 1411713137 Tehran, Iran
- Department of Physics and Institute for Plasma Research, Kharazmi University, 49 Dr. Mofatteh Ave, Tehran 15614, Iran
| | - Nadia Fallah
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, 49 Dr. Mofatteh Ave, 31979-37551 Tehran, Iran
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| |
Collapse
|
29
|
Fonseca M, Macedo AS, Lima SAC, Reis S, Soares R, Fonte P. Evaluation of the Antitumour and Antiproliferative Effect of Xanthohumol-Loaded PLGA Nanoparticles on Melanoma. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6421. [PMID: 34771946 PMCID: PMC8585140 DOI: 10.3390/ma14216421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Cutaneous melanoma is the deadliest type of skin cancer and current treatment is still inadequate, with low patient survival rates. The polyphenol xanthohumol has been shown to inhibit tumourigenesis and metastasization, however its physicochemical properties restrict its application. In this work, we developed PLGA nanoparticles encapsulating xanthohumol and tested its antiproliferative, antitumour, and migration effect on B16F10, malignant cutaneous melanoma, and RAW 264.7, macrophagic, mouse cell lines. PLGA nanoparticles had a size of 312 ± 41 nm and a PdI of 0.259, while achieving a xanthohumol loading of about 90%. The viability study showed similar cytoxicity between the xanthohumol and xanthohumol-loaded PLGA nanoparticles at 48 h with the IC50 established at 10 µM. Similar antimigration effects were observed for free and the encapsulated xanthohumol. It was also observed that the M1 antitumor phenotype was stimulated on macrophages. The ultimate anti-melanoma effect emerges from an association between the viability, migration and macrophagic phenotype modulation. These results display the remarkable antitumour effect of the xanthohumol-loaded PLGA nanoparticles and are the first advance towards the application of a nanoformulation to deliver xanthohumol to reduce adverse effects by currently employed chemotherapeutics.
Collapse
Affiliation(s)
- Magda Fonseca
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana S. Macedo
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.S.M.); (S.A.C.L.); (S.R.)
| | - Raquel Soares
- Department of Biomedicine, Faculty of Medicine, University of Porto, Al Prof Hernani Monteiro, 4200-319 Porto, Portugal; (M.F.); (R.S.)
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
30
|
Maliyakkal N, Appadath Beeran A, Udupa N. Nanoparticles of cisplatin augment drug accumulations and inhibit multidrug resistance transporters in human glioblastoma cells. Saudi Pharm J 2021; 29:857-873. [PMID: 34408546 PMCID: PMC8363105 DOI: 10.1016/j.jsps.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/04/2021] [Indexed: 11/16/2022] Open
Abstract
Background Cisplatin (CSP) is a potent anticancer drug widely used in treating glioblastoma multiforme (GBM). However, CSP's clinical efficacy in GBM contrasted with low therapeutic ratio, toxicity, and multidrug resistance (MDR). Therefore, we have developed a system for the active targeting of cisplatin in GBM via cisplatin loaded polymeric nanoplatforms (CSP-NPs). Methods CSP-NPs were prepared by modified double emulsion and nanoprecipitation techniques. The physiochemical characterizations of CSP-NPs were performed using zeta sizer, scanning electron microscopy (SEM), drug release kinetics, and drug content analysis. Cytotoxicity, induction of apoptosis, and cell cycle-specific activity of CSP-NPs in human GBM cell lines were evaluated by MTT assay, fluorescent microscopy, and flow cytometry. Intracellular drug uptake was gauged by fluorescent imaging and flow cytometry. The potential of CSP-NPs to inhibit MDR transporters were assessed by flow cytometry-based drug efflux assays. Results CSP-NPs have smooth surface properties with discrete particle size with required zeta potential, polydispersity index, drug entrapment efficiency, and drug content. CSP-NPs has demonstrated an ‘initial burst effect’ followed by sustained drug release properties. CSP-NPs imparted dose and time-dependent cytotoxicity and triggered apoptosis in human GBM cells. Interestingly, CSP-NPs significantly increased uptake, internalization, and accumulations of anticancer drugs. Moreover, CSP-NPs significantly reversed the MDR transporters (ABCB1 and ABCG2) in human GBM cells. Conclusion The nanoparticulate system of cisplatin seems to has a promising potential for active targeting of cisplatin as an effective and specific therapeutic for human GBM, thus eliminating current chemotherapy's limitations.
Collapse
Key Words
- ABC, ATP-binding cassette
- ANOVA, Analysis of variance
- Active drug targeting
- BBB, Blood brain barrier
- BCRP, Breast cancer resistance protein
- CSP, Cisplatin
- CSP-NPs, Cisplatin nanoparticles DMEM, Dulbecco’s modified eagle medium
- Cisplatin nanoparticles
- DMSO, Dimethyl sulfoxide
- DNR, Daunorubicin
- DOX, Doxorubicin
- Drug uptake and accumulations
- EDTA, Ethylenediaminetetraacetic acid
- EPR, Enhanced permeability retention
- FACS, Fluorescence activated cell sorting
- FBS, Fetal bovine serum
- FTC, Fumitremorgin C
- GBM, Glioblastoma multiforme
- HBSS, Hank’s balanced salt solution
- HPLC, High Performance Liquid Chromatography
- Induction of Apoptosis
- MDR, Multidrug resistance
- MTT, Methyl tetrazolium
- MX, Mitoxantrone
- NPs, Nanoparticles
- O.D., Optical density
- PBS, Phosphate buffer saline
- PI, Propidium iodide
- PLGA, Poly (lactic-co-glycolic) acid
- RT, Room temperature
- Rho-123, Rhodamine 123
- SDS, Sodium dodecyl sulfate
- SEM, Scanning electron microscopy
- Targeting multidrug resistance (MDR) transporters
- nm, Nanometer
Collapse
Affiliation(s)
- Naseer Maliyakkal
- Department of Basic Medical Sciences, College of Applied Medical Sciences in Khamis Mushait, King Khalid University, Abha, Saudi Arabia.,Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Cancer Research Unit, King Khalid University, Abha, Saudi Arabia
| | - Asmy Appadath Beeran
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nayanabhirama Udupa
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
31
|
Fernández-Álvarez F, García-García G, Arias JL. A Tri-Stimuli Responsive (Maghemite/PLGA)/Chitosan Nanostructure with Promising Applications in Lung Cancer. Pharmaceutics 2021; 13:1232. [PMID: 34452193 PMCID: PMC8401782 DOI: 10.3390/pharmaceutics13081232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
A (core/shell)/shell nanostructure (production performance ≈ 50%, mean diameter ≈ 330 nm) was built using maghemite, PLGA, and chitosan. An extensive characterization proved the complete inclusion of the maghemite nuclei into the PLGA matrix (by nanoprecipitation solvent evaporation) and the disposition of the chitosan shell onto the nanocomposite (by coacervation). Short-term stability and the adequate magnetism of the nanocomposites were demonstrated by size and electrokinetic determinations, and by defining the first magnetization curve and the responsiveness of the colloid to a permanent magnet, respectively. Safety of the nanoparticles was postulated when considering the results from blood compatibility studies, and toxicity assays against human colonic CCD-18 fibroblasts and colon carcinoma T-84 cells. Cisplatin incorporation to the PLGA matrix generated appropriate loading values (≈15%), and a dual pH- and heat (hyperthermia)-responsive drug release behaviour (≈4.7-fold faster release at pH 5.0 and 45 °C compared to pH 7.4 and 37 °C). The half maximal inhibitory concentration of the cisplatin-loaded nanoparticles against human lung adenocarcinoma A-549 cells was ≈1.6-fold less than that of the free chemotherapeutic. Such a biocompatible and tri-stimuli responsive (maghemite/PLGA)/chitosan nanostructure may found a promising use for the effective treatment of lung cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
| | - Gracia García-García
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain;
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain
- Biosanitary Research Institute of Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, 18071 Granada, Spain
| |
Collapse
|
32
|
Zhou N, Wang W, Li H, Jiang D, Zhong X. Development and investigation of dual potent anticancer drug-loaded nanoparticles for the treatment of lung cancer therapy. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Poly Lactic-Co-Glycolic Acid- (PLGA-) Loaded Nanoformulation of Cisplatin as a Therapeutic Approach for Breast Cancers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5834418. [PMID: 34257812 PMCID: PMC8260288 DOI: 10.1155/2021/5834418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/19/2021] [Indexed: 01/22/2023]
Abstract
Despite recent advancements in cisplatin (cis-diamminedichloroplatinum II) and other platinum-based chemotherapeutic drugs for treating solid tumors, their uses are limited by either in terms of toxicity and/or acquired drug resistance. These side effects have a dangerous problem with higher dose for severe patients. To overcome the low therapeutic ratio of the free drug, a polymeric nanoparticle drug delivery system has been explored promoting delivery of cisplatin to tumors. Recently, the applications of nanoparticles (NPs) have been underlined for encouraging the effects of chemotherapeutic drugs in cancerous cells. The intention of this project is to assess the potential of poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) for enhancing the effects of anticancer drug cisplatin. For the purpose, we have synthesized PLGA-cisplatin nanoparticles for increasing its bioavailability and studied the comparative cytotoxicity of free cisplatin and PLGA-cisplatin against MCF-7 cancer cell lines and HEK-293 normal cell lines. We have also analyzed the hallmarks of PLGA-cisplatin-induced apoptosis. The outcomes of this study may provide the possibility of delivery of anticancer drug to their specific site, which could minimize toxicity and optimize the drug efficacy.
Collapse
|
34
|
Fernández-Álvarez F, Caro C, García-García G, García-Martín ML, Arias JL. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. J Mater Chem B 2021; 9:4963-4980. [PMID: 34114575 DOI: 10.1039/d1tb00354b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Maghemite/poly(d,l-lactide-co-glycolide))/chitosan (core/shell)/shell nanoparticles have been prepared reproducibly by nanoprecipitation solvent evaporation plus coacervation (production performance ≈ 45%, average size ≈ 325 nm). Transmission electron microscopy, energy dispersive X-ray spectroscopy, electrophoretic determinations, and X-ray diffraction patterns demonstrated the satisfactory embedment of iron oxide nanocores within the solid polymer matrix and the formation of an external shell of chitosan in the nanostructure. The adequate magnetic responsiveness of the nanocomposites was characterized in vitro by hysteresis cycle determinations and by visualization of the nanosystem under the influence of a 0.4 T permanent magnet. Safety and biocompatibility of the (core/shell)/shell particles were based on in vitro haemocompatibility studies and cytotoxicity tests against HFF-1 human foreskin fibroblasts and on ex vivo toxicity assessments on tissue samples from Balb/c mice. Transversal relaxivities, determined in vitro at a low magnetic field of 1.44 T, demonstrated their capability as T2 contrast agents for magnetic resonance imaging, being comparable to that of some iron oxide-based contrast agents. Heating properties were evaluated in a high frequency alternating electromagnetic gradient: a constant maximum temperature of ≈46 °C was generated within ≈50 min, while antitumour hyperthermia tests on T-84 colonic adenocarcinoma cells proved the relevant decrease in cell viability (to ≈ 39%) when treated with the nanosystem under the influence of that electromagnetic field. Finally, in vivo magnetic resonance imaging studies and ex vivo histology determinations of iron deposits postulated the efficacy of chitosan to provide long-circulating capabilities to the nanocomposites, retarding nanoparticle recognition by the mononuclear phagocyte system. To our knowledge, this is the first study describing such a type of biocompatible and long-circulating nanoplatform with promising theranostic applications (biomedical imaging and hyperthermia) against cancer.
Collapse
Affiliation(s)
- Fátima Fernández-Álvarez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
35
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
36
|
Recent trends in biodegradable polyester nanomaterials for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112198. [PMID: 34225851 DOI: 10.1016/j.msec.2021.112198] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Biodegradable polyester nanomaterials-based drug delivery vehicles (DDVs) have been largely used in most of the cancer treatments due to its high biological performance and wider applications. In several previous studies, various biodegradable and biocompatible polyester backbones were used which are poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL), poly(propylene fumarate) (PPF), poly(lactic-co-glycolic acid) (PLGA), poly(propylene carbonate) (PPC), polyhydroxyalkanoates (PHA), and poly(butylene succinate) (PBS). These polyesters were fabricated into therapeutic nanoparticles that carry drug molecules to the target site during the cancer disease treatment. In this review, we elaborately discussed the chemical synthesis of different synthetic polyesters and their use as nanodrug carriers (NCs) in cancer treatment. Further, we highlighted in brief the recent developments of metal-free semi-aromatic polyester nanomaterials along with its role as cancer drug delivery vehicles.
Collapse
|
37
|
Zajda J, Wróblewska A, Ruzik L, Matczuk M. Methodology for characterization of platinum-based drug's targeted delivery nanosystems. J Control Release 2021; 335:178-190. [PMID: 34022322 DOI: 10.1016/j.jconrel.2021.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Conventional anticancer therapies exploiting platinum-based drugs rely principally on the intravascular injection of the therapeutic agent. The anticancer drug is distributed throughout the body by the systemic blood circulation undergoing cellular uptake, rapid clearance and excretion. Consequently, only a small portion of the platinum-based drug reaches the tumor site, which is associated with severe side effects. For this reason, targeted delivery systems are of great need since they offer enhanced and selective delivery of a drug to cancerous cells making the therapy safe and more effective. Up to date, a variety of the Pt-based drug targeted delivery systems (Pt-based DTDSs) utilizing nanomaterials have been developed and tested using a range of analytical techniques that provided essential information on their synthesis, stability, biodistribution and cytotoxicity. Here we summarize those experimental techniques indicating their applicability at different stages of the research, as well as pointing out their strengths, advantages, drawbacks and limitations. Also, the existing strategies and approaches are critically reviewed with the objective to reveal and give rise to the development of the analytical methodology suitable for reliable Pt-based DTDSs characterization which would eventually result in novel therapies and better patients' outcomes.
Collapse
Affiliation(s)
- J Zajda
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - A Wróblewska
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - L Ruzik
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - M Matczuk
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| |
Collapse
|
38
|
F127/Cisplatin Microemulsions: In Vitro, In Vivo and Computational Studies. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The development of effective strategies for local administration of chemotherapeutic drugs, thus minimizing the adverse side effects to patients, is one of the key challenges in biomedicine and cancer research. This work reports the formulation and characterization of PluronicF127 microemulsions to enhance the bioavailability of Cisplatin (Cis). The size of Cis microemulsion was about 12.0 nm, as assessed by dynamic light scattering analysis. In vitro cytotoxic activity of free Cis and F127/Cis microemulsions were studied on malignant (C152 and MCF7) and normal (HUVEC) cells via tetrazolium (MTT) colorimetric assay. Cell morphology was also monitored. In vitro assessments revealed thatF127/Cis microemulsions induced cytotoxicity/morphological changes to a lesser extent than free Cis. Regarding in vivo experiments, F127/Cis microemulsions were injected intraperitoneally at 7 and 14 mg/kg doses into adult male Wistar rats to assess histologic and biochemical changes. In this case, the bulk Cis group caused severe histopathological changes and significant increases in serum liver enzymes and serum kidney function markers. The group treated with the 14 mg/kg dose of F127/Cis microemulsions also showed severe fatty changes and significant increases in serum liver enzymes, blood urea nitrogen, and creatinine levels. The group treated with the low dose of nano-Cis showed a significant increase in serum liver enzymes levels accompanied by mild fatty changes of the liver. Theoretical surveys were performed to get an understanding of the interplay between F127 and Cis. Results reveal that hydrogen bonding (HB) interactions with F127have an influence on the molecular properties of Cis and may playa role in the lower toxicity of F127/Cis in comparison to free Cis.
Collapse
|
39
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
40
|
Chiu HI, Samad NA, Fang L, Lim V. Cytotoxicity of targeted PLGA nanoparticles: a systematic review. RSC Adv 2021; 11:9433-9449. [PMID: 35423427 PMCID: PMC8695459 DOI: 10.1039/d1ra00074h] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Recent advances in nanotechnology have contributed tremendously to the development and revolutionizing of drug delivery systems in the field of nanomedicine. In particular, targeting nanoparticles based on biodegradable poly(lactic-co-glycolic acid) (PLGA) polymers have gained much interest. However, PLGA nanoparticles remain of concern for their effectiveness against cancer cells and their toxicity to normal cells. The aim of this systematic review is to identify a promising targeting PLGA nanoformulation based on the comparison study of their cytotoxicity potency in different cell lines. A literature search was conducted through the databases of Google Scholar, PubMed, ScienceDirect, Scopus and SpringerLink. The sources studied were published between 2009 and 2019, and a variety of keywords were utilized. In total, 81 manuscripts that met the inclusion and exclusion criteria were selected for analysis based on their cytotoxicity, size, zeta potential, year of publication, type of ligand, active compounds and cell line used. The half maximal inhibitory concentration (IC50) for cytotoxicity was the main measurement in this data extraction, and the SI units were standardized to μg mL-1 for a better view of comparison. This systematic review also identified that cytotoxicity potency was inversely proportional to nanoparticle size. The PLGA nanoparticles predominantly exhibited a size of less than 300 nm and absolute zeta potential ∼20 mV. In conclusion, more comprehensive and critical appraisals of pharmacokinetic, pharmacokinetic, toxicokinetic, in vivo and in vitro tests are required for the investigation of the full value of targeting PLGA nanoparticles for cancer treatment.
Collapse
Affiliation(s)
- Hock Ing Chiu
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Nozlena Abdul Samad
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Vuanghao Lim
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia Bertam 13200 Kepala Batas Penang Malaysia +604-5622427
| |
Collapse
|
41
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
42
|
Zafar A, Alruwaili NK, Imam SS, Alharbi KS, Afzal M, Alotaibi NH, Yasir M, Elmowafy M, Alshehri S. Novel nanotechnology approaches for diagnosis and therapy of breast, ovarian and cervical cancer in female: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Fang W, Jin R, Mu W. Near-infrared mediated polymer-coated carbon nanodots loaded cisplatin for targeted care management of lung cancer therapy. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Nanoparticles in precision medicine for ovarian cancer: From chemotherapy to immunotherapy. Int J Pharm 2020; 591:119986. [DOI: 10.1016/j.ijpharm.2020.119986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/23/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
|
45
|
Ahmad J, Ameeduzzafar, Ahmad MZ, Akhter H. Surface-Engineered Cancer Nanomedicine: Rational Design and Recent Progress. Curr Pharm Des 2020; 26:1181-1190. [PMID: 32056517 DOI: 10.2174/1381612826666200214110645] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/18/2020] [Indexed: 01/02/2023]
Abstract
Cancer is highly heterogeneous in nature and characterized by abnormal, uncontrolled cells' growth. It is responsible for the second leading cause of death in the world. Nanotechnology is explored profoundly for sitespecific delivery of cancer chemotherapeutics as well as overcome multidrug-resistance (MDR) challenges in cancer. The progress in the design of various smart biocompatible materials (such as polymers, lipids and inorganic materials) has now revolutionized the area of cancer research for the rational design of nanomedicine by surface engineering with targeting ligands. The small tunable size and surface properties of nanomedicines provide the opportunity of multiple payloads and multivalent-ligand targeting to achieve drug efficacy even in MDR cancer. Furthermore, efforts are being carried out for the development of novel nano-pharmaceutical design, focusing on the delivery of therapeutic and diagnostic agents simultaneously which is called theranostics to assess the progress of therapy in cancer. This review aimed to discuss the physicochemical manipulation of cancer nanomedicine for rational design and recent progress in the area of surface engineering of nanomedicines to improve the efficacy of cancer chemotherapeutics in MDR cancer as well. Moreover, the problem of toxicity of the advanced functional materials that are used in nanomedicines and are exploited to achieve drug targeting in cancer is also addressed.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ameeduzzafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Saudi Arabia
| | - Mohammad Z Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Habban Akhter
- Faculty of Pharmacy, DIT University, Dehradun, India
| |
Collapse
|
46
|
Kostrhunova H, Zajac J, Markova L, Brabec V, Kasparkova J. A Multi-action Pt IV Conjugate with Oleate and Cinnamate Ligands Targets Human Epithelial Growth Factor Receptor HER2 in Aggressive Breast Cancer Cells. Angew Chem Int Ed Engl 2020; 59:21157-21162. [PMID: 32750194 DOI: 10.1002/anie.202009491] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 01/07/2023]
Abstract
HER2-positive breast cancer is an aggressive subtype that typically responds poorly to standard chemotherapy. To design an anticancer drug selective for HER2-expressing breast cancer, a PtIV prodrug with axial oleate and cinnamate ligands was synthesized. We demonstrate its superior antiproliferative activity in monolayer and 3D spheroid models; the antiproliferative efficiency increases gradually with increasing expression of HER2. The results also suggest that the released PtII compound inhibits the proliferation of cancer cells by a DNA-damage-mediated mechanism. Simultaneously, the released oleic and cinnamic acid can effectively inhibit HER2 expression. To our knowledge, this is the first platinum-based complex inhibiting HER2 expression that does not contain protein or peptide. Moreover, this PtIV prodrug is capable of overcoming the resistance of cancer stem cells (CSCs), inducing death in both CSCs and differentiated cancer cells. Thus, the results substantiate our design strategy and demonstrate the potential of this approach for the development of new, therapeutically relevant compounds.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences, Institute of Biophysics, Kralovopolska 135, 61265, Brno, Czech Republic
| |
Collapse
|
47
|
Kostrhunova H, Zajac J, Markova L, Brabec V, Kasparkova J. A Multi‐action Pt
IV
Conjugate with Oleate and Cinnamate Ligands Targets Human Epithelial Growth Factor Receptor HER2 in Aggressive Breast Cancer Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Lenka Markova
- Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Viktor Brabec
- Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences Institute of Biophysics Kralovopolska 135 61265 Brno Czech Republic
| |
Collapse
|
48
|
Nieto C, Vega MA, Martín del Valle EM. Trastuzumab: More than a Guide in HER2-Positive Cancer Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1674. [PMID: 32859026 PMCID: PMC7557948 DOI: 10.3390/nano10091674] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
HER2 overexpression, which occurs in a fifth of diagnosed breast cancers as well as in other types of solid tumors, has been traditionally linked to greater aggressiveness. Nevertheless, the clinical introduction of trastuzumab has helped to improve HER2-positive patients' outcomes. As a consequence, nanotechnology has taken advantage of the beneficial effects of the administration of this antibody and has employed it to develop HER2-targeting nanomedicines with promising therapeutic activity and limited toxicity. In this review, the molecular pathways that could be responsible for trastuzumab antitumor activity will be briefly summarized. In addition, since the conjugation strategies that are followed to develop targeting nanomedicines are essential to maintaining their efficacy and tolerability, the ones most employed to decorate drug-loaded nanoparticles and liposomes with trastuzumab will be discussed here. Thus, the advantages and disadvantages of performing this trastuzumab conjugation through adsorption or covalent bindings (through carbodiimide, maleimide, and click-chemistry) will be described, and several examples of targeting nanovehicles developed following these strategies will be commented on. Moreover, conjugation methods employed to synthesized trastuzumab-based antibody drug conjugates (ADCs), among which T-DM1 is well known, will be also examined. Finally, although trastuzumab-decorated nanoparticles and liposomes and trastuzumab-based ADCs have proven to have better selectivity and efficacy than loaded drugs, trastuzumab administration is sometimes related to side toxicities and the apparition of resistances. For this reason also, this review focuses at last on the important role that newer antibodies and peptides are acquiring these days in the development of HER2-targeting nanomedicines.
Collapse
Affiliation(s)
- Celia Nieto
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| | | | - Eva M. Martín del Valle
- Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain;
| |
Collapse
|
49
|
Yuan Y, Li E, Zhao J, Wu B, Na Z, Cheng W, Jing H. Highly penetrating nanobubble polymer enhances LINC00511-siRNA delivery for improving the chemosensitivity of triple-negative breast cancer. Anticancer Drugs 2020; 32:178-188. [PMID: 32826414 DOI: 10.1097/cad.0000000000000985] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ultrasound-mediated nanobubble destruction (UMND), which can utilize the physical energy of ultrasound irradiation to improve the transfer efficiency to target cells is becoming one of the most promising carriers for gene delivery. The purpose of this study was to establish cell-penetrating peptide (CPP)-loaded nanobubbles (CNBs) connected with long intergenic nonprotein coding RNA 00511-small interfering RNA (LINC00511-siRNA) and evaluate its feasibility for improving the chemosensitivity of triple-negative breast cancer in vitro. First, fluorescence imaging confirmed the loading of siLINC00511 on CNBs, and the CNBs-siLINC00511 were characterized by the Zetasizer Nano ZS90 analyzer and transmission electron microscopy. Next, cell counting kit 8 assay was used to detect the inhibitory activity of cisplatin on the proliferation of MDA-MB-231 cells, and the 50% inhibition concentration value before and after transfer was calculated. Finally, the silencing effect of siLINC00511 was evaluated in vitro using an apoptosis assay, transwell assay, real time-PCR and western blotting. UMND combined with CNBs could effectively transfer the siRNA to MDA-MB-231 cells, thus evidently reducing the expression of LINC00511. Furthermore, inhibitory activity of cisplatin on MDA-MB-231 cells was enhanced after downregulation of LINC00511 expression. Downregulation of LINC00511 alters expression of cell cycle-related (CDK 6) and apoptosis-related (Bcl-2 and Bax) proteins in MDA-MB-231 cells. These results suggested that siRNA-CNBs may be an ideal vector for the treatment of tumors, with high efficiency RNA interference under the combined action of UMND. It may provide a new therapeutic method for triple negative breast cancer.
Collapse
Affiliation(s)
- Yanchi Yuan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Gong H, Nie D, Li Z. Targeting Six Hallmarks of Cancer in Ovarian Cancer Therapy. Curr Cancer Drug Targets 2020; 20:853-867. [PMID: 32807056 DOI: 10.2174/1568009620999200816130218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022]
Abstract
Normal cells must overcome multiple protective mechanisms to develop into cancer cells. Their new capabilities include self-sufficiency in growth signals and insensitivity to antigrowth signals, evasion of apoptosis, a limitless replicative potential, sustained angiogenesis, and tissue invasion and metastasis; these are also termed the six hallmarks of cancer. A deep understanding of the genetic and protein alterations involved in these processes has enabled the development of targeted therapeutic strategies and clinical trial design in the search for ovarian cancer treatments. Clinically, significantly longer progression-free survival has been observed in the single use of PARP, MEK, VEGF and Chk1/Chk2 inhibitors. However, the clinical efficacy of the targeted agents is still restricted to specific molecular subtypes and no trials illustrate a benefit in overall survival. Exploring novel drug targets or combining current feasible biological agents hold great promise to further improve outcomes in ovarian cancer. In this review, we intend to provide a comprehensive description of the molecular alterations involved in ovarian cancer carcinogenesis and of emerging biological agents and combined strategies that target aberrant pathways, which might shed light on future ovarian cancer treatment.
Collapse
Affiliation(s)
- Han Gong
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Nie
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhengyu Li
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|