1
|
Zhang Y, Huang S, Guo Y, Xie X, Chen G, Cao C, Hu D, Cheng S. Chitosan from the base of Flammulina velutipes stipe alleviates oral Candida albicans infection via modulating Th-17 cell differentiation and Streptococcus mutans. Int J Biol Macromol 2024; 274:132879. [PMID: 38838899 DOI: 10.1016/j.ijbiomac.2024.132879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/17/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
The base of Flammulina velutipes (F. velutipes) stipe are agricultural wastes generated during the cultivation of edible fungus F. velutipes with high amount of chitin. Herein, this study firstly prepared chitosan from the base of F. velutipes stipe (FVC) and its structure was identified. It was confirmed that FVC acted as an antigenic substance to activate the immune system in vivo and in vitro, drive T cells to differentiate into Th-17 cells, and establish an effective mucosal immune barrier in the oral cavity, thus inhibited C. albicans infection; On the other hand, FVC maintained the oral flora stability and significantly reduced the abundance of Streptococcus spp., which was closely related to C. albicans infection. On this basis, the inhibitory effects of FVC on oral pathogens Streptococcus mutans and Lactobacillus casei associated with C. albicans infection were further verified, and it was demonstrated that FVC effectively interfered with the growth of pathogenic bacteria by inducing the production of intracellular ROS to damage bacterial cells. Therefore, FVC may be potentially exploited as a novel approach to the prevention and treatment of oral C. albicans infection.
Collapse
Affiliation(s)
- Yuanxin Zhang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Shuting Huang
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yuheng Guo
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyun Xie
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Guitang Chen
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Chongjiang Cao
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dejun Hu
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Shujie Cheng
- Department of Food Nutrition and Safety/National R&D Center for Chinese Herbal Medicine Processing, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
Ji W, Li B, Li N, Xing C. Design Strategy of Microneedle Systems for Skin Wound Healing: Based on the Structure of Tips and Therapeutic Methodologies. ACS APPLIED BIO MATERIALS 2024; 7:4254-4269. [PMID: 38863157 DOI: 10.1021/acsabm.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The skin, being the largest organ of the human body, is susceptible to damage resulting in wounds that are vulnerable to pathogenic attacks and fail to provide effective protection for internal tissues. Therefore, it is crucial to expedite wound healing. In recent years, microneedles have garnered significant attention as an innovative drug delivery system owing to their noninvasive and painless administration, simplified application process, precise control over drug release, and versatile loading capabilities. Consequently, they hold immense potential for the treatment of skin wound. This review presents a comprehensive design strategy for the microneedle system in promoting skin wound healing. First, the process of skin wound healing and the characteristics of specific wounds are elucidated. The design strategies for microneedles are subsequently presented and classified based on their structural and therapeutic methodologies. Finally, a succinct recapitulation of the previously discussed points and a prospective analysis are provided.
Collapse
Affiliation(s)
- Wenchao Ji
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Boying Li
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ning Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215000, P. R. China
| | - Chengfen Xing
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
3
|
Kareemi AF, Likhitkar S. Applications and advancements of polysaccharide-based nanostructures for enhanced drug delivery. Colloids Surf B Biointerfaces 2024; 238:113883. [PMID: 38615389 DOI: 10.1016/j.colsurfb.2024.113883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Growing demand for highly effective, site-specific delivery of pharmaceuticals and nutraceuticals using nano-sized carriers has prompted increased scrutiny of carrier biocompatibility and biodegradability. To address these concerns, biodegradable natural polymers have emerged as a transformative domain, offering non-toxic, precisely targetable carriers capable of finely modulating cargo pharmacokinetics while generating innocuous decomposition by-products. This comprehensive review illuminates the emergence of polysaccharide-based nanoparticulate drug delivery systems. These systems establish an interactive interface between drug and targeted organs, guided by strategic modifications to polysaccharide backbones, which facilitate the creation of morphologically, constitutionally, and characteristically vibrant nanostructures through various fabrication routes, underpinning their pivotal role in biomedical applications. Advancements crucial to enhancing polysaccharide-based drug delivery, such as surface modifications and bioinspired modifications for enhanced targeting, and stimuli-responsive release, strategies to overcome biological barriers, enhance tumor penetration, and optimize therapeutic outcomes are highlighted. This review also examines some potent challenges, and the contemporary way out of them, and discusses future perspectives in the field.
Collapse
Affiliation(s)
- Asra Fatimah Kareemi
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India
| | - Sweta Likhitkar
- Department of Chemistry, St. Aloysius College (Autonomous), Jabalpur, Madhya Pradesh 482001, India.
| |
Collapse
|
4
|
Mumtaz S, Ali S, Tahir HM, Mumtaz S, Mughal TA, Kazmi SAR, Hassan A, Summer M, Zulfiqar A, kazmi S. Biological applications of biogenic silk fibroin–chitosan blend zinc oxide nanoparticles. Polym Bull (Berl) 2024; 81:2933-2956. [DOI: 10.1007/s00289-023-04865-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 08/04/2024]
|
5
|
Oh H, Lee JS, Kim S, Lee JH, Shin YC, Choi WI. Super-Antioxidant Vitamin A Derivatives with Improved Stability and Efficacy Using Skin-Permeable Chitosan Nanocapsules. Antioxidants (Basel) 2023; 12:1913. [PMID: 38001766 PMCID: PMC10669859 DOI: 10.3390/antiox12111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Retinyl palmitate (RP) is a retinol ester with strong antioxidant and anti-inflammatory properties as an antiwrinkle agent. However, it has poor aqueous solubility and easily degrades into inactive forms for topical applications. Therefore, we developed chitosan-coated nanocapsules (ChiNCs) to encapsulate RP using a simple nanoprecipitation method for protection against physiological conditions and to enable deep skin penetration. The as-prepared RP-loaded nanocapsules (RP@ChiNCs) loaded with approximately 5 wt.% RP exhibited a hydrodynamic diameter of 86 nm and surface charge of 24 mV. They had adequate stability to maintain their physicochemical properties after lyophilization in a biological buffer. Notably, ChiNCs provided RP with remarkable protection against degradation for 4 weeks at 37 °C. Thus, RP@ChiNCs exhibited good antioxidant activity in situ for sufficiently long periods without considerable changes in their efficacy. Furthermore, ChiNCs enhanced the skin penetration of lipophilic RP based on the inherent nature of chitosan. RP@ChiNCs exhibited good in vitro antioxidant and anti-inflammatory effects without causing any cytotoxicity in dermal fibroblasts. Accordingly, they promoted cell proliferation in a wound-scratch test and enhanced collagen synthesis. These results suggest that RP@ChiNCs are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Hyeryeon Oh
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Jin Sil Lee
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123, Cheomdan-gwagiro, Gwangju 61005, Republic of Korea
| | - Sunghyun Kim
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| | - Jeung-Hoon Lee
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
| | - Yong Chul Shin
- SKINMED Co., Ltd., Daejeon 34028, Republic of Korea; (J.-H.L.); (Y.C.S.)
- Amicogen Inc., 64 Dongburo, 1259, Jinju 52621, Republic of Korea
| | - Won Il Choi
- Center for Bio-Healthcare Materials, Bio-Convergence Materials R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Cheongju 28160, Republic of Korea; (H.O.); (J.S.L.); (S.K.)
| |
Collapse
|
6
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
7
|
Mu R, Zhang H, Zhang Z, Li X, Ji J, Wang X, Gu Y, Qin X. Trans-cinnamaldehyde loaded chitosan based nanocapsules display antibacterial and antibiofilm effects against cavity-causing Streptococcus mutans. J Oral Microbiol 2023; 15:2243067. [PMID: 37546377 PMCID: PMC10402844 DOI: 10.1080/20002297.2023.2243067] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Dental caries is a multifactorial disease, and the bacteria such as Streptococcus mutans (S. mutans) is one of the risk factors. The poor effect of existing anti-bacterial is mainly related to drug resistance, the short time of drug action, and biofilm formation. Methods To address this concern, we report here on the cinnamaldehyde (CA) loaded chitosan (CS) nanocapsules (CA@CS NC) sustained release CA for antibacterial treatment. The size, ζ-potential, and morphology were characterized. The antibacterial activities in vitro were studied by growth curve assay, pH drop assay, biofilm assay, and qRT-PCR In addition, cytotoxicity assay, organ index, body weight, and histopathology results were analyzed to evaluate the safety and biocompatibility in a rat model. Results CA@CS NC can adsorb the bacterial membrane due to electronic interaction, releasing CA slowly for a long time. At the same time, it has reliable antibacterial activity against S. mutans and downregulated the expression levels of QS, virulence, biofilm, and adhesion genes. In addition, it greatly reduced the cytotoxicity of CA and significantly inhibited dental caries in rats without obvious toxicity. Conclusion Our results showed that CA@CS NC had antibacterial and antibiofilm effects on S. mutans and inhibit dental caries. Besides, it showed stronger efficacy and less toxicity, and was able to adsorb bacteria releasing CA slowly, providing a new nanomaterial solution for the treatment of dental caries.
Collapse
Affiliation(s)
- Ran Mu
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Hanyi Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Zhiyuan Zhang
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Li
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Jiaxuan Ji
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xinyue Wang
- Department of Clinical Medicine, The Fifth Clinical Institute, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Yu Gu
- School of Stomatology, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| | - Xiaofei Qin
- School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong, China
| |
Collapse
|
8
|
Chesneau C, Larue L, Belbekhouche S. Design of Tailor-Made Biopolymer-Based Capsules for Biological Application by Combining Porous Particles and Polysaccharide Assembly. Pharmaceutics 2023; 15:1718. [PMID: 37376165 DOI: 10.3390/pharmaceutics15061718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Various approaches have been described in the literature to demonstrate the possibility of designing biopolymer particles with well-defined characteristics, such as size, chemical composition or mechanical properties. From a biological point of view, the properties of particle have been related to their biodistribution and bioavailability. Among the reported core-shell nanoparticles, biopolymer-based capsules can be used as a versatile platform for drug delivery purposes. Among the known biopolymers, the present review focuses on polysaccharide-based capsules. We only report on biopolyelectrolyte capsules fabricated by combining porous particles as a template and using the layer-by-layer technique. The review focuses on the major steps of the capsule design, i.e., the fabrication and subsequent use of the sacrificial porous template, multilayer coating with polysaccharides, the removal of the porous template to obtain the capsules, capsule characterisation and the application of capsules in the biomedical field. In the last part, selected examples are presented to evidence the major benefits of using polysaccharide-based capsules for biological purposes.
Collapse
Affiliation(s)
- Cléa Chesneau
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Laura Larue
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| |
Collapse
|
9
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
10
|
Lu T, Xia B, Chen G. Advances in polymer-based cell encapsulation and its applications in tissue repair. Biotechnol Prog 2023; 39:e3325. [PMID: 36651921 DOI: 10.1002/btpr.3325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Cell microencapsulation is a more widely accepted area of biological encapsulation. In most cases, it involves fixing cells in polymer scaffolds or semi-permeable hydrogel capsules, providing the environment for protecting cells, allowing the exchange of nutrients and oxygen, and protecting cells against the attack of the host immune system by preventing the entry of antibodies and cytotoxic immune cells. Hydrogel encapsulation provides a three-dimensional (3D) environment similar to that experienced in vivo, so it can maintain normal cellular functions to produce tissues similar to those in vivo. Embedded cells can be genetically modified to release specific therapeutic products directly at the target site, thereby eliminating the side effects of systemic treatments. Cellular microcarriers need to meet many extremely high standards regarding their biocompatibility, cytocompatibility, immunoseparation capacity, transport, mechanical, and chemical properties. In this article, we discuss the biopolymer gels used in tissue engineering applications and the brief introduction of cell encapsulation for therapeutic protein production. Also, we review polymer biomaterials and methods for preparing cell microcarriers for biomedical applications. At the same time, in order to improve the application performance of cell microcarriers in vivo, we also summarize the main limitations and improvement strategies of cell encapsulation. Finally, the main applications of polymer cell microcarriers in regenerative medicine are summarized.
Collapse
Affiliation(s)
- Tangfang Lu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| | - Bin Xia
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing, People's Republic of China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Payandeh M, Ahmadyousefi M, Alizadeh H, Zahedifar M. Chitosan nanocomposite incorporated Satureja kermanica essential oil and extract: Synthesis, characterization and antifungal assay. Int J Biol Macromol 2022; 221:1356-1364. [PMID: 36115454 DOI: 10.1016/j.ijbiomac.2022.09.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022]
Abstract
The present study reports the design, synthesis, and characterization of nanoencapsulated Satureja kermanica essential oil/extract by chitosan biopolymer (SKEO-CSN)/(SKEX-CSN) for the antifungal efficacy against Fusarium oxysporum, Alternaria alternata, Botrytis cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, and Pythium aphanidermatum. The prepared SKEO-CSN and SKEX-CSN were characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction analysis (XRD). GC-Mass analysis was done to identify Satureja kermanica essential oil chemical compounds (SKEO). Thirty-five different components were detected from GC-MS analysis. Thymol (46.54 %), and Carvacrol (30.54 %) were demonstrated as major compounds. Antifungal studies showed that the SKEO-CSN and SKEX-CSN formulation effectively inhibit fungal growth more than free SKEO and SKEX. According to the results, SKEO-CSN and SKEX-CSN provide a wide range of promising antifungal effects and can be applied as an efficient green strategy to protect plants from fungus infections.
Collapse
Affiliation(s)
- Maryam Payandeh
- Department of Biology, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran
| | | | - Hamidreza Alizadeh
- Department of Plant Protection Faculty of Agriculture, University of Jiroft, Jiroft 7867161167, Iran
| | - Mahboobeh Zahedifar
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft 7867161167, Iran.
| |
Collapse
|
12
|
Liu S, Jiang N, Chi Y, Peng Q, Dai G, Qian L, Xu K, Zhong W, Yue W. Injectable and Self-Healing Hydrogel Based on Chitosan-Tannic Acid and Oxidized Hyaluronic Acid for Wound Healing. ACS Biomater Sci Eng 2022; 8:3754-3764. [PMID: 35993819 DOI: 10.1021/acsbiomaterials.2c00321] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Self-healing performance plays an important role in the in situ microinvasive injection of hydrogels, which can reduce sudden drug release and prolong the service life of hydrogels. In this paper, a multifunctional injectable and self-healing hydrogel for wound healing was developed. Chitosan (CS) was modified with TA to achieve potential adhesion, anti-inflammatory properties, and slower degradation rate. The hydrogel was formed by Schiff base reaction based on amino groups in CS and aldehyde groups in oxidized hyaluronic acid (OHA). The gel formation process was quick and convenient in mild conditions without extra initiators. Due to the dynamically reversible covalent bonds, the hydrogel could self-heal within 2 min after injection. It also had good biocompatibility and hemostatic performance. With the addition of TA, the hydrogel acquired anti-inflammatory properties and promoted cell growth, effectively accelerating the wound-healing process in vivo. The CS-TA/OHA hydrogel is expected to be used for skin repair.
Collapse
Affiliation(s)
- Sixian Liu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Yuquan Chi
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Guoru Dai
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Ling Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Keming Xu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Wenying Zhong
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, (China Pharmaceutical University), 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, (China Pharmaceutical University), 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| |
Collapse
|
13
|
Arundina I, Diyatri I, Juliastuti WS, Budhy TI, Surboyo MDC, Iskandar B, Halimah AN, Moelyanto ASA, Ramaniasari SM, Saputra G. Nanoparticles of Liquid Smoke Rice Husk Inhibit Porphyromonas gingivalis. Eur J Dent 2022. [PMID: 35820441 DOI: 10.1055/s-0042-1749154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Utilization of liquid smoke rice husk can be used as an alternative treatment because of the antimicrobial properties. Advances in drug delivery systems are increasingly developing to increase the bioavailability of drugs and reduce the side effects of these drugs, namely nanoparticles. In this study, nanoparticles of liquid smoke rice husk (nLSRH) were tested the antimicrobial against Porphyromonas gingivalis. MATERIALS AND METHOD This type of research is an experimental in vitro laboratory using Porphyromonas gingivalis culture. nLSRH contained liquid smoke rice husk concentration of 1, 2.5, 5, 7.5, 10, 12.5, 15, and 17.5%. The antibacterial was performed using the dilution methods. RESULTS The nLRSH concentration of 1% showed clearest medium. The highest number of colonies Porphyromonas gingivalis was observed at nLSRH concentration of 1% (40.3 colony-forming unit [CFU]) and decreased at a concentration of 2.5% (11.3 CFU); other concentration or no bacterial colony growth was found. The nLSRH concentration of 2.5% can be determined as the minimum inhibitory concentration and nLSRH concentration of 5% can be determined as the minimum bactericidal concentration. CONCLUSION nLSRH have antimicrobial activity against Porphyromonas gingivalis. This finding able to drive the next research to develop nLSRH as gingival and periodontitis disease is caused by Porphyromonas gingivalis.
Collapse
Affiliation(s)
- Ira Arundina
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Indeswati Diyatri
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wisnu Setiari Juliastuti
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Theresia Indah Budhy
- Department of Oral Pathology and Maxillofacial, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Benni Iskandar
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Sekolah Tinggi Ilmu Farmasi, Pekanbaru, Riau, Indonesia
| | | | | | - Sheryn Marcha Ramaniasari
- Bachelor Dental Science Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Gustiadi Saputra
- Magister of Immunology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Chitosan: A Sustainable Material for Multifarious Applications. Polymers (Basel) 2022; 14:polym14122335. [PMID: 35745912 PMCID: PMC9228948 DOI: 10.3390/polym14122335] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Due to the versatility of its features and capabilities, chitosan generated from marine crustacean waste is gaining importance and appeal in a wide variety of applications. It was initially used in pharmaceutical and medical applications due to its antibacterial, biocompatible, and biodegradable properties. However, as the demand for innovative materials with environmentally benign properties has increased, the application range of chitosan has expanded, and it is now used in a variety of everyday applications. The most exciting aspect of the chitosan is its bactericidal properties against pathogens, which are prevalent in contaminated water and cause a variety of human ailments. Apart from antimicrobial and water filtration applications, chitosan is used in dentistry, in water filtration membranes to remove metal ions and some heavy metals from industrial effluents, in microbial fuel cell membranes, and in agriculture to maintain moisture in fruits and leaves. It is also used in skin care products and cosmetics as a moisturizer, in conjunction with fertilizer to boost plant immunity, and as a bi-adhesive for bonding woods and metals. As it has the capacity to increase the life span of food items and raw meat, it is an unavoidable component in food packing and preservation. The numerous applications of chitosan are reviewed in this brief study, as well as the approaches used to incorporate chitosan alongside traditional materials and its effect on the outputs.
Collapse
|
15
|
Symmetry between Structure–Antibacterial Effect of Polymers Functionalized with Phosphonium Salts. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In actual context, when the terms of biomass and bioenergy are extensively used, it becomes clear that the comparative study of some biopolymers, such as cellulose and chitosan, can offer a large usage range, based on the scientific progress obtained in the biomaterials field. Starting from the structural similarity of these two polymers, we synthesized composite materials by grafting on their surface biocide substances (phosphonium salts). After testing the biocidal effect, we can conclude that the antibacterial effect depends on the ratio of support to phosphonium salt, influenced by the interaction between the cationic component of the biocides and by the anionic component of the bacterial cellular membrane. It was also observed that for the materials obtained by cellulose functionalization with tri-n-butyl-hexadecyl phosphonium bromide, the bacterial effect on E. coli strain was much better when chitosan was used as the support material.
Collapse
|
16
|
Pawlak A, Michely L, Belbekhouche S. Multilayer dextran derivative based capsules fighting bacteria resistant to Antibiotic: Case of Kanamycin-Resistant Escherichia coli. Int J Biol Macromol 2022; 200:242-246. [PMID: 34968549 DOI: 10.1016/j.ijbiomac.2021.12.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/26/2021] [Accepted: 12/19/2021] [Indexed: 12/20/2022]
Abstract
Bacteria resistance to antibiotics has emerged as a major health problem. Developing new antibacterial systems is then of major interest. In this sense, we present biocapsules presenting inherent antibacterial capacity. The self-assembly of charged biopolymer, namely diethylaminoethyl-dextran hydrochloride (dex+) and dextran sulfate (dex-), were done on calcium carbonate microparticles, used as a template. Zeta potential measurements have shown the successful alternate adsorption of these biopolymers and related charge reversal upon the multilayer film construction onto the particles surface. The shape of the capsules was characterized by scanning electron microscopy (SEM). These particles were tested against bacteria resistant to antibiotics, namely kanamycin-resistant Escherichia coli. An inhibitory effect of the particles was observed during bacterial growth in liquid medium, i.e. in the range of 10 % for (dex+/dex-)n coated CaCO3 materials and of 50% for (dex+/dex-)n capsules. These findings evidence the high potential of capsules to act as antimicrobial agents in future and in treatments against infections.
Collapse
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM), IMRB U955, Créteil F-94010, France; Université Paris Est, Faculté de Médecine, UMRS 955, Créteil F-94010, France
| | - Laurent Michely
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France.
| |
Collapse
|
17
|
Pawlak A, Belbekhouche S. New approach to develop functionalized polyelectrolyte tube using bacteria as template. J Appl Polym Sci 2022. [DOI: 10.1002/app.51687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- André Pawlak
- Institut National de la Santé et de la Recherche Médicale (INSERM) Créteil France
- Université Paris Est, Faculté de Médecine Créteil France
| | - Sabrina Belbekhouche
- Université Paris Est Creteil CNRS, Institut Chimie et Matériaux Paris Est Thiais France
| |
Collapse
|
18
|
Nemeş NS, Ardean C, Davidescu CM, Negrea A, Ciopec M, Duţeanu N, Negrea P, Paul C, Duda-Seiman D, Muntean D. Antimicrobial Activity of Cellulose Based Materials. Polymers (Basel) 2022; 14:polym14040735. [PMID: 35215647 PMCID: PMC8875754 DOI: 10.3390/polym14040735] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Biomaterials available for a wide range of applications are generally polysaccharides. They may have inherent antimicrobial activity in the case of chitosan. However, in order to have specific functionalities, bioactive compounds must be immobilized or incorporated into the polymer matrix, as in the case of cellulose. We studied materials obtained by functionalizing cellulose with quaternary ammonium salts: dodecyl-trimethyl-ammonium bromide (DDTMABr), tetradecyl-trimethyl-ammonium bromide (TDTMABr), hexadecyl-trimethyl ammonium chloride (HDTMACl), some phosphonium salts: dodecyl-triphenyl phosphonium bromide (DDTPPBr) and tri n-butyl-hexadecyl phosphonium bromide (HDTBPBr) and extractants containing sulphur: 2-mercaptobenzothiazole (MBT) and thiourea (THIO). Cel-TDTMABr material, whose alkyl substituent chain conformation was shortest, showed the best antimicrobial activity for which, even at the lowest functionalization ratio, 1:0.012 (w:w), the microbial inhibition rate is 100% for Staphylococcus aureus, Escherichia coli, and Candida albicans. Among the materials obtained by phosphonium salt functionalization, Cel-DDTPPBr showed a significant bactericidal effect compared to Cel-HDTBPBr. For instance, to the same functionalization ratio = 1:0.1, the inhibition microbial growth rate is maximum in the case of Cel-DDTPPBr for Staphylococcus aureus, Escherichia coli, and Candida albicans. At the same time, for the Cel-HDTBPBr material, the total bactericidal effect is not reached even at the functionalization ratio 1:0.5. This behavior is based on the hydrophobicity difference between the two extractants, DDTPPBr and HDTBPBr. Cel-MBT material has a maximum antimicrobial effect upon Staphylococcus aureus, Escherichia coli, and Candida albicans at functionalized ratio = 1:0.5. Cel-THIO material showed a bacteriostatic and fungistatic effect, the inhibition of microbial growth being a maximum of 76% for Staphylococcus aureus at the functionalized ratio = 1:0.5. From this perspective, biomaterials obtained by SIR impregnation of cellulose can be considered a benefit to be used to obtain biomass-derived materials having superior antimicrobial properties versus the non-functional support.
Collapse
Affiliation(s)
- Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, Politehnica University of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
| | - Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, Politehnica University of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
- Correspondence: (C.M.D.); (N.D.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
| | - Narcis Duţeanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
- Correspondence: (C.M.D.); (N.D.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
| | - Cristina Paul
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piaţa Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.); (C.P.)
| | - Daniel Duda-Seiman
- Department of Cardiology, “Victor Babeş” University of Medicine and Pharmacy Timişoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania;
| | - Delia Muntean
- Multidisciplinary Research Center on Antimicrobial Resistance, Department of Microbiology, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
19
|
Enhanced Sunscreen Effects via Layer-By-Layer Self-Assembly of Chitosan/Sodium Alginate/Calcium Chloride/EHA. Molecules 2022; 27:molecules27031148. [PMID: 35164413 PMCID: PMC8840156 DOI: 10.3390/molecules27031148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
The sunscreen nanocapsules were successfully synthesized by the way of layer-by-layer self-assembly using charged droplets (prepared by emulsification of LAD-30, Tween-80 and EHA (2-Ethylhexyl-4-dimethylaminobenzoate)) as templates. Chitosan/sodium alginate/calcium chloride were selected as wall materials to wrap EHA. The emulsions with the ratio of Tween-80 to EHA (1:1) were stable. A stable NEI negative emulsion can be obtained when the ratio of Tween-80 and LAD-30 was 9:1. Chitosan solutions (50 kDa, 0.25 mg/mL) and sodium alginate solutions (0.5 mg/mL) were selected to prepare nanocapsules. The nanocapsules were characterized via some physico-chemical methods. Based on the synergistic effects of the electrostatic interaction between wall materials and emulsifiers, EHA was effectively encapsulated. DLS and TEM showed that the sunscreen nanocapsules were dispersed in a spherical shape with nano-size, with the increasing number of assembly layers, the size increased from 155 nm (NEI) to 189 nm (NEII) to 201 nm (NEIII) and 205 nm after solidification. The release studies in vitro showed sustained release behavior of the nanocapsules were observed with the increase of the number of deposition layers, implying a good coating effect. The sunscreen nanocapsules could control less than 50% the release of EHA after crosslinking of calcium chloride and sodium alginate, which also could effectively avoid the stimulation of the sun protection agent on the skin.
Collapse
|
20
|
Combination of Polysaccharide Nanofibers Derived from Cellulose and Chitin Promotes the Adhesion, Migration and Proliferation of Mouse Fibroblast Cells. NANOMATERIALS 2022; 12:nano12030402. [PMID: 35159746 PMCID: PMC8840717 DOI: 10.3390/nano12030402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/29/2022]
Abstract
Extracellular matrix (ECM) as a structural and biochemical scaffold to surrounding cells plays significant roles in cell adhesion, migration, proliferation and differentiation. Herein, we show the novel combination of TEMPO-oxidized cellulose nanofiber (TOCNF) and surface-N-deacetylated chitin nanofiber (SDCtNF), respectively, having carboxylate and amine groups on each crystalline surface, for mouse fibroblast cell culture. The TOCNF/SDCtNF composite scaffolds demonstrated characteristic cellular behavior, strongly depending on the molar ratios of carboxylates and amines of polysaccharide NFs. Pure TOCNF substrate exhibited good cell attachment, although intact carboxylate-free CNF made no contribution to cell adhesion. By contrast, pure SDCtNF induced crucial cell aggregation to form spheroids; nevertheless, the combination of TOCNF and SDCtNF enhanced cell attachment and subsequent proliferation. Molecular blend of carboxymethylcellulose and acid-soluble chitosan made nearly no contribution to cell culture behavior. The wound healing assay revealed that the polysaccharide combination markedly promoted skin repair for wound healing. Both of TOCNF and SDCtNF possessed rigid nanofiber nanoarchitectures with native crystalline forms and regularly-repeated functional groups, of which such structural characteristics would provide a potential for developing cell culture scaffolds having ECM functions, possibly promoting good cellular adhesion, migration and growth in the designated cellular microenvironments.
Collapse
|
21
|
Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion Based Nanostructures for Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.
Collapse
|
22
|
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Muntean D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics 2021; 13:pharmaceutics13101639. [PMID: 34683932 PMCID: PMC8541518 DOI: 10.3390/pharmaceutics13101639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022] Open
Abstract
Considering the challenge created by the development of bacterial and fungal strains resistant to multiple therapeutic variants, new molecules and materials with specific properties against these microorganisms can be synthesized, like those synthesized from biopolymers such as chitosan with improved antimicrobial activities. Antimicrobial activities of seven obtained materials were tested on four reference strains belonging to American Type Culture Collection. The best antimicrobial activity was obtained by functionalization by impregnation of chitosan with quaternary ammonium salts, followed by that obtained by functionalization of chitosan with phosphonium. The lowest antibacterial and antifungal effects were expressed by Ch-THIO and Ch-MBT, but new materials obtained with these extractants may be precursors with a significant role in the direct control of active molecules, such as cell growth factors or cell signaling molecules.
Collapse
Affiliation(s)
- Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300501 Timisoara, Romania;
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (P.N.)
| | - Daniel Duda-Seiman
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Piata Eftimie Murgu, 300041 Timisoara, Romania
- Correspondence: (N.S.N.); (N.D.); (D.D.-S.)
| | - Delia Muntean
- Multidisciplinary Research Center on Antimicrobial Resistance, Department of Microbiology, Victor Babes University of Medicine and Pharmacy Timişoara, 2 Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
23
|
Wang Z, Sun Q, Zhang H, Wang J, Fu Q, Qiao H, Wang Q. Insight into antibacterial mechanism of polysaccharides: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111929] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
‘Sweet as a Nut’: Production and use of nanocapsules made of glycopolymer or polysaccharide shell. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
25
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
26
|
Ardean C, Davidescu CM, Nemeş NS, Negrea A, Ciopec M, Duteanu N, Negrea P, Duda-Seiman D, Musta V. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization. Int J Mol Sci 2021; 22:7449. [PMID: 34299068 PMCID: PMC8303267 DOI: 10.3390/ijms22147449] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023] Open
Abstract
The biomedical and therapeutic importance of chitosan and chitosan derivatives is the subject of interdisciplinary research. In this analysis, we intended to consolidate some of the recent discoveries regarding the potential of chitosan and its derivatives to be used for biomedical and other purposes. Why chitosan? Because chitosan is a natural biopolymer that can be obtained from one of the most abundant polysaccharides in nature, which is chitin. Compared to other biopolymers, chitosan presents some advantages, such as accessibility, biocompatibility, biodegradability, and no toxicity, expressing significant antibacterial potential. In addition, through chemical processes, a high number of chitosan derivatives can be obtained with many possibilities for use. The presence of several types of functional groups in the structure of the polymer and the fact that it has cationic properties are determinant for the increased reactive properties of chitosan. We analyzed the intrinsic properties of chitosan in relation to its source: the molecular mass, the degree of deacetylation, and polymerization. We also studied the most important extrinsic factors responsible for different properties of chitosan, such as the type of bacteria on which chitosan is active. In addition, some chitosan derivatives obtained by functionalization and some complexes formed by chitosan with various metallic ions were studied. The present research can be extended in order to analyze many other factors than those mentioned. Further in this paper were discussed the most important factors that influence the antibacterial effect of chitosan and its derivatives. The aim was to demonstrate that the bactericidal effect of chitosan depends on a number of very complex factors, their knowledge being essential to explain the role of each of them for the bactericidal activity of this biopolymer.
Collapse
Affiliation(s)
- Cristina Ardean
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Corneliu Mircea Davidescu
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300774 Timisoara, Romania;
| | - Nicoleta Sorina Nemeş
- Renewable Energy Research Institute-ICER, University Politehnica of Timisoara, 138 Gavril Musicescu Street, 300774 Timisoara, Romania;
| | - Adina Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Mihaela Ciopec
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Narcis Duteanu
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Petru Negrea
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timişoara, 2 Piata Victoriei, 300006 Timisoara, Romania; (C.A.); (A.N.); (M.C.); (N.D.); (P.N.)
| | - Daniel Duda-Seiman
- University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Piața Eftimie Murgu, 300041 Timișoara, Romania
| | - Virgil Musta
- University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Piața Eftimie Murgu, 300041 Timișoara, Romania
| |
Collapse
|
27
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
28
|
Belbekhouche S, Poostforooshan J, Shaban M, Ferrara B, Alphonse V, Cascone I, Bousserrhine N, Courty J, Weber AP. Fabrication of large pore mesoporous silica microspheres by salt-assisted spray-drying method for enhanced antibacterial activity and pancreatic cancer treatment. Int J Pharm 2020; 590:119930. [DOI: 10.1016/j.ijpharm.2020.119930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 01/09/2023]
|
29
|
Inbaraj BS, Chen BY, Liao CW, Chen BH. Green synthesis, characterization and evaluation of catalytic and antibacterial activities of chitosan, glycol chitosan and poly(γ-glutamic acid) capped gold nanoparticles. Int J Biol Macromol 2020; 161:1484-1495. [DOI: 10.1016/j.ijbiomac.2020.07.244] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
|
30
|
da Silva NP, Carmo Rapozo Lavinas Pereira ED, Duarte LM, de Oliveira Freitas JC, de Almeida CG, da Silva TP, Melo RCN, Morais Apolônio AC, de Oliveira MAL, de Mello Brandão H, Pittella F, Fabri RL, Tavares GD, de Faria Pinto P. Improved anti-Cutibacterium acnes activity of tea tree oil-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules. Colloids Surf B Biointerfaces 2020; 196:111371. [PMID: 32980571 DOI: 10.1016/j.colsurfb.2020.111371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/20/2020] [Accepted: 08/31/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to develop tea tree oil (TTO)-loaded chitosan-poly(ε-caprolactone) core-shell nanocapsules (NC-TTO-Ch) aiming the topical acne treatment. TTO was analyzed by gas chromatography-mass spectrometry, and nanocapsules were characterized regarding mean particle size (Z-average), polydispersity index (PdI), zeta potential (ZP), pH, entrapment efficiency (EE), morphology by Atomic Force Microscopy (AFM), and anti-Cutibacterium acnes activity. The main constituents of TTO were terpinen-4-ol (37.11 %), γ-terpinene (16.32 %), α-terpinene (8.19 %), ρ-cimene (6.56 %), and α-terpineol (6.07 %). NC-TTO-Ch presented Z-average of 268.0 ± 3.8 nm and monodisperse size distribution (PdI < 0.3). After coating the nanocapsules with chitosan, we observed an inversion in ZP to a positive value (+31.0 ± 1.8 mV). This finding may indicate the presence of chitosan on the nanocapsules' surface, which was corroborated by the AFM images. In addition, NC-TTO-Ch showed a slightly acidic pH (∼5.0), compatible with topical application. The EE, based on Terpinen-4-ol concentration, was approximately 95 %. This data suggests the nanocapsules' ability to reduce the TTO volatilization. Furthermore, NC-TTO-Ch showed significant anti-C. acnes activity, with a 4× reduction in the minimum inhibitory concentration, compared to TTO and a decrease in C. acnes cell viability, with an increase in the percentage of dead cells (17 %) compared to growth control (6.6 %) and TTO (9.7 %). Therefore, chitosan-poly(ε-caprolactone) core-shell nanocapsules are a promising tool for TTO delivery, aiming at the activity against C. acnes for the topical acne treatment.
Collapse
Affiliation(s)
- Natália Prado da Silva
- Protein Structure and Function Study Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil; Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Eloá do Carmo Rapozo Lavinas Pereira
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Lucas Mattos Duarte
- Group of Analytical Chemistry and Chemometrics, Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil; Department of Analytical Chemistry, Institute of Chemistry, Fluminense Federal University, Niterói, Rio de Janeiro, 24020-121, Brazil
| | - Jhamine Caroline de Oliveira Freitas
- Protein Structure and Function Study Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil; Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Thiago Pereira da Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ana Carolina Morais Apolônio
- Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marcone Augusto Leal de Oliveira
- Group of Analytical Chemistry and Chemometrics, Department of Chemistry, Institute of Exact Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Humberto de Mello Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, Brazil
| | - Frederico Pittella
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rodrigo Luiz Fabri
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Guilherme Diniz Tavares
- Laboratory of Nanostructured Systems Development, Department of Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Priscila de Faria Pinto
- Protein Structure and Function Study Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
31
|
Rempel SV, Kuznetsova YV, Rempel AA. Self-Assembly of Ag 2S Colloidal Nanoparticles Stabilized by MPS in Water Solution. ACS OMEGA 2020; 5:16826-16832. [PMID: 32685851 PMCID: PMC7364714 DOI: 10.1021/acsomega.0c01994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
Self-assembly of colloidal Ag2S nanoparticles (NPs) was studied in the presence of (3-mercaptopropyl)trimethoxysilane (MPS). Solutions with different molar ratios of Ag2S/MPS were prepared. The appearance of nano- and microtubes was detected. Self-organized NPs were studied with optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). Silicon nuclear magnetic resonance spectroscopy (29Si NMR) was used to study polycondensation of MPS molecules. Geometrical parameters of the nano- and microtubes depended on the molar ratio of Ag2S/MPS. The scheme and mechanism of self-assembly of Ag2S NPs in nanotubes in the presence of MPS were proposed. The effect of MPS on the preservation of the initial stoichiometry of Ag2S NPs was discussed.
Collapse
Affiliation(s)
- Svetlana V. Rempel
- Institute
of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Street, 620990 Ekaterinburg, Russia
- Ural
Federal University, 19,
Mira Street, 620002 Ekaterinburg, Russia
| | - Yulia V. Kuznetsova
- Institute
of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Street, 620990 Ekaterinburg, Russia
| | - Andrey A. Rempel
- Institute
of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 91, Pervomaiskaya Street, 620990 Ekaterinburg, Russia
- Ural
Federal University, 19,
Mira Street, 620002 Ekaterinburg, Russia
- Institute
of Metallurgy, Ural Branch of the Russian Academy of Sciences, 101, Amundsena Street, 620016 Ekaterinburg, Russia
| |
Collapse
|
32
|
Antibacterial activity and long-term stable antibacterial performance of nisin grafted magnetic GO nanohybrids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110809. [DOI: 10.1016/j.msec.2020.110809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 11/19/2022]
|
33
|
Rocca DM, Silvero C MJ, Aiassa V, Cecilia Becerra M. Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagnosis Photodyn Ther 2020; 31:101811. [PMID: 32439578 DOI: 10.1016/j.pdpdt.2020.101811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
Bacterial biofilm are complex microbial communities covered by a matrix of extracellular polymeric substances, which develops when a community of microorganisms irreversibly adheres to a living or inert surface. This structure is considered an important virulence factor because it is difficult to eradicate and often responsible for treatment failures. This adherent community represents one of the greatest problems in public health due to the continued emergence of conventional antibiotic-therapy resistance. Photodynamic Antimicrobial Therapy (PACT) is a therapeutic alternative and promises to be an effective treatment against multiresistant bacteria biofilm, demonstrating a broad spectrum of action. This work demonstrates the reduction in biofilms of relevant clinical isolates (as Pseudomonas aeruginosa and Staphylococcus aureus) treated with PACT using low concentrations of amoxicillin-coated gold nanoparticles (amoxi@AuNP) as a photosensitizer. Moreover, the viability reduction of 60% in S. aureus biofilms and 70% in P. aeruginosa biofilms were obtained after three hours of irradiation with white light and amoxi@AuNP. Scanning electron microscopy analysis revealed that amoxi@AuNP could penetrate and cause damage to the biofilm matrix, and interact with bacteria cells. A strong biofilm production in P. aeruginosa was observed by confocal laser scanning microscopy using acridine orange as a probe, and a markedly decrease in live bacteria was appreciated when PACT was applied. The use of amoxi@AuNP for PACT allows the viability reduction of clinical Gram positive and Gram negative biofilms. This novel strategy needs shorter irradiation times and lower concentrations of nanoparticles than other reports described. This could be attributed to two major innovations: the selectivity for the bacterial wall given by the amoxicillin and the polydispersity of size and shapes with seems to contribute to the photo-antibacterial capacity.
Collapse
Affiliation(s)
- Diamela M Rocca
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina
| | - M Jazmin Silvero C
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina
| | - Virginia Aiassa
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, UNITEFA, CONICET, Argentina.
| | - M Cecilia Becerra
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, X5000. Argentina; Instituto Multidisciplinario de Biología Vegetal, IMBIV, CONICET, Argentina.
| |
Collapse
|
34
|
Ye Q, Chen W, Huang H, Tang Y, Wang W, Meng F, Wang H, Zheng Y. Iron and zinc ions, potent weapons against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2020; 104:5213-5227. [PMID: 32303820 DOI: 10.1007/s00253-020-10600-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/27/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Drug-resistant bacteria are becoming an increasingly widespread problem in the clinical setting. The current pipeline of antibiotics cannot provide satisfactory options for clinicians, which brought increasing attention to the development and application of non-traditional antimicrobial substances as alternatives. Metal ions, such as iron and zinc ions, have been widely applied to inhibit pathogens through different mechanisms, including synergistic action with different metabolic enzymes, regulation of efflux pumps, and inhibition of biofilm formation. Compared with traditional metal oxide nanoparticles, iron oxide nanoparticles (IONPs) and zinc oxide nanoparticles (ZnO-NPs) display stronger bactericidal effect because of their smaller ion particle sizes and higher surface energies. The combined utilization of metal NPs (nanoparticles) and antibiotics paves a new way to enhance antimicrobial efficacy and reduce the incidence of drug resistance. In this review, we summarize the physiological roles and bactericidal mechanisms of iron and zinc ions, present the recent progress in the research on the joint use of metal NPs with different antibiotics, and highlight the promising prospects of metal NPs as antimicrobial agents for tackling multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Qian Ye
- College of Biotechnology and pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211806, China.,Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China.,School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yuqing Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Weixiao Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Fanrong Meng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huiling Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Yishan Zheng
- Intensive Care Unit, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
35
|
Poostforooshan J, Belbekhouche S, Shaban M, Alphonse V, Habert D, Bousserrhine N, Courty J, Weber AP. Aerosol-Assisted Synthesis of Tailor-Made Hollow Mesoporous Silica Microspheres for Controlled Release of Antibacterial and Anticancer Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6885-6898. [PMID: 31967774 DOI: 10.1021/acsami.9b20510] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hollow mesoporous silica microsphere (HMSM) particles are one of the most promising vehicles for efficient drug delivery owing to their large hollow interior cavity for drug loading and the permeable mesoporous shell for controlled drug release. Here, we report an easily controllable aerosol-based approach to produce HMSM particles by continuous spray-drying of colloidal silica nanoparticles and Eudragit/Triton X100 composite (EUT) nanospheres as templates, followed by template removal. Importantly, the internal structure of the hollow cavity and the external morphology and the porosity of the mesoporous shell can be tuned to a certain extent by adjusting the experimental conditions (i.e., silica to EUT mass ratio and particle size of silica nanoparticles) to optimize the drug loading capacity and the controlled-release properties. Then, the application of aerosol-synthesized HMSM particles in controlled drug delivery was investigated by loading amoxicillin as an antibiotic compound with high entrapment efficiency (up to 46%). Furthermore, to improve the biocompatibility of the amoxicillin-loaded HMSM particles, their surfaces were functionalized with poly(allylamine hydrochloride) and alginate as biocompatible polymers via the layer-by-layer assembly. The resulting particles were evaluated toward Escherichia coli (Gram-negative) bacteria and indicated the bacterial inhibition up to 90% in less than 2 h. Finally, we explored the versatility of HMSMs as drug carriers for pancreatic cancer treatment. Because the pH value of the extracellular medium in pancreatic tumors is lower than that of the healthy tissue, chitosan as a pH-sensitive gatekeeper was grafted to the HMSM surface and then loaded with a pro-apoptotic NCL antagonist agent (N6L) as an anticancer drug. The obtained particles exhibited pH-responsive drug releases and excellent anticancer activities with inhibition of cancer cell growth up to 60%.
Collapse
Affiliation(s)
- Jalal Poostforooshan
- Institute of Particle Technology , Clausthal University of Technology , 38678 Clausthal-Zellerfeld , Germany
| | - Sabrina Belbekhouche
- Institut de Chimie et des Matériaux Paris-Est, UMR 7182 CNRS-Université Paris-Est Créteil , 94320 Thiais , France
| | - Masoom Shaban
- Institute of Particle Technology , Clausthal University of Technology , 38678 Clausthal-Zellerfeld , Germany
| | - Vanessa Alphonse
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU) , Université-Paris-Est Créteil , 94010 Créteil Cedex , France
| | - Damien Habert
- Laboratoire CRRET, University of Paris Est, ERL-CNRS 9215 , 94010 Créteil Cedex , France
| | - Noureddine Bousserrhine
- Laboratoire Eau Environnement et Systèmes Urbains (LEESU) , Université-Paris-Est Créteil , 94010 Créteil Cedex , France
| | - José Courty
- Laboratoire CRRET, University of Paris Est, ERL-CNRS 9215 , 94010 Créteil Cedex , France
| | - Alfred P Weber
- Institute of Particle Technology , Clausthal University of Technology , 38678 Clausthal-Zellerfeld , Germany
| |
Collapse
|
36
|
Wang W, Meng Q, Li Q, Liu J, Zhou M, Jin Z, Zhao K. Chitosan Derivatives and Their Application in Biomedicine. Int J Mol Sci 2020; 21:E487. [PMID: 31940963 PMCID: PMC7014278 DOI: 10.3390/ijms21020487] [Citation(s) in RCA: 364] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Chitosan is a product of the deacetylation of chitin, which is widely found in nature. Chitosan is insoluble in water and most organic solvents, which seriously limits both its application scope and applicable fields. However, chitosan contains active functional groups that are liable to chemical reactions; thus, chitosan derivatives can be obtained through the chemical modification of chitosan. The modification of chitosan has been an important aspect of chitosan research, showing a better solubility, pH-sensitive targeting, an increased number of delivery systems, etc. This review summarizes the modification of chitosan by acylation, carboxylation, alkylation, and quaternization in order to improve the water solubility, pH sensitivity, and the targeting of chitosan derivatives. The applications of chitosan derivatives in the antibacterial, sustained slowly release, targeting, and delivery system fields are also described. Chitosan derivatives will have a large impact and show potential in biomedicine for the development of drugs in future.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qiuyu Meng
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Qi Li
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Jinbao Liu
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Heilongjiang Province, College of Chemistry Engineering and Materials, Heilongjiang University, Harbin 150080, China; (W.W.); (Q.M.); (Q.L.); (J.L.)
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
37
|
Milosavljevic V, Jamroz E, Gagic M, Haddad Y, Michalkova H, Balkova R, Tesarova B, Moulick A, Heger Z, Richtera L, Kopel P, Adam V. Encapsulation of Doxorubicin in Furcellaran/Chitosan Nanocapsules by Layer-by-Layer Technique for Selectively Controlled Drug Delivery. Biomacromolecules 2019; 21:418-434. [DOI: 10.1021/acs.biomac.9b01175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vedran Milosavljevic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry, University of Agriculture in Cracow, Balicka Street 122, PL-30-149 Cracow, Poland
| | - Milica Gagic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
| | - Yazan Haddad
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Hana Michalkova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Radka Balkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
- Brno University of Technology, Purkynova 464/118, Kralovo Pole, 61200 Brno, Czech Republic
| | - Barbora Tesarova
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Zbynek Heger
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Lukas Richtera
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Pavel Kopel
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|