1
|
Li G, Bao Y, Zhang H, Wang J, Wu X, Yan R, Wang Z, Jin Y. Enhanced catalytic activity of Fe 3O 4-carbon dots complex in the Fenton reaction for enhanced immunotherapeutic and oxygenation effects. J Colloid Interface Sci 2024; 668:618-633. [PMID: 38696990 DOI: 10.1016/j.jcis.2024.04.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Tumor metastasis and recurrence are closely related to immune escape and hypoxia. Chemodynamic therapy (CDT), photodynamic therapy (PDT), and photothermal therapy (PTT) can induce immunogenic cell death (ICD), and their combination with immune checkpoint agents is a promising therapeutic strategy. Iron based nanomaterials have received more and more attention, but their low Fenton reaction efficiency has hindered their clinical application. In this study, Fe3O4-carbon dots complex (Fe3O4-CDs) was synthesized, which was modified with ferrocenedicarboxylic acid by amide bond, and crosslinked into Fe3O4-CDs@Fc nano complex. The CDs catalyzed the Fenton reaction activity of Fe3O4 by helping to improve the electron transfer efficiency, extended the reaction pH condition to 7.4. The Fe3O4-CDs@Fc exhibit exceptional optical activity, achieving a thermal conversion efficiency of 56.43 % under 808 nm light and a photosensitive single-line state oxygen quantum yield of 33 % under 660 nm light. Fe3O4-CDs@Fc improved intracellular oxygen level and inhibited hypoxia-inducing factor (HIF-1α) by in-situ oxygen production based on Fenton reaction. The multimodal combination of Fe3O4-CDs@Fc (CDT/PDT/PTT) strongly induced immune cell death (ICD). The expression of immune-related protein and HIF-1α was investigated by immunofluorescence method. In vivo, Fe3O4-CDs@Fc combined with immune checkpoint blocker (antibody PD-L1, αPD-L1) effectively ablated primary tumors and inhibited distal tumor growth. Fe3O4-CDs@Fc is a promising immune-antitumor drug.
Collapse
Affiliation(s)
- Guanghao Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Public Health, Mudanjiang Medical University, Mudanjiang 157009, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; College of Pharmacy, Qiqihaer Medical University, Qiqihaer 161006, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Key Laboratory of Photochemistry Biomaterials and Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
2
|
Li S, Wang B, Tao J, Dong Y, Wang T, Zhao X, Jiang T, Zhang L, Yang H. Chemodynamic therapy combined with endogenous ferroptosis based on "sea urchin-like" copper sulfide hydrogel for enhancing anti-tumor efficacy. Int J Pharm 2024; 660:124330. [PMID: 38866081 DOI: 10.1016/j.ijpharm.2024.124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/26/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Chemodynamic therapy (CDT) is a promising strategy for cancer treatment, however, its application is restricted by low hydrogen peroxide (H2O2) concentration, insufficient reactive oxygen species (ROS) generation, and high glutathione (GSH) levels. Here, we developed an injectable thermosensitive hydrogel (DSUC-Gel) based on "sea urchin-like" copper sulfide nanoparticles (UCuS) loaded with dihydroartemisinin (DHA) and sulfasalazine (SAS) to overcome these limitations of CDT. DSUC was cleaved to release DHA, SAS and Cu2+ under acidic tumor microenvironment to enhance CDT. DHA with peroxide bridge responded to intracellular Fe2+ to alleviate H2O2 deficiency. SAS prevented GSH synthesis by targeting SLC7A11 and inhibited glutathione peroxidase (GPX4) activity to induce endogenous ferroptosis. ROS produced by Fenton-like reaction of Cu2+ promoted lipid peroxidation (LPO) accumulation to promote ferroptosis. Enhanced CDT and ferroptosis induced immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration. As a result, DSUC-Gel significantly inhibited tumor growth both in vitro and in vivo. Our study provides a novel approach for enhancing anti-tumor efficacy by combining CDT, endogenous ferroptosis and ICD.
Collapse
Affiliation(s)
- Shuang Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Bingjie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Jiaojiao Tao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Yu Dong
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Teng Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Tianze Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lianxiao Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Shandong Provincial Key laboratory of Glycoscience and Glycoengineering, Qingdao 266003, China
| | - Hai Yang
- Department of Pharmacy, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao 266042, China.
| |
Collapse
|
3
|
Li S, Zhang H, Bao Y, Zhang H, Wang J, Liu M, Yan R, Wang Z, Wu X, Jin Y. Immunoantitumor Activity and Oxygenation Effect Based on Iron-Copper-Doped Folic Acid Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16653-16668. [PMID: 38520338 DOI: 10.1021/acsami.3c18331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Cancer metastasis and recurrence are closely associated with immunosuppression and a hypoxic tumor microenvironment. Chemodynamic therapy (CDT) and photothermodynamic therapy (PTT) have been shown to induce immunogenic cell death (ICD), effectively inhibiting cancer metastasis and recurrence when combined with immune adjuvants. However, the limited efficacy of Fenton's reaction and suboptimal photothermal effect present significant challenges for successfully inducing ICD through CDT and PTT. This paper described the synthesis and immunoantitumor activity of the novel iron-copper-doped folic acid carbon dots (CFCFB). Copper-doped folic acid carbon dots (Cu-FACDs) were initially synthesized via a hydrothermal method, using folic acid and copper gluconate as precursors. Subsequently, the nanoparticles CFCFB were obtained through cross-linking and self-assembly of Cu-FACDs with ferrocene dicarboxylic acid (FeDA) and 3-bromopyruvic acid (3BP). The catalytic effect of carbon dots in CFCFB enhanced the activity of the Fenton reaction, thereby promoting CDT-induced ICD and increasing the intracellular oxygen concentration. Additionally, 3BP inhibited cellular respiration, further amplifying the oxygen concentration. The photothermal conversion efficiency of CFCFB reached 55.8%, which significantly enhanced its antitumor efficacy through photothermal therapy. Immunofluorescence assay revealed that treatment with CFCFB led to an increased expression of ICD markers, including calreticulin (CRT) and ATP, as well as extracellular release of HMGB-1, indicating the induction of ICD by CFCFB. Moreover, the observed downregulation of ARG1 expression indicates a transition in the tumor microenvironment from an immunosuppressive state to an antitumor state following treatment with CFCFB. The upregulation of IL-2 and CD8 expression facilitated the differentiation of effector T cells, resulting in an augmented population of CD8+ T cells, thereby indicating the activation of systemic immune response.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- College of Public Health, Mudanjiang Medical University, Mudanjiang 157011, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingchun Wang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Department of Biochemistry and Molecular Biology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mingyang Liu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
4
|
Xu H, Su Z, Zhang H, Zhang Y, Bao Y, Zhang H, Wu X, Yan R, Wang Z, Jin Y. Cu 2+-pyropheophorbide-a-cystine conjugate-mediated multifunctional mesoporous silica nanoparticles for photo-chemodynamic therapy/GSH depletion combined with immunotherapy cancer. Int J Pharm 2023; 640:123002. [PMID: 37254284 DOI: 10.1016/j.ijpharm.2023.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Photodynamic therapy (PDT) and chemodynamic therapy (CDT) can activate immunogenicity, so PDT and CDT combined immunotherapy is a promising treatment strategy. However, insufficient hydrogen peroxide activity, hypoxia, and overexpressed glutathione in the tumor microenvironment (TME) significantly impaired the ability to activate immunogenicity. Thus, in this paper, self-reinforcing conjugates Cu2+-Pyropheophorbide-a-Cysteine (CuPPaCC), combined synergetic NIR and pH triggered PDT/CDT with glutathione depletion ability was constructed. CuPPaCC was encapsulated in mesoporous silica, and spherical HSCuPPaCC nanoparticles were prepared by Hyaluronic acid (HA) on the silica surface by Schiff base modification. HSCuPPaCC has tumor-specific targeting via HA mediated. In acidic solution, the Schiff base of HSCuPPaCC is destroyed and CuPPaCC is released (>70%), with excellent pH response release function. The results of the MTT analysis showed that the PDT/CDT synergistic anti-tumor effect was significant. HSCuPPaCC was activated in TME, catalyzing the decomposition of hydrogen peroxide to generate hydroxyl radicals and oxygen, alleviating TME hypoxia, replenishing oxygen to PDT, and significantly down regulating hypoxia factor HIF-1α expression. HSCuPPaCC has an excellent dual ROS mechanism and a dual depleting GSH mechanism resulting in a surge in intracellular ROS levels to efficiently kill cancer cells, enhance the ability to induce immunogenicity, and make tumors more sensitive to checkpoint PD-L1 blockade therapy. With the CT26 mouse model, not only the primary tumor was eradicated, but also the distal tumor at the end of treatment was completely suppressed by HSCuPPaCC combined with anti-PD-L1 immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Haiying Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhongping Su
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ying Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
5
|
Zhang X, Zhang L, Bie H, Xu J, Yuan Y, Jia L. Intelligent visual detection of OTC enabled by a multicolor fluorescence nanoprobe: Europium complex functionalized carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122867. [PMID: 37216821 DOI: 10.1016/j.saa.2023.122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023]
Abstract
It is of great significance to realize ultra-sensitive and visual detection of oxytetracycline (OTC) residues, especially for public health and environmental safety. In this study, a multicolor fluorescence sensing platform (CDs-Cit-Eu) for OTC detection was constructed by using rare earth europium complex functionalized carbon dots (CDs). The blue-emitting CDs (λem = 450 nm) prepared by one-step hydrothermal method using nannochloropsis were not only the scaffold of Eu3+ ion coordination, but also the recognition unit of OTC. After adding OTC to the multicolor fluorescent sensor, the emission intensity of CDs decreased slowly, and the emission intensity of Eu3+ ions (λem = 617 nm) enhanced significantly, accompanying by a significant color change of the nanoprobe from blue to red. The detection limit of the probe for OTC was calculated to be 3.5 nM, manifesting ultra-high sensitivity towards OTC detection. In addition, OTC detection in real samples (honey, lake water, tap water) was successfully achieved. Moreover, a semi-hydrophobic luminescent film SA/PVA/CDs-Cit-Eu was also prepared for OTC detection. With the help of smartphone color recognition APP, real-time intelligent detection of OTC was realized.
Collapse
Affiliation(s)
- Xia Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lina Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| | - Hongyan Bie
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Jun Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Yingqi Yuan
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China
| | - Lei Jia
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, No. 2001 Shiji Road Jiaozuo, Henan 454000, China.
| |
Collapse
|
6
|
Su Z, Xu H, Zhang Y, Zhang H, Zhang H, Bao Y, Wu X, Yan R, Tan G, Wang Z, Jin Y. A carbon dot-doped Cu-MOF-based smart nanoplatform for enhanced immune checkpoint blockade therapy and synergistic multimodal cancer therapy. J Mater Chem B 2023; 11:4211-4226. [PMID: 37114499 DOI: 10.1039/d3tb00384a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Immune checkpoint blockade (ICB) is a kind of promising anti-tumor immunotherapy that can block the negative immune regulatory pathways using a particular antibody. Weak immunogenicity in most patients is a key obstacle to ICB therapy. Photodynamic therapy (PDT) is a non-invasive treatment that can enhance the immunogenicity of the host and realize systemic anti-tumor immunotherapy; yet tumor microenvironment hypoxia and glutathione overexpression severely restrict the PDT effect. To overcome the above issues, we design a combination therapy based on PDT and ICB. We prepared red carbon dot (RCD)-doped Cu-metal-organic framework nanoparticles (Cu-MOF@RCD) as smart nano-reactors because their tumor microenvironment and near-infrared light responsive property can decompose tumor endogenous H2O2 through Fenton-like reactions. Cu-MOF@RCD also shows clear near-infrared photothermal therapy (PTT) effect and has an ability to deplete glutathione (DG), which together enhances decomposition of cellular H2O2 and amplifies reactive oxygen species (ROS) levels in cells, thus leading to enhanced PDT and chemodynamic therapy (CDT) effect. Moreover, programmed cell death-ligand 1 antibody (anti-PD-L1) is used together to enable combination therapy, as Cu-MOF@RCD can significantly enhance host immunogenicity. In summary, the combination of Cu-MOF@RCD with anti-PD-L1 antibody exerts a synergistic PDT/PTT/CDT/DG/ICB therapy and can be used to eradicate the primary tumors and inhibit the growth of untreated distant tumors and tumor metastasis.
Collapse
Affiliation(s)
- Zhongping Su
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Haiying Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Ying Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Guanghui Tan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| |
Collapse
|
7
|
Liu Y, Wang L, Wei F, Tian Y, Mou J, Yang S, Wu H. Modulation of hypoxia and redox in the solid tumor microenvironment with a catalytic nanoplatform to enhance combinational chemodynamic/sonodynamic therapy. Biomater Sci 2023; 11:1739-1753. [PMID: 36648208 DOI: 10.1039/d2bm01251k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The efficacy of reactive oxygen species-mediated therapy is generally limited by hypoxia and overexpressed glutathione (GSH) in the tumor microenvironment (TME). To address these issues, herein, a smart Mn3O4/OCN-PpIX@BSA nanoplatform is rationally developed to enhance the combinational therapeutic efficacy of chemodynamic therapy (CDT) and sonodynamic therapy (SDT) through TME modulation. For constructing the catalytic nanoplatform (Mn3O4/OCN-PpIX@BSA), Mn3O4 nanoparticles were grown in situ on oxidized g-C3N4 (OCN) nanosheets, and the as-prepared Mn3O4/OCN nano-hybrids were then successively loaded with protoporphyrin (PpIX) and coated with bovine serum albumin (BSA). The catalase-like Mn3O4 nanoparticles are able to effectively catalyze the overexpressed endogenous H2O2 to produce O2, which could relieve hypoxia and improve the therapeutic effect of combinational CDT/SDT. The decomposition of Mn3O4 by GSH enables the release of Mn2+ ions, which not only facilitates good T1/T2 dual-modal magnetic resonance imaging for tumor localization but also results in the depletion of GSH and the Mn2+-driven Fenton-like reaction, thus further amplifying the oxidative stress and achieving improved therapeutic efficacy. It is worth noting that the Mn3O4/OCN-PpIX@BSA nanocomposites exhibit minimal toxicity to normal tissues at therapeutic doses. These positive findings provide a new strategy for the convenient construction of TME-regulating smart theranostic nanoagents to improve the therapeutic outcomes towards malignant tumors effectively.
Collapse
Affiliation(s)
- Yeping Liu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Likai Wang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Fengyuan Wei
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Ya Tian
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Juan Mou
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Shiping Yang
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| | - Huixia Wu
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
8
|
Huang D, Xu D, Chen W, Wu R, Wen Y, Liu A, Lin L, Lin X, Wang X. Fe-MnO 2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomed Pharmacother 2023; 161:114431. [PMID: 36827713 DOI: 10.1016/j.biopha.2023.114431] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Ferroptosis has emerged as a therapeutic tactic to trigger cancer cell death driven by abnormal accumulation of reactive oxygen species (ROS). However, a single ferroptosis treatment modality is often limited. In this work, a combination therapy of ferroptosis and immunotherapy for cancer was proposed. Specifically, a versatile nanodrug was designed for the multiple treatment of hepatocellular carcinoma (HCC) by loading dihydroartemisinin (DHA) on Fe3+-doped MnO2 nanosheets (Fe-MnO2/DHA). Firstly, Fe-MnO2/DHA was degraded by glutathione (GSH) in the tumor microenvironment (TME) to release Fe2+, Mn2+ and DHA, leading to aberrant ROS accumulation due to Fenton/Fenton-like reaction. Secondly, breakage of endoperoxide bridge from DHA was caused by Fe2+ to further induce oxidative stress. Thirdly, the depleted GSH promoted the inactivation of glutathione peroxidase 4 (GPX4), resulting in lipid peroxide (LPO) accumulation. The resulting LPO and ROS could induce ferroptosis and apoptosis of liver cancer cells. Furthermore, Fe-MnO2/DHA mediated three-pronged stimulation of oxidative stress, resulting in high levels of targeted immunogenic cell death (ICD). It could enhance the infiltration of CD4+ T and CD8+ T cells, and promote macrophage polarization. DHA also acted as an immunomodulator to inhibit regulatory T cells (Tregs) for systemic antitumor. Overall, Fe-MnO2/DHA presents a multi-modal therapy for HCC driven by ferroptosis, apoptosis and immune activation, significantly advancing synergistic cancer treatment.
Collapse
Affiliation(s)
- Dandan Huang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dafen Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Xuewen Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
9
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
10
|
Liang Y, Wang PY, Li YJ, Liu ZY, Wang RR, Sun GB, Sun HF, Xie SY. Multistage O 2-producing liposome for MRI-guided synergistic chemodynamic/chemotherapy to reverse cancer multidrug resistance. Int J Pharm 2023; 631:122488. [PMID: 36521638 DOI: 10.1016/j.ijpharm.2022.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/24/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.
Collapse
Affiliation(s)
- Yan Liang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China
| | - Ping-Yu Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Ze-Yun Liu
- School of International Studies, Binzhou Medical University, YanTai, ShanDong, 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Guang-Bin Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China
| | - Shu-Yang Xie
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, QingDao, ShanDong 266071, PR China; Department of Biochemistry and Molecular Biology, Binzhou Medical University, YanTai, ShanDong 264003, PR China.
| |
Collapse
|
11
|
Qiu S, Wu X, Li Z, Xu X, Wang J, Du Y, Pan W, Huang R, Wu Y, Yang Z, Zhou Q, Zhou B, Gao X, Xu Y, Cui W, Gao F, Geng D. A Smart Nanoreactor Based on an O 2-Economized Dual Energy Inhibition Strategy Armed with Dual Multi-stimuli-Responsive "Doorkeepers" for Enhanced CDT/PTT of Rheumatoid Arthritis. ACS NANO 2022; 16:17062-17079. [PMID: 36153988 DOI: 10.1021/acsnano.2c07338] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Activated fibroblast-like synovial (FLS) cells are regarded as an important target for rheumatoid arthritis (RA) treatment via starvation therapy mediated by glucose oxidase (GOx). However, the hypoxic RA-FLS environment greatly reduces the oxidation process of glucose and leads to a poor therapeutic effect of the GOx-based starvation therapy. In this work, we designed a hollow mesoporous copper sulfide nanoparticles (CuS NPs)-based smart GOx/atovaquone (ATO) codelivery system (named as V-HAGC) targeting RA-FLS cells to realize a O2-economized dual energy inhibition strategy to solve the limitation of GOx-based starvation therapy. V-HAGC armed with dual multi-stimuli-responsive "doorkeepers" can guard drugs intelligently. Once under the stimulation of photothermal and acidic conditions at the targeted area, the dual intelligent responsive "doors" would orderly open to realize the controllable release of drugs. Besides, the efficacy of V-HAGC would be much improved by the additional chemodynamic therapy (CDT) and photothermal therapy (PTT) stimulated by CuS NPs. Meanwhile, the upregulated H2O2 and acid levels by starvation therapy would promote the Fenton-like reaction of CuS NPs under O2-economized dual energy inhibition, which could enhance the PTT and CDT efficacy as well. In vitro and in vivo evaluations revealed V-HAGC with much improved efficacy of this combination therapy for RA. In general, the smart V-HAGC based on the O2-economized dual energy inhibition strategy combined with enhanced CDT and PTT has the potential to be an alternative methodology in the treatment of RA.
Collapse
Affiliation(s)
- Shang Qiu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xiunan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xinyu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Wenzhen Pan
- Department of Orthopedics, Pingyin People's Hospital, Shandong Jinan 250000, P.R. China
| | - Ruqi Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yafei Wu
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Zhi Yang
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Qi Zhou
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China
| | - Bing Zhou
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Xuren Gao
- Department of Orthopedics, Affiliated Hospital of Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai 200025, P.R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu Xuzhou 221004, P.R. China
| | - Dechun Geng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Jiangsu Suzhou 215006, P.R. China
| |
Collapse
|
12
|
Xia Q, Zhang Y, Zhang H, Zhang X, Wu X, Wang Z, Yan R, Jin Y. Copper nanocrystalline-doped folic acid-based super carbon dots for an enhanced antitumor effect in response to tumor microenvironment stimuli. J Mater Chem B 2022; 10:8046-8057. [PMID: 36107131 DOI: 10.1039/d2tb01363k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemodynamic therapy (CDT) is a promising cancer treatment strategy to induce tumor cell apoptosis with harmful reactive oxygen species (ROS), yet over-expression of glutathione (GSH) in the tumor microenvironment (TME) severely depletes the ROS and limits the CDT efficacy. Copper-containing materials could efficiently decrease the level of GSH in the TME. In this study, copper nanocrystalline-doped folic acid-based super carbon dots (FA-CDs@Cux) were prepared to realize an enhanced antitumor effect in response to tumor microenvironment stimuli. Folic acid (FA) was used as a source of carbon dots to improve the targetability of nanomaterials to tumor cells with over-expressed FA receptors. Copper existed mainly in the form of copper nanocrystals, which were embedded on the carbon core by in situ reduction of Cu2+ by gluconic acid. The prepared composites were found to reduce the intracellular H2O2 into hydroxyl radicals (˙OH) and consume GSH efficiently in tumor cells. Copper-doping enabled the CDs to absorb near-infrared light and to give a high photothermal transformation efficiency (54.3%) and high singlet oxygen atom yield (56.83%), endowing the super carbon dots with synergetic CDT/PTT/PDT functions in response to the TME and NIR stimuli, which have been investigated systematically by in vitro and in vivo biological experiments.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Ying Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Hui Zhang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| | - Xiong Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, 150025, China. .,Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China
| |
Collapse
|
13
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Zhang H, Ma W, Wang Z, Wu X, Zhang H, Fang W, Yan R, Jin Y. Self-Supply Oxygen ROS Reactor via Fenton-like Reaction and Modulating Glutathione for Amplified Cancer Therapy Effect. NANOMATERIALS 2022; 12:nano12142509. [PMID: 35889731 PMCID: PMC9319594 DOI: 10.3390/nano12142509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive oxidant molecules that can kill cancer cells through irreversible damage to biomacromolecules. ROS-mediated cancer therapies, such as chemodynamic (CDT) and photodynamic therapy (PDT), are often limited by the hypoxia tumor microenvironment (TME) with high glutathione (GSH) level. This paper reported the preparation, characterization, in vitro and in vivo antitumor bioactivity of a meso-tetra(4-carboxyphenyl)porphine (TCPP)-based therapeutic nanoplatform (CMMFTP) to overcome the limitations of TME. Using Cu2+ as the central ion and TCPP as the ligand, the 2D metal-organic framework Cu-TCPP was synthesized by the solvothermal method, then CMMFTP was prepared by modifying MnO2, folic acid (FA), triphenylphosphine (TPP), and poly (allylamine hydrochloride) (PAH) on the surface of Cu-TCPP MOFs. CMMFTP was designed as a self-oxygenating ROS nanoreactor based on the PDT process of TCPP MOFs and the CDT process by Cu(II) and MnO2 components (mainly through Fenton-like reaction). The in vitro assay suggested CMMFTP caused a 96% lethality rate against Hela cells (MTT analysis) in specific response to TME stimulation. Moreover, the Cu(II) and MnO2 in CMMFTP efficiently depleted the glutathione (80%) in tumor cells and consequently amplified ROS levels to improve CDT/PDT effects. The FA-induced tumor targeting and TPP-induced mitochondria targeting further enhanced the antitumor activity. Therefore, the nanoreactor based on dual targeting and self-oxygenation-enhanced ROS mechanism provided a new strategy for cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Fang
- Correspondence: (W.F.); (R.Y.); (Y.J.)
| | - Rui Yan
- Correspondence: (W.F.); (R.Y.); (Y.J.)
| | | |
Collapse
|
15
|
Du Y, Wang S, Luan J, Zhang M, Chen B, Shen Y. GOx-Functionalized Platelet Membranes-Camouflaging Nanoreactors for Enhanced Multimodal Tumor Treatment. Int J Nanomedicine 2022; 17:2979-2993. [PMID: 35832118 PMCID: PMC9273187 DOI: 10.2147/ijn.s358138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background Glucose oxidase (GOx)-based starvation therapy is a new cancer treatment strategy. However, the characteristics such as limited curative effect and hypoxic tumor environment hinder its further application seriously. Methods Herein, doxorubicin (DOX) loaded in hollow mesoporous copper sulfide (HMCuS) nanoparticles assembled with manganese dioxide (HMMD) as nanoshell was prepared. We developed a targeted enhanced cancer treatment method to camouflage HMMD by GOx-functionalized platelet (PLT) membranes (HMMD@PG). Results GOx can be specially transported to the tumor site with PLT membrane for effective starvation treatment. Glucose and oxygen (O2) in the tumor were converted to H2O2 under the catalysis of GOx. HMMD can catalyze H2O2 to produce O2 and consume glutathione (GSH) in time, which regulates the tumor microenvironment (TME) and improves the adverse conditions of anti-tumor. In addition, DOX encapsulated in HMCuS-MnO2 release was accelerated from the nanoparticles after the “gatekeeper” MnO2 is consumed. The study of anti-tumor mechanism shows that the remarkable tumor suppressive ability of HMMD@PG comes from the three peaks synergy of starvation treatment, photothermal treatment (PTT), and chemotherapy. This nanoplatform disguised by PLT membrane has significant tumor inhibition ability, good biocompatibility and almost has no side effects in main organs. Conclusion This work broadens the application mode of GOx and shows the new development of a multi-mode collaborative processing system of nanoplatforms based on cell membrane camouflage.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Jianfeng Luan
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Meilin Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China.,School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Yanfei Shen
- School of Medicine, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
16
|
Zhu L, Meng D, Wang X, Chen X. Ferroptosis-Driven Nanotherapeutics to Reverse Drug Resistance in Tumor Microenvironment. ACS APPLIED BIO MATERIALS 2022; 5:2481-2506. [PMID: 35614872 DOI: 10.1021/acsabm.2c00199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferroptosis, characterized by iron-dependent lipid reactive oxygen species (ROS) accumulation, is non-apoptotic programmed cell death highly relevant to tumor development. It was found to manipulate oncogenes and resistant mutations of cancer cells via lipid metabolism pathways converging on phospholipid glutathione peroxidase (GPX4) that squanders lipid peroxides (L-OOH) to block the iron-mediated reactions of peroxides, thus rendering resistant cancer cells vulnerable to ferroptotic cell death. By accumulating ROS and lipid peroxidation (LPO) products to lethal levels in tumor microenvironment (TME), ferroptosis-driven nanotherapeutics show a superior ability of eradicating aggressive malignancies than traditional therapeutic modalities, especially for the drug-resistant tumors with high metastasis tendency. Moreover, Fenton reaction, inhibition of GPX-4, and exogenous regulation of LPO are three major therapeutic strategies to induce ferroptosis in cancer cells, which were generally applied in ferroptosis-driven nanotherapeutics. In this review, we elaborate current trends of ferroptosis-driven nanotherapeutics to reverse drug resistance of tumors in anticancer fields at the intersection of cancer biology, materials science, and chemistry. Finally, their challenges and perspectives toward feasible translational studies are spotlighted, which would ignite the hope of anti-resistant cancer treatment.
Collapse
Affiliation(s)
- Liyun Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Danni Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Xu Wang
- Hangzhou Medical College, Binjiang Higher Education Park, Binwen Road 481, Hangzhou 310053, China
| | - Xuerui Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
Li X, Luo R, Liang X, Wu Q, Gong C. Recent advances in enhancing reactive oxygen species based chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Yu X, Wang X, Yamazaki A, Li X. Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. J Mater Chem B 2022; 10:3637-3647. [PMID: 35439801 DOI: 10.1039/d2tb00337f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemotherapy is one of the major clinical anticancer therapies. However, its efficiency is limited by many factors, including the complex tumor microenvironment (TME). Herein, manganese-doped mesoporous silica nanoparticles (MM NPs) were constructed and applied to regulate the TME and enhance the efficiency of the combination of chemotherapy and immunotherapy (chemo-immunotherapy). Notably, the combination of MM NPs, doxorubicin hydrochloride, and immune checkpoint inhibitors enhanced the synergistic efficiency of chemo-immunotherapy in a bilateral animal model, which simultaneously inhibited the growth of primary tumors and distant untreated tumors. Moreover, Mn-doping endowed MSNs with six new regulatory functions for the TME by inducing glutathione depletion, ROS generation, oxygenation, cell-killing effect, immune activation, and degradation promotion. These results demonstrated that MM NPs with TME regulatory functions can potentially improve the efficiency of chemo-immunotherapy.
Collapse
Affiliation(s)
- Xueping Yu
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xiupeng Wang
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Atsushi Yamazaki
- Graduate School of Creative Science and Engineering, Waseda University, 3-4-1 Shin-Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Xia Li
- Health and Medical Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
19
|
Luo L, Wang G, Wang Z, Ma J, He Y, He J, Wang L, Liu Y, Xiao H, Xiao Y, Lan T, Yang H, Deng O. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147889. [PMID: 34134394 DOI: 10.1016/j.scitotenv.2021.147889] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Excess sludge contains large amounts of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), posing a risk for human health. However, most current studies usually ignored their abundance and removal in excess sludge. Therefore, this study aimed to reduce ARGs/MGEs in sludge by Fenton process, and applied single-factor experiment (SFE) and response surface methodology (RSM) to optimize the Fenton reaction condition for higher removal rates of ARGs/MGEs. The results demonstrated that the removal rates of target genes by SFE optimized condition ranged from 10.91% to 66.86%, while the removal rates caused by RSM optimized condition were 48.02% - 76.36%, indicating RSM was a useful tool to improve the removal rates of ARGs in excess sludge. Additionally, the scanning electron microscope and cell apoptosis results suggested that the Fenton treatment altered the structure of sludge and reduced the numbers of normal cells, thus causing the reductions of target genes.
Collapse
Affiliation(s)
- Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Guolan Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zimu Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jianhua Ma
- Changning Agricultural and Rural Bureau, Changning 644300, PR China
| | - Yan He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jinsong He
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lilin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yan Liu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinling Xiao
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hua Yang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ouping Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, PR China; College of Resources, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
20
|
Niu B, Liao K, Zhou Y, Wen T, Quan G, Pan X, Wu C. Application of glutathione depletion in cancer therapy: Enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 2021; 277:121110. [PMID: 34482088 DOI: 10.1016/j.biomaterials.2021.121110] [Citation(s) in RCA: 463] [Impact Index Per Article: 115.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 01/17/2023]
Abstract
Glutathione (GSH) is an important member of cellular antioxidative system. In cancer cells, a high level of GSH is indispensable to scavenge excessive reactive oxygen species (ROS) and detoxify xenobiotics, which make it a potential target for cancer therapy. Plenty of studies have shown that loss of intracellular GSH makes cancer cells more susceptible to oxidative stress and chemotherapeutic agents. GSH depletion has been proved to improve the therapeutic efficacy of ROS-based therapy (photodynamic therapy, sonodynamic therapy, and chemodynamic therapy), ferroptosis, and chemotherapy. In this review, various strategies for GSH depletion used in cancer therapy are comprehensively summarized and discussed. First, the functions of GSH in cancer cells are analyzed to elucidate the necessity of GSH depletion in cancer therapy. Then, the synthesis and metabolism of GSH are briefly introduced to bring up some crucial targets for GSH modulation. Finally, different approaches to GSH depletion in the literature are classified and discussed in detail according to their mechanisms. Particularly, functional materials with GSH-consuming ability based on nanotechnology are elaborated due to their unique advantages and potentials. This review presents the ingenious application of GSH-depleting strategy in cancer therapy for improving the outcomes of various therapeutic regimens, which may provide useful guidance for designing intelligent drug delivery system.
Collapse
Affiliation(s)
- Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kaixin Liao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Chuanbin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
21
|
Zhu D, Zhu XH, Ren SZ, Lu YD, Zhu HL. Manganese dioxide (MnO2) based nanomaterials for cancer therapies and theranostics. J Drug Target 2021; 29:911-924. [DOI: 10.1080/1061186x.2020.1815209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiao-Hua Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shen-Zhen Ren
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya-Dong Lu
- Childrens Hospital, Neonatal Medical Center, Nanjing Medical University, Nanjing, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
23
|
Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics 2021; 11:6370-6392. [PMID: 33995663 PMCID: PMC8120226 DOI: 10.7150/thno.57828] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
As one of the most important cancer treatment strategies, conventional chemotherapy has substantial side effects and leads easily to cancer treatment failure. Therefore, exploring and developing more efficient methods to enhance cancer chemotherapy is an urgently important problem that must be solved. With the development of nanotechnology, nanomedicine has showed a good application prospect in improving cancer chemotherapy. In this review, we aim to present a discussion on the significant research progress in nanomedicine for enhanced cancer chemotherapy. First, increased enrichment of drugs in tumor tissues relying on different targeting ligands and promoting tissue penetration are summarized. Second, specific subcellular organelle-targeted chemotherapy is discussed. Next, different combinational strategies to reverse multidrug resistance (MDR) and improve the effective intracellular concentration of therapeutics are discussed. Furthermore, the advantages of combination therapy for cancer treatment are emphasized. Finally, we discuss the major problems facing therapeutic nanomedicine for cancer chemotherapy, and propose possible future directions in this field.
Collapse
Affiliation(s)
- Guoqing Wei
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Yu Wang
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yi Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Rong Ju
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, PR China
| |
Collapse
|
24
|
Zhang L, Yang Z, He W, Ren J, Wong CY. One-pot synthesis of a self-reinforcing cascade bioreactor for combined photodynamic/chemodynamic/starvation therapy. J Colloid Interface Sci 2021; 599:543-555. [PMID: 33964699 DOI: 10.1016/j.jcis.2021.03.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
The combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT) have attracted a great deal of interest, but tumor hypoxia and glutathione (GSH) overproduction still limit their further applications. Herein, an intelligent reactive oxygen species (ROS) nanogenerator Ce6/GOx@ZIF-8/PDA@MnO2 (denoted as CGZPM; Ce6, GOx, ZIF-8, PDA, MnO2 are chlorin e6, glucose oxidase, zeolitic imidazolate framework-8, polydopamine and manganese dioxide respectively) with O2-generating and GSH-/glucose-depleting abilities was constructed by a facile and green one-pot method. After intake by tumor cells, the outer MnO2 was rapidly degraded by the acidic pH, and the overexpression of hydrogen peroxide (H2O2) and GSH with abundant Mn2+ and O2 produced would eventually achieve multifunctionality. The Mn2+ acted as an ideal Fenton-like agent and magnetic resonance (MR) imaging contrast agent, while the O2 promoted the PDT via hypoxia relief and facilitated the intratumoral glucose oxidation by GOx for starvation therapy (ST). Benefiting from the GOx-based glycolysis process, sufficient H2O2 was generated to improve the CDT efficacy through Mn2+-mediated Fenton-like reaction. Notably, MnO2 and PDA could decrease the tumor antioxidant activity by consuming GSH, resulting in remarkably enhanced PDT/CDT. Such a novel cascade bioreactor with tumor microenvironment (TME)-modulating capability opens new opportunities for ROS-based and combinational treatment paradigms.
Collapse
Affiliation(s)
- Li Zhang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Zhe Yang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
25
|
Lin L, Yu J, Lu H, Wei Z, Chao Z, Wang Z, Wu W, Jiang H, Tian L. Mn-DNA coordination of nanoparticles for efficient chemodynamic therapy. Chem Commun (Camb) 2021; 57:1734-1737. [PMID: 33496281 DOI: 10.1039/d0cc08191d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A kind of nanoparticle is developed for highly efficient chemodynamic therapy that only relies on the endogenous H2O2 of cancer cells. For this nanoparticle, high-molecular-weight DNA is used as the biocompatible carrier to load abundant Mn2+ ions. Therefore, the resultant Mn-DNA coordination nanoparticles can efficiently deliver and sensitively release Mn2+ in cancer cells, resulting in high toxicity through the Fenton-like reaction.
Collapse
Affiliation(s)
- Li Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Jiantao Yu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Hongwei Lu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Zixiang Wei
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Zhicong Chao
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Zhongling Wang
- Department of Radiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200080, China
| | - Weitao Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Hengfeng Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
26
|
Zhi X, Qian Y. A novel red-emission phenothiazine fluorescent protein chromophore based on oxygen‒chlorine bond (O–Cl) formation for real-time detection of hypochlorous acid in cells. Talanta 2021; 222:121503. [DOI: 10.1016/j.talanta.2020.121503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 01/30/2023]
|
27
|
Gu D, Liu Z, Wu H, An P, Zhi X, Yin Y, Liu W, Sun B. Dual catalytic cascaded nanoplatform for photo/chemodynamic/starvation synergistic therapy. Colloids Surf B Biointerfaces 2021; 199:111538. [PMID: 33383548 DOI: 10.1016/j.colsurfb.2020.111538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/10/2023]
Abstract
In this study, manganese dioxide (MnO2) was attached to prussian blue (PB) by a one-pot method to prepare PBMO. Then, the GOD was loaded onto PBMO through the electrostatic interaction of hyaluronic acid (HA) to form tumor-targeted nanoplatform (PBMO-GH). Hydrogen peroxide (H2O2) and gluconic acid were produced through the GOD-catalyzed enzymatic reaction. Meanwhile, PB could not only catalyze H2O2 for oxygen generation to further promote glucose consumption but also possess the property of photothermal conversion. As a result, glucose was continuously consumed to achieve the starvation therapy (ST), and the photothermal therapy (PTT) could be realized under near-infrared (NIR) light. Besides, the Mn2+ generated by the reaction of MnO2 with glutathione (GSH) could exert Fenton-like reaction to produce highly toxic hydroxyl radicals (·OH) from H2O2, which thereby realized self-reinforcing chemodynamic therapy (CDT). In vitro and in vivo experiments demonstrated that PBMO-GH could effectively inhibit the growth of tumor cells via ST/CDT/PTT synergistic effect. Therefore, the as-prepared nanoplatform for multi-modal therapy will provide a promising paradigm for overcoming cancer.
Collapse
Affiliation(s)
- Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Zhikun Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xu Zhi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yujie Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Wen Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|
28
|
Liu H, Li J, Hu P, Sun S, Shi L, Sun L. Facile synthesis of Er3+/Tm3+ co-doped magnetic/luminescent nanosystems for possible bioimaging and therapy applications. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Wu H, Chen F, Gu D, You C, Sun B. A pH-activated autocatalytic nanoreactor for self-boosting Fenton-like chemodynamic therapy. NANOSCALE 2020; 12:17319-17331. [PMID: 32789333 DOI: 10.1039/d0nr03135f] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emergence of hydroxyl radical (˙OH)-mediated chemodynamic therapy (CDT) by the Fenton or Fenton-like reaction holds great potential for improving anticancer efficacy. Herein, an activatable autocatalytic nanoreactor (HT@GOx-DMONs) was developed for self-boosting Fenton-like CDT via decorating Cu2+-based metal-organic frameworks (MOFs) on glucose oxidase (GOx)-loaded dendritic mesoporous organosilica nanoparticles (DMONs) for the first time. The obtained nanoreactor could prevent the premature leakage of Cu2+ and GOx in neutral physiological environments conducted by the gatekeeper of growing carboxylate MOF (HKUST-1), but the explosive release of agents was realized due to the activated degradation of external HKUST-1 in acidic condition of endo/lysosomes, which thereby endowed this nanoreactor with the performance of pH-triggered ˙OH generation driven by Cu+-mediated autocatalytic Fenton-like reaction. Excitingly, Cu2+-induced glutathione (GSH) depletion and GOx-catalyzed H2O2 self-sufficiency unlocked by acid dramatically enhanced ˙OH generation. As expected, the effect of self-amplified CDT based on Cu2+-containing HT@GOx-DMONs presented wonderful in vitro toxicity and in vivo antitumor ability without leading to significant side-effects. The resulting nanoreactor with GSH consumption and H2O2 self-supply activated by acid may provide a promising paradigm for on-demand CDT.
Collapse
Affiliation(s)
- Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | | | | | | | | |
Collapse
|
30
|
Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020; 6:4834-4845. [DOI: 10.1021/acsbiomaterials.0c01009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
31
|
Cao X, Wang G, Wang K, Guo L, Cao Y, Cao X, Yang Y. Organic Phosphorous and Calcium Source Induce the Synthesis of Yolk-Shell Structured Microspheres of Calcium Phosphate with High-Specific Surface Area: Application in HEL Adsorption. NANOSCALE RESEARCH LETTERS 2020; 15:69. [PMID: 32232586 PMCID: PMC7105591 DOI: 10.1186/s11671-020-03298-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/13/2020] [Indexed: 06/10/2023]
Abstract
Yolk-shell-structured calcium phosphate microspheres have a great potential for medical applications due to their excellent physicochemical properties and biocompatibility. However, developing a yolk-shell-structured calcium phosphate with high adsorption capability remains a challenge. Herein, a porous yolk-shell-structured microsphere (ATP-CG) of calcium phosphate with high-specific surface area [SBET = 143 m2 g-1, which is approximately three times as high as that of ATP-CL microspheres synthesized by replacing calcium source with calcium L-lactate pentahydrate (CL)] was successfully synthesized by using adenosine 5'-triphosphate disodium salt (ATP) as the phosphorous source and calcium gluconate monohydrate (CG) as calcium source through a self-templating approache. The influences of molar ratio of Ca to P (Ca/P), hydrothermal temperature, and time on the morphology of ATP-CG microspheres were also investigated. It is found that the organic calcium source and organic phosphorous source play a vital role in the formation of yolk-shell structure. Furthermore, a batch of adsorption experiments were investigated to illuminate the adsorption mechanism of two kinds of yolk-shell-structured microspheres synthesized with different calcium sources. The results show that the adsorption capacity of ATP-CG microspheres (332 ± 36 mg/g) is about twice higher than that of ATP-CL microspheres (176 ± 33 mg/g). Moreover, the higher-specific surface area caused by the calcium source and unique surface chemical properties for ATP-CG microspheres play an important role in the improvement of HEL adsorption capability. The study indicates that the as-prepared yolk-shell-structured microsphere is promising for application in drug delivery fields and provides an effective approach for improving drug adsorption capability.
Collapse
Affiliation(s)
- Xianshuo Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Guizhen Wang
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Kai Wang
- Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, 571199, People's Republic of China
| | - Lan Guo
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Yang Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China
| | - Xianying Cao
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China.
| | - Yong Yang
- College of Life Science and Pharmacy, School of Materials Science and Engineering; State Key Laboratory of Marine Resource Utilization in South China Sea, College of Food Science and Engineering, Analytical and Testing Centre, Hainan University, Haikou, 570228, People's Republic of China.
| |
Collapse
|