1
|
Gao J, Li J, Luo Z, Wang H, Ma Z. Nanoparticle-Based Drug Delivery Systems for Inflammatory Bowel Disease Treatment. Drug Des Devel Ther 2024; 18:2921-2949. [PMID: 39055164 PMCID: PMC11269238 DOI: 10.2147/dddt.s461977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, non-specific inflammatory condition characterized by recurring inflammation of the intestinal mucosa. However, the existing IBD treatments are ineffective and have serious side effects. The etiology of IBD is multifactorial and encompasses immune, genetic, environmental, dietary, and microbial factors. The nanoparticles (NPs) developed based on specific targeting methodologies exhibit great potential as nanotechnology advances. Nanoparticles are defined as particles between 1 and 100 nm in size. Depending on their size and surface functionality, NPs exhibit different properties. A variety of nanoparticle types have been employed as drug carriers for the treatment of inflammatory bowel disease (IBD), with encouraging outcomes observed in experimental models. They increase the bioavailability of drugs and enable targeted drug delivery, promoting localized treatment and thus enhancing efficacy. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines. Nevertheless, numerous challenges persist in the translation from nanomedicine to clinical application, including enhanced formulations and preparation techniques, enhanced drug safety profiles, and so forth. In the future, it will be necessary for scientists and clinicians to collaborate in order to study disease mechanisms, develop new drug delivery strategies, and screen new nanomedicines.
Collapse
Affiliation(s)
- Jian Gao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zengyou Luo
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
2
|
Fu W, Xu L, Chen Z, Kan L, Ma Y, Qian H, Wang W. Recent advances on emerging nanomaterials for diagnosis and treatment of inflammatory bowel disease. J Control Release 2023; 363:149-179. [PMID: 37741461 DOI: 10.1016/j.jconrel.2023.09.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder that affects the entire gastrointestinal tract and is associated with an increased risk of colorectal cancer. Mainstream clinical testing methods are time-consuming, painful for patients, and insufficiently sensitive to detect early symptoms. Currently, there is no definitive cure for IBD, and frequent doses of medications with potentially severe side effects may affect patient response. In recent years, nanomaterials have demonstrated considerable potential for IBD management due to their diverse structures, composition, and physical and chemical properties. In this review, we provide an overview of the advances in nanomaterial-based diagnosis and treatment of IBD in recent five years. Multi-functional bio-nano platforms, including contrast agents, near-infrared (NIR) fluorescent probes, and bioactive substance detection agents have been developed for IBD diagnosis. Based on a series of pathogenic characteristics of IBD, the therapeutic strategies of antioxidant, anti-inflammatory, and intestinal microbiome regulation of IBD based on nanomaterials are systematically introduced. Finally, the future challenges and prospects in this field are presented to facilitate the development of diagnosis and treatment of IBD.
Collapse
Affiliation(s)
- Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Zetong Chen
- School of Stomatology, Anhui Medical University, Hefei, Anhui 230032, PR China
| | - Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, China.
| |
Collapse
|
3
|
Sedlmayr V, Horn C, Wurm DJ, Spadiut O, Quehenberger J. Archaeosomes facilitate storage and oral delivery of cannabidiol. Int J Pharm 2023; 645:123434. [PMID: 37739097 DOI: 10.1016/j.ijpharm.2023.123434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Cannabidiol (CBD) has received great scientific interest due to its numerous therapeutic applications. Degradation in the gastrointestinal (GI) tract, first-pass metabolism, and low water solubility restrain bioavailability of CBD to only 6% in current oral administration. Lipid-based nanocarriers are delivery systems that may enhance accessibility and solubility of hydrophobic payloads, such as CBD. Conventional lecithin-derived liposomes, however, have limitations regarding stability in the GI tract and long-term storage. Ether lipid-based archaeosomes may have the potential to overcome these problems due to chemical and structural uniqueness. In this study, we compared lecithin-derived liposomes with archaeosomes in their applicability as an oral delivery system of CBD. We evaluated drug load, storage stability, stability in a simulated GI tract, and in vitro particle uptake in Caco-2 cells. Loading capacity was 6-fold higher in archaeosomes than conventional liposomes while providing a stable formulation over six months after lyophilization. In a simulated GI tract, CBD recovery in archaeosomes was 57 ± 3% compared to only 34 ± 1% in conventional liposomes and particle uptake in Caco-2 cells was enhanced up to 6-fold. Our results demonstrate that archaeosomes present an interesting solution to tackle current issues of oral CBD formulations due to improved stability and endocytosis.
Collapse
Affiliation(s)
- Viktor Sedlmayr
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria
| | | | | | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria
| | - Julian Quehenberger
- TU Wien, Institute of Chemical, Environmental and Bioscience Engineering, Vienna, Austria; NovoArc GmbH, Vienna, Austria.
| |
Collapse
|
4
|
Romero EL, Morilla MJ. Ether lipids from archaeas in nano-drug delivery and vaccination. Int J Pharm 2023; 634:122632. [PMID: 36690132 DOI: 10.1016/j.ijpharm.2023.122632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Archaea are microorganisms more closely related to eukaryotes than bacteria. Almost 50 years after being defined as a new domain of life on earth, new species continue to be discovered and their phylogeny organized. The study of the relationship between their genetics and metabolism and some of their extreme habitats has even positioned them as a model of extraterrestrial life forms. Archaea, however, are deeply connected to the life of our planet: they can be found in arid, acidic, warm areas; on most of the earth's surface, which is cold (below 5 °C), playing a prominent role in the cycles of organic materials on a global scale and they are even part of our microbiota. The constituent materials of these microorganisms differ radically from those produced by eukaryotes and bacteria, and the nanoparticles that can be manufactured using their ether lipids as building blocks exhibit unique properties that are of interest in nanomedicine. Here, we present for the first time a complete overview of the pre-clinical applications of nanomedicines based on ether archaea lipids, focused on drug delivery and adjuvancy over the last 25 years, along with a discussion on their pros, cons and their future industrial implementation.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina.
| | - Maria Jose Morilla
- Nanomedicines Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
5
|
Higuchi A, Morishita M, Nagata R, Maruoka K, Katsumi H, Yamamoto A. Functional Characterization of Extracellular Vesicles from Baker's Yeast Saccharomyces Cerevisiae as a Novel Vaccine Material for Immune Cell Maturation. J Pharm Sci 2023; 112:525-534. [PMID: 36057319 DOI: 10.1016/j.xphs.2022.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
Extracellular vesicles (EVs) encapsulate various bioactive molecules, and much effort has been directed towards developing a novel EV-based therapy. Although recent studies reported the secretion of EVs from probiotics baker's yeast Saccharomyces cerevisiae (S. cerevisiae), their properties and functions remain obscure. The aim of this study was to clarify the usefulness of EVs from S. cerevisiae (S-EVs) as a novel vaccine material by defining their physicochemical properties and biological functions. The collected S-EVs contained β-D-glucan and showed particle sizes and zeta potentials approximately 128.8 nm and -7.39 mV, respectively. S-EVs were positive for heat shock protein 70 kDa (HSP70). These S-EVs considerably enhanced the production of proinflammatory tumor necrosis factor-α and interleukin 6 from RAW264.7 cells (mouse macrophage-like cells) and DC2.4 cells (mouse dendritic cells). The expression of maturation markers CD40, CD80 and CD86 on the surface of these immune cells incubated with S-EVs was remarkably upregulated. Immune cells endocytosed S-EVs, and toll like receptor 2 on immune cells was involved in immune activation by S-EVs. These results indicate that extracellular vesicles derived from baker's yeast Saccharomyces cerevisiae are an attractive source as a novel vaccine material for immune cells maturation.
Collapse
Affiliation(s)
- Ayaka Higuchi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Masaki Morishita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan.
| | - Ryoga Nagata
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Kento Maruoka
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Misasagi, Yamashina-Ku, Kyoto 607-8414, Japan
| |
Collapse
|
6
|
S100A9 plays a key role in Clostridium perfringens beta2 toxin-induced inflammatory damage in porcine IPEC-J2 intestinal epithelial cells. BMC Genomics 2023; 24:16. [PMID: 36635624 PMCID: PMC9835341 DOI: 10.1186/s12864-023-09118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND As an important regulator of autoimmune responses and inflammation, S100A9 may serve as a therapeutic target in inflammatory diseases. However, the role of S100A9 in Clostridium perfringens type C infectious diarrhea is poorly studied. The aim of our study was to screen downstream target genes regulated by S100A9 in Clostridium perfringens beta2 (CPB2) toxin-induced IPEC-J2 cell injury. We constructed IPEC-J2 cells with S100A9 knockdown and a CPB2-induced cell injury model, screened downstream genes regulated by S100A9 using RNA-Seq technique, and performed functional enrichment analysis. The function of S100A9 was verified using molecular biology techniques. RESULTS We identified 316 differentially expressed genes (DEGs), of which 221 were upregulated and 95 were downregulated. Functional enrichment analysis revealed that the DEGs were significantly enriched in cilium movement, negative regulation of cell differentiation, immune response, protein digestion and absorption, and complement and coagulation cascades. The key genes of immune response were TNF, CCL1, CCR7, CSF2, and CXCL9. When CPB2 toxin-induced IPEC-J2 cells overexpressed S100A9, Bax expression increased, Bcl-2 expression and mitochondrial membrane potential decreased, and SOD activity was inhibited. CONCLUSION In conclusion, S100A9 was involved in CPB2-induced inflammatory response in IPEC-J2 cells by regulating the expression of downstream target genes, namely, TNF, CCL1, CCR7, CSF2, and CXCL9; promoting apoptosis; and aggravating oxidative cell damage. This study laid the foundation for further study on the regulatory mechanism underlying piglet diarrhea.
Collapse
|
7
|
Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227991. [PMID: 36432092 PMCID: PMC9697699 DOI: 10.3390/molecules27227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Cell-targeted delivery is an advanced strategy which can effectively solve health problems. However, the presence of synthetic materials in delivery systems may trigger side effects. Therefore, it is necessary to develop cell-targeted delivery systems with excellent biosafety. Edible materials not only exhibit biosafety, but also can be used to construct cell-targeted delivery systems such as ligands, carriers, and nutraceuticals. Moreover, oral administration is the appropriate route for cell-targeted delivery systems constructed of edible materials (CDSEMs), which is the same as the pattern of food intake, resulting in good patient compliance. In this review, relevant studies of oral CDSEMs are collected to summarize the construction method, action mechanism, and health impact. The gastrointestinal stability of delivery systems can be improved by anti-digestible materials. The design of the surface structure, shape, and size of carrier is beneficial to overcoming the mucosal barrier. Additionally, some edible materials show dual functions of a ligand and carrier, which is conductive to simplifying the design of CDSEMs. This review can provide a better understanding and prospect for oral CDSEMs and promote their application in the health field.
Collapse
|
8
|
Caimi AT, Yasynska O, Rivas Rojas PC, Romero EL, Morilla MJ. Improved stability and biological activity of bacterioruberin in nanovesicles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Caimi AT, Ramirez C, Perez AP, Romero EL, Morilla MJ. In vitro anti-melanoma activity of imiquimod in ultradeformable nanovesicles. Drug Dev Ind Pharm 2022; 48:657-666. [PMID: 36445155 DOI: 10.1080/03639045.2022.2153861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND The wide spectrum of antitumoral mechanisms of imiquimod (IMQ), made it a good candidate for topical therapy of melanoma. However, physicochemical properties make IMQ formulation a difficult task. Solubility and skin penetration of IMQ are increased when loaded into ultradeformable nanovesicles. OBJECTIVE Survey the in vitro anti-melanoma activity of IMQ loaded into two types of ultradeformable nanovesicles: archaeosomes (UDA-IMQ) (containing sn-2,3 ether-linked phytanyl saturated archaeolipids extracted from Halorubrum tebenquichense) and liposomes lacking archaeolipids (UDL-IMQ). METHODS We prepared and structurally characterized UDA-IMQ and UDL-IMQ. Cytotoxicity was determined on human melanoma cells (SK-Mel-28) and keratinocytes (HaCaT cells) by MTT assay and LDH release. The cellular uptake was determined by flow cytometry. Apoptosis/necrosis induction was determined by fluorescence microscopy after double staining with YO-PRO-1® and propidium iodide. RESULTS Neither IMQ nor IMQ-nanovesicles reduced the viability of HaCaT cells; but UDL-IMQ (371 nm, -24 mV ζ potential, 31 µg IMQ/mg lipids) and UDA-IMQ (216 nm, -32 mV ζ potential, 61 µg IMQ/mg lipids) showed time and concentration-dependent cytotoxicity on SK-Mel-28 that resulted between 4 and 33 folds higher than free IMQ, respectively. While both UDA-IMQ and UDL-IMQ retained 60% of IMQ against dilution, UDA-IMQ uptaken by SK-Mel-28 cells was nine-fold higher than UDL-IMQ. UDL-IMQ induced early apoptosis, but UDA-IMQ induced both apoptosis and necrosis on SK-Mel-28 cells. CONCLUSIONS UDA-IMQ was innocuous to keratinocytes but was highly uptaken and induced apoptosis and necrosis on melanoma cells, being a candidate for future investigations as adjuvant topical anti-melanoma therapy.
Collapse
Affiliation(s)
- Ayelen Tatiana Caimi
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Cecilia Ramirez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Ana Paula Perez
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research & Development Center, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
10
|
Guo J, Liu H, Zhao D, Pan C, Jin X, Hu Y, Gao X, Rao P, Liu S. Glucose-lowering effects of orally administered superoxide dismutase in type 2 diabetic model rats. NPJ Sci Food 2022; 6:36. [PMID: 35987753 PMCID: PMC9392803 DOI: 10.1038/s41538-022-00151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Superoxide dismutase (SOD) is an enzyme found in most food sources, might be a candidate to reduce oxidative damage to intestinal barrier, thereby ameliorating the vicious circle between hyperglycemia and the oxidative damage. Here we report the oral administration of SOD, liposome-embedded SOD (L-SOD), and SOD hydrolysate to type 2 diabetic model rats to confirm this hypothesis. Oxidative damage severity in model rat intestine was indicated by malondialdehyde level, GSSG/GSH ratio, and antioxidant enzyme activity. The damage was significantly repaired by L-SOD. Furthermore, blood glucose and related indexes correlated well not only with oxidative damage results but also with indexes indicating physical intestinal damage such as colon density, H&E staining, immunohistochemical analysis of the tight junction proteins occludin and ZO-1 in the colon, as well as lipopolysaccharide and related inflammatory cytokine levels. The order of the magnitude of the effects of these SOD preparations was L-SOD > SOD > SOD hydrolysate. These data indicate that orally administered SOD can exhibit glucose-lowering effect via targeting the intestine of diabetic rats and systemic lipopolysaccharide influx.
Collapse
|
11
|
Yang E, Jung HS, Chang PS. Preparation and Characterization of pH-Sensitive Capsosomes for Oral Delivery of Therapeutic Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9294-9300. [PMID: 35863074 DOI: 10.1021/acs.langmuir.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oral administration of therapeutic proteins is very challenging because of gastrointestinal instability and decomposition. In this study, we developed a system for oral delivery of superoxide dismutase (SOD) as one of the therapeutic proteins. SOD-loaded capsosomes (SOD-C) were formed by the assembly of chitosan-coated solid lipid nanoparticles and SOD-loaded liposomes (SOD-L). Unlike raw SOD activity decreases to 19.41% in SGF and 13.70% in SIF, the SOD-C in SGF (89.30%) condition retained its initial catalytic activity and decreased but exhibited a three-fold higher raw SOD activity even after incubation in SIF (41.63%). TEM analysis indicated that after intestinal digestion, the residual amount of intact liposomes affected the higher catalytic activity of SOD-C compared to raw SOD and SOD-L. Based on these results, significantly higher cellular uptake of SOD-C was observed compared to raw SOD. Also, SOD-C remarkably suppressed the cellular malondialdehyde (MDA) concentration by maintaining the antioxidative capacity of SOD to remove MDA produced in the oxidative stress-induced cells, thereby contributing to a significant five-fold difference with SOD-R (p < 0.05). This delivery system can facilitate the oral application of other therapeutic proteins, improving gastrointestinal stability.
Collapse
Affiliation(s)
- Eunhye Yang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Sup Jung
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Charó N, Jerez H, Tatti S, Romero EL, Schattner M. The Anti-Inflammatory Effect of Nanoarchaeosomes on Human Endothelial Cells. Pharmaceutics 2022; 14:pharmaceutics14040736. [PMID: 35456570 PMCID: PMC9027062 DOI: 10.3390/pharmaceutics14040736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 01/14/2023] Open
Abstract
Archaebacterias are considered a unique source of novel biomaterials of interest for nanomedicine. In this perspective, the effects of nanoarchaeosomes (ARC), which are nanovesicles prepared from polar lipids extracted from the extreme halophilic Halorubrum tebenquinchense, on human umbilical vein endothelial cells (HUVEC) were investigated in physiological and under inflammatory static conditions. Upon incubation, ARC (170 nm mean size, −41 mV ζ) did not affect viability, cell proliferation, and expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin under basal conditions, but reduced expression of both molecules and secretion of IL-6 induced by lypopolysaccharide (LPS), Pam3CSK4 or Escherichia coli. Such effects were not observed with TNF-α or IL-1β stimulation. Interestingly, ARC significantly decreased basal levels of von Willebrand factor (vWF) and levels induced by all stimuli. None of these parameters was altered by liposomes of hydrogenated phosphatidylcholine and cholesterol of comparable size and concentration. Only ARC were endocytosed by HUVEC and reduced mRNA expression of ICAM-1 and vWF via NF-ĸB and ERK1/2 in LPS-stimulated cells. This is the first report of the anti-inflammatory effect of ARC on endothelial cells and our data suggest that its future use in vascular disease may hopefully be of particular interest.
Collapse
Affiliation(s)
- Nancy Charó
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
| | - Horacio Jerez
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
| | - Silvio Tatti
- Department of Obstetrics and Gynecology, Clinical Hospital, Av. Córdoba 2351, Buenos Aires 1120, Argentina;
| | - Eder Lilia Romero
- Center for Research and Development in Nanomedicines (CIDEN), National University of Quilmes, Roque Saenz Peña, Bernal 1876, Argentina;
- Correspondence: (E.L.R.); (M.S.)
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis and Immunobiology of Inflammation, Institute of Experimental Medicine, CONICET-National Academy of Medicine, Pacheco de Melo 3081, Buenos Aires 1425, Argentina;
- Correspondence: (E.L.R.); (M.S.)
| |
Collapse
|
13
|
Reparation of an Inflamed Air-Liquid Interface Cultured A549 Cells with Nebulized Nanocurcumin. Pharmaceutics 2021; 13:pharmaceutics13091331. [PMID: 34575407 PMCID: PMC8466083 DOI: 10.3390/pharmaceutics13091331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/15/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
The anti-inflammatory, antifibrotic and antimicrobial activities of curcumin (CUR) are missed because of its low solubility in aqueous media, low bioavailability, and structural lability upon oral intake. Soft nanoparticles such as nanoliposomes are not efficient as CUR carriers, since crystalline CUR is expelled from them to physiological media. Nanostructures to efficiently trap and increase the aqueous solubility of CUR are needed to improve both oral or nebulized delivery of CUR. Here we showed that SRA1 targeted nanoarchaeosomes (nATC) [1:0.4 w:w:0.04] archaeolipids, tween 80 and CUR, 155 ± 16 nm sized of −20.7 ± 3.3 z potential, retained 0.22 mg CUR ± 0.09 per 12.9 mg lipids ± 4.0 (~600 μM CUR) in front to dilution, storage, and nebulization. Raman and fluorescence spectra and SAXS patterns were compatible with a mixture of enol and keto CUR tautomers trapped within the depths of nATC bilayer. Between 20 and 5 µg CUR/mL, nATC was endocytosed by THP1 and A549 liquid–liquid monolayers without noticeable cytotoxicity. Five micrograms of CUR/mL nATC nebulized on an inflamed air–liquid interface of A549 cells increased TEER, normalized the permeation of LY, and decreased il6, tnfα, and il8 levels. Overall, these results suggest the modified pharmacodynamics of CUR in nATC is useful for epithelia repair upon inflammatory damage, deserving further deeper exploration, particularly related to its targeting ability.
Collapse
|
14
|
Oral delivery of antioxidant enzymes for effective treatment of inflammatory disease. Biomaterials 2021; 271:120753. [PMID: 33725585 DOI: 10.1016/j.biomaterials.2021.120753] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
Oral administration of protein is very challenging for therapeutic applications due to its instability and easy degradation in the gastrointestinal tract. Herein, we reported an approach to encapsulate native anti-inflammatory proteins in wind chimes like cyclodextrin (WCC) for efficient oral protein delivery. The amphiphilic WCC can self-assemble into nanoparticles in aqueous solution and achieve superior encapsulation of two antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) by simply mixing with protein solution, avoiding any extra cumbersome steps that might inactivate protein. WCC nanovehicles can effectively protect enzyme activity and enhance their intracellular delivery. SOD and CAT co-loaded WCC nanoparticles (SC/WCC) can integrate the synergistic effect of SOD and CAT for enhancing the removal of reactive oxygen species (ROS), effectively inhibit the inflammatory response by reducing the secretion of proinflammatory factors and protect cells from ROS-induced oxidative damage. In the mouse colitis model, SC/WCC administered orally was able to efficiently accumulate in the inflamed colon, significantly inhibited the expression of proinflammatory mediators and notably alleviated the symptoms related to colitis. Therefore, we believe that the strategies we described here may provide a convenient and powerful platform for the treatment of other inflammatory diseases.
Collapse
|
15
|
Macrophage apoptosis using alendronate in targeted nanoarchaeosomes. Eur J Pharm Biopharm 2021; 160:42-54. [PMID: 33440242 DOI: 10.1016/j.ejpb.2021.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Nanoarchaeosomes are non-hydrolysable nanovesicles made of archaeolipids, naturally functionalised with ligand for scavenger receptor class 1. We hypothesized that nitrogenate bisphosphonate alendronate (ALN) loaded nanoarchaeosomes (nanoarchaeosomes(ALN)) may constitute more efficient macrophage targeted apoptotic inducers than ALN loaded nanoliposomes (nanoliposomes (ALN)). To that aim, ALN was loaded in cholesterol containing (nanoARC-chol(ALN)) or not (nanoARC(ALN)) nanoarchaeosomes. Nanoarchaeosomes(ALN) (220-320 nm sized, ~ -40 mV ξ potential, 38-50 μg ALN/mg lipid ratio) displayed higher structural stability than nanoliposomes(ALN) of matching size and ξ potential, retaining most of ALN against a 1/200 folds dilution. The cytotoxicity of nanoARC(ALN) on J774A.1 cells, resulted > 30 folds higher than free ALN and nanoliposomes(ALN) and was reduced by cholesterol in nanoARC-chol(ALN). Devoid of ALN, nanoARC-chol was non-cytotoxic, exhibited pronounced anti-inflammatory activity on J774.1 cells, strongly reducing reactive oxygen species (ROS) and IL-6 induced by LPS. Nanoarchaeosomes bilayer extensively interacted with serum proteins but resulted refractory to phospholipases. Upon J774A.1 cells uptake, nanoarchaeosomes induced cytoplasmic acid vesicles, reduced the mitochondrial membrane potential by 20-40 % without consuming ATP neither damaging lysosomes and increasing pERK. Refractory to chemoenzymatic attacks, either void or drug loaded, nanoarchaeosomes induced either anti-inflammation or macrophages apoptosis, constituting promising targeted nanovesicles for multiple therapeutic purposes.
Collapse
|
16
|
Rosa AC, Bruni N, Meineri G, Corsi D, Cavi N, Gastaldi D, Dosio F. Strategies to expand the therapeutic potential of superoxide dismutase by exploiting delivery approaches. Int J Biol Macromol 2020; 168:846-865. [PMID: 33242550 DOI: 10.1016/j.ijbiomac.2020.11.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/04/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022]
Abstract
The overproduction of free radicals can cause oxidative-stress damage to a range of biomolecules, and thus potentially contribute to several pathologies, from neurodegenerative disorders to cardiovascular diseases and metabolic disorders. Endogenous antioxidant enzymes, such as superoxide dismutase (SOD), play an important role in diminishing oxidative stress. SOD supplementation could therefore be an effective preventive strategy to reduce the risk of free-radical overproduction. However, the efficacy of SOD administration is hampered by its rapid clearance. Several different approaches to improve the bioavailability of SOD have been explored in recent decades. This review intends to describe the rationale that underlie the various approaches and chemical strategies that have led to the most recent advances in SOD delivery. This critical description includes SOD conjugates, SOD loaded into particulate carriers (micelles, liposomes, nanoparticles, microparticles) and the most promising and suitable formulations for oral delivery, with a particular emphasis on reports of preclinical/clinical results. Likely future directions are also considered and reported.
Collapse
Affiliation(s)
| | - Natascia Bruni
- Istituto Farmaceutico Candioli Srl, Beinasco, Turin, Italy
| | - Giorgia Meineri
- Department of Veterinary Science, University of Turin, Italy
| | - Daniele Corsi
- Department of Drug Science and Technology, University of Turin, Italy
| | - Niccolò Cavi
- Department of Drug Science and Technology, University of Turin, Italy
| | - Daniela Gastaldi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Turin, Italy.
| |
Collapse
|
17
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
18
|
Li CW, Li LL, Chen S, Zhang JX, Lu WL. Antioxidant Nanotherapies for the Treatment of Inflammatory Diseases. Front Bioeng Biotechnol 2020; 8:200. [PMID: 32258013 PMCID: PMC7093330 DOI: 10.3389/fbioe.2020.00200] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are essential in regulating various physiological functions. However, overproduction of ROS is implicated in the pathogenesis of various inflammatory diseases. Antioxidant therapy has thus represented an effective strategy for the treatment of oxidative stress relevant inflammatory diseases. Conventional anti-oxidative agents showed limited in vivo effects owing to their non-specific distribution and low retention in disease sites. Over the past decades, significant achievements have been made in the development of antioxidant nanotherapies that exhibit multiple advantages such as excellent pharmacokinetics, stable anti-oxidative activity, and intrinsic ROS-scavenging properties. This review provides a comprehensive overview on recent advances in antioxidant nanotherapies, including ROS-scavenging inorganic nanoparticles, organic nanoparticles with intrinsic antioxidant activity, and drug-loaded anti-oxidant nanoparticles. We highlight the biomedical applications of antioxidant nanotherapies in the treatment of different inflammatory diseases, with an emphasis on inflammatory bowel disease, cardiovascular disease, and brain diseases. Current challenges and future perspectives to promote clinical translation of antioxidant nanotherapies are also briefly discussed.
Collapse
Affiliation(s)
- Chen-Wen Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lan-Lan Li
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China.,Department of Chemistry, College of Basic Medicine, Third Military Medical University, Chongqing, China
| | - Sheng Chen
- Department of Pediatrics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian-Xiang Zhang
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wan-Liang Lu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| |
Collapse
|
19
|
Higa LH, Schilrreff P, Briski AM, Jerez HE, de Farias MA, Villares Portugal R, Romero EL, Morilla MJ. Bacterioruberin from Haloarchaea plus dexamethasone in ultra-small macrophage-targeted nanoparticles as potential intestinal repairing agent. Colloids Surf B Biointerfaces 2020; 191:110961. [PMID: 32208325 DOI: 10.1016/j.colsurfb.2020.110961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022]
Abstract
Oral administration of antioxidant and anti-inflammatory drugs have the potential to improve the current therapy of inflammatory bowel disease. Success of oral treatments, however, depends on the capacity of drugs to remain structurally stable along the gastrointestinal tract, and on the feasibility of accessing the target cells. Delivering anti-inflammatory and antioxidant drugs to macrophages using targeted nanoparticles, could make treatments more efficient. In this work structural features and in vitro activity of macrophage-targeted nanostructured archaeolipid carriers (NAC) containing the high antioxidant dipolar C50 carotenoid bacterioruberin (BR) plus dexamethasone (Dex): NAC-Dex, are described. Ultra-small (66 nm), -32 mV ζ potential, 1200 μg Dex /ml NAC-Dex, consisted of a compritol and BR core, covered by a shell of sn 2,3 ether linked archaeolipids and Tween 80 (2: 2: 1.2: 3 % w/w) were obtained. NAC-Dex were extensively captured by macrophages and Caco-2 cells and displayed high anti-inflammatory and antioxidant activities on a gut inflammation model made of Caco-2 cells and lipopolysaccharide stimulated THP-1 derived macrophages reducing 65 % and 55 % TNF-α and IL-8 release, respectively and 60 % reactive oxygen species production. NAC-Dex also reversed the morphological changes induced by inflammation and increased the transepithelial electrical resistance, partly reconstituting the barrier function. Activity of BR and Dex in NAC-Dex was partially protected after simulated gastrointestinal digestion, improving the chances of BR-Dex joint activity. Results suggest that oral NAC-Dex deserve further exploration as intestinal barrier repairing agent.
Collapse
Affiliation(s)
- Leticia Herminia Higa
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Priscila Schilrreff
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Andrés Martín Briski
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Horacio Emanuel Jerez
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Marcelo Alexandre de Farias
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Rodrigo Villares Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Caixa Postal 6192, CEP 13.083-970, Campinas, São Paulo, Brazil
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina
| | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, Roque Saenz Peña 352, Bernal, B1876BXD, Argentina.
| |
Collapse
|
20
|
Altube MJ, Martínez MMB, Malheiros B, Maffía PC, Barbosa LRS, Morilla MJ, Romero EL. Fast Biofilm Penetration and Anti-PAO1 Activity of Nebulized Azithromycin in Nanoarchaeosomes. Mol Pharm 2019; 17:70-83. [DOI: 10.1021/acs.molpharmaceut.9b00721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Julia Altube
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Melina M. B. Martínez
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Barbara Malheiros
- Institute of Physics, University of São Paulo (USP), 05508-900 São Paulo, Brazil
| | - Paulo C. Maffía
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | | | - Maria Jose Morilla
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre, Science and Technology Department, National University of Quilmes, 1876 Bernal, Buenos Aires, Argentina
| |
Collapse
|