1
|
Xu Y, Tan Y, Majeed Z, Nie F, Zheng K, Li Z, Yang L, Zhao C, Li C. Hybrid molecularly imprinted polymers for targeted separation and enrichment of 10-hydroxycamptothecin in Camptotheca acuminata Decne. Nat Prod Res 2024; 38:3221-3230. [PMID: 37395467 DOI: 10.1080/14786419.2023.2228981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
The molecularly imprinted polymer was synthesized using 3-aminopropylthiosilane-methacrylic acid monomer (APTES-MAA) as the functional monomer and 10-hydroxycamptothecin (HCPT) as the template, based on computer simulation. The hybrid molecularly imprinted polymers (HMIPs) were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, particle size measurement, scanning electron microscopy and energy dispersive X-ray spectroscopy. It has been shown that HMIPs are irregularly shaped and porous, with particle sizes ranging mainly from 130 to 211 nm. At 298 K, the HMIPs exhibit a maximum adsorption capacity of 8.35 mg·g-1 for HCPT and demonstrate good adsorption specificity (α = 5.38). The pseudo-second-order reaction mechanism suggests that the equilibrium adsorption capacity of HCPT on HMIPs is 8.11 mg·g-1. Finally, HCPT was successfully separated and enriched from the extract of Camptotheca acuminata Decne. seeds using HMIPs.
Collapse
Affiliation(s)
- Yanwei Xu
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Yulian Tan
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Zahid Majeed
- Department of Biotechnology, The University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Fang Nie
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Kaili Zheng
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Zhonghao Li
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Lian Yang
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Chunjian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| | - Chunying Li
- College of Chemistry, Chemical Engineering and Resource Utilization; Key Laboratory of Forest Plant Ecology, Ministry of Education; Engineering Research Center of Forest Bio-Preparation, Ministry of Education; Heilongjiang Provincial Key Laboratory of ecological utilization of Forestry-based active substances, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Recent advances in photonic crystal-based chemical sensors. Chem Commun (Camb) 2024; 60:9177-9193. [PMID: 39099372 DOI: 10.1039/d4cc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The increasing attention towards environmental quality, food safety, public security and medical diagnosis demands high requirements and standards for chemical sensors with merits of rapid response, high precision, long-term stability and reusability. In this case, a prominent innovation in sensory materials holds potential to realize new generations of chemical sensor technologies. Specifically, photonic crystals (PCs) as structured dielectric materials with spatially periodic ordered arrangements offer unique advantages in improving the sensing performance of chemical sensors. Consequently, the promising properties of PCs promote research on their implementation as an integral part of chemical sensors. This review highlights the integration of PCs into chemical sensors including a range of building blocks for the construction of PCs with versatile opal or opal inverse structural architectures and a delicate choice of surface functionality with associated sensing interfaces for target recognition and signal transduction. Subsequently, based on their synthesis and functionality, we focus on introducing the sensing principles of recent advances in PC-based chemical sensors, such as reflection spectra-based sensing, visual colorimetric sensing, fluorescence sensing, surface-enhanced Raman spectroscopy (SERS)-based sensing and other integrated sensing. Finally, the future prospects and challenges are discussed for the further improvement of PC-based chemical sensors.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
3
|
Ren Y, Fan Z. Synthesis of molecularly imprinted polymers based on nitrogen-doped carbon dots for specific detection of chlortetracycline by reversed phase microemulsion method. Talanta 2023; 265:124898. [PMID: 37418959 DOI: 10.1016/j.talanta.2023.124898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/22/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Among the tetracycline antibiotics, chlortetracycline (CTC) is the most frequently used antibiotic except for tetracycline (TC) for enhancing the ability of the organism to fight bacterial infections. The poor metabolism and degradability of CTC can cause serious health effects. Most studies have focused on the detection and analysis of TC, and research on CTC is relatively scarce. This is because the structures of CTC and TC and oxytetracycline (OTC) are extremely similar, and even indistinguishable. In this study, CTC was used as a template molecule and a molecularly imprinted layer was coated on the surface of highly fluorescent N-CDs using a reversed-phase microemulsion method to form N-CDs@MIPs. It was possible to specifically identify CTC without the influence of TC and OTC, which are extremely similar in structure. By comparing with the non-imprinted polymer (N-CDs@NIPs), it exhibited high sensitivity and selectivity with an imprinting factor of 2.02. And it was used in the determination of CTC in milk with recoveries and relative standard deviations of 96.7%-109.8% and 0.64%-3.27%, respectively, with high accuracy and precision. The specificity of the measurement is excellent compared with other assays, and it is a valid and reliable assay.
Collapse
Affiliation(s)
- Yunyan Ren
- Department of Chemistry and Science, Shanxi Normal University, Taiyuan, 030032, PR China
| | - Zhefeng Fan
- Department of Chemistry and Science, Shanxi Normal University, Taiyuan, 030032, PR China.
| |
Collapse
|
4
|
Zhang Y, Zhao G, Han K, Sun D, Zhou N, Song Z, Liu H, Li J, Li G. Applications of Molecular Imprinting Technology in the Study of Traditional Chinese Medicine. Molecules 2022; 28:301. [PMID: 36615491 PMCID: PMC9822276 DOI: 10.3390/molecules28010301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023] Open
Abstract
Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such as matrix complexity, component diversity and low level of active components. As an interdisciplinary technology, molecular imprinting technology (MIT) has gained popularity in TCM study, owing to the produced molecularly imprinted polymers (MIPs) possessing the unique features of structure predictability, recognition specificity and application universality, as well as physical robustness, thermal stability, low cost and easy preparation. Herein, we comprehensively review the recent advances of MIT for TCM studies since 2017, focusing on two main aspects including extraction/separation and purification and detection of active components, and identification analysis of hazardous components. The fundamentals of MIT are briefly outlined and emerging preparation techniques for MIPs applied in TCM are highlighted, such as surface imprinting, nanoimprinting and multitemplate and multifunctional monomer imprinting. Then, applications of MIPs in common active components research including flavonoids, alkaloids, terpenoids, glycosides and polyphenols, etc. are respectively summarized, followed by screening and enantioseparation. Related identification detection of hazardous components from TCM itself, illegal addition, or pollution residues (e.g., heavy metals, pesticides) are discussed. Moreover, the applications of MIT in new formulation of TCM, chiral drug resolution and detection of growing environment are summarized. Finally, we propose some issues still to be solved and future research directions to be expected of MIT for TCM studies.
Collapse
Affiliation(s)
- Yue Zhang
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Guangli Zhao
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Kaiying Han
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Dani Sun
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Na Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Zhihua Song
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Huitao Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Guisheng Li
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| |
Collapse
|
5
|
Liu C, Liao J, Zheng Y, Chen Y, Liu H, Shi X. Random forest algorithm-enhanced dual-emission molecularly imprinted fluorescence sensing method for rapid detection of pretilachlor in fish and water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129591. [PMID: 35853336 DOI: 10.1016/j.jhazmat.2022.129591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
A sensitive and efficient fluorescence sensor based on dual-emission molecularly imprinted polymers (Dual-em-MIPs) was successfully developed using the random forest (RF) machine-learning algorithm for the rapid detection of pretilachlor. SiO2 coatings on red-emitting CdSe/ZnS quantum dots (r-SiO2@QDs) as intermediate light-emitting components are non-selective for pretilachlor, whereas molecularly imprinted layers coated with blue-emitting nitrogen-doped graphene quantum dots (N-GQDS) are selective. Fluorescence images of the Dual-em-MIPs were acquired. The red (R), green (G), and blue (B) color values of the image were analyzed using an RF algorithm, and the classifier was trained using 103 fluorescent images for automatic analyses. Under optimized conditions, an excellent linear relationship between the sensor and pretilachlor was obtained in the range of 0.001-5.0 mg/L (R2, 0.9958). Additionally, the satisfactory recoveries of Dual-em-MIPs ranged between 92.2 % and 107.6 % for the real samples, with a relative standard deviation (RSD) under 6.5 %. The satisfactory recoveries of the RF model based on the fluorescence sensor were 84.2-108.2 % with the RSD under 6.4 %. Overall, the proposed fluorescence sensor based on Dual-em-MIPs and machine learning methods was successfully used to determine pretilachlor in the environment and in aquatic products.
Collapse
Affiliation(s)
- Chenxi Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jingxin Liao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yong Zheng
- School of Mathematics, South China University of Technology, Guangzhou, China
| | - Ying Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; Department of Food Science and Technology, National University of Singapore, Science Drive 2, 117542, Singapore
| | - Hongsheng Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
6
|
Chaliha C, Baruah J, Kalita E. Nanoarchitectonics of Crosslinked Cu:ZnS-Lignocellulose Nanocomposite: A Potent Antifungal and Antisporulant System Against the Tea Pathogen Exobasidium vexans. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Quantum and carbon dots conjugated molecularly imprinted polymers as advanced nanomaterials for selective recognition of analytes in environmental, food and biomedical applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116306] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Li F, Li X, Su J, Li Y, He X, Chen L, Zhang Y. A strategy of utilizing Cu 2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines. Talanta 2021; 231:122339. [PMID: 33965017 DOI: 10.1016/j.talanta.2021.122339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 01/19/2023]
Abstract
In this work, a novel strategy to prepare molecularly imprinted polymers (MIPs) functionalized magnetic carbon nanotubes (MCNTs) via a facile sol-gel polymerization by adopting Cu2+-mediating interaction was presented for selective recognition of celastrol (Cel), in the traditional Chinese medicines (TCM). Firstly, template Cel, 3-aminopropyltriethoxysilane (APTES) as monomer and Cu2+ (co-monomer) were mixed to form a self-assembled pre-complex, in which Cu2+ could coordinate with Cel. Meanwhile, APTES plays a role of bridge between APTES and Cel. Secondly, carboxyl modified MCNTs as substrate was added into the pre-complex solution. After that, a multi-step sol-gel polymerization process was occurred in the presence of tetraethylorthosilicate as cross-linker and acetic acid as catalyst. Finally, MIPs layer was formed on the surface of the MCNTs (Cel-MIPs@MCNTs) after the removal of template with methanol/acetic. The morphology and structure of Cel-MIPs@MCNTs was investigated by various characterization techniques. The adsorption performance of Cel-MIPs@MCNTs to Cel was illustrated by kinetic, isothermal and selective binding experiments. The results displayed that the Cel-MIPs@MCNTs possessed fast kinetic equilibrium time (40 s), high adsorption capacity (13.35 μg mg-1), good imprinting factor of 3.41, and high magnetic responsivity (44.38 emu·g-1), which can be used as an ideal adsorbent for rapid isolation and enrichment of target analytes. A selective and sensitive method based on Cel-MIPs@MCNTs coupling with HPLC was developed for Cel determination including a wide linear range (0.15-200 μg mL-1) with correlation coefficient of 0.9998, a low limit of detection (0.05 μg mL-1). Furthermore, the applicability of Cel-MIPs@MCNTs was demonstrated to isolate and determine Cel in TCM samples with satisfactory recoveries ranged from 84.47% to 91.5% (RSD<5.35%). The results revealed that Cel-MIPs@MCNTs offer great potential as an adsorbent for selective and efficient isolation of Cel from complex TCM samples.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Xiaoxuan Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin, 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116011, China
| |
Collapse
|
9
|
Chen Q, Huang Z, Wang Q, Hu Y, Tang H, Wen R, Wang W. Novel synthesis of Mn: ZnSe@ZnS core-shell quantum dots based on photoinduced fluorescence enhancement. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119099. [PMID: 33214102 DOI: 10.1016/j.saa.2020.119099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 05/12/2023]
Abstract
A novel Type-I Mn: ZnSe@ZnS core-shell quantum dots (QDs) was reported through a two-step procedure by using low-cost inorganic salts and naturalbiomacromolecule as raw materials. Based on a designed structure of L-cysteine-capped Mn: ZnSe QDs in aqueous media with the controllable surface, Mn: ZnSe@ZnS core-shell QDs were formed due to photoactive ions and defect curing under continuous constant light. The influences of experimental variables, including synthesis conditions of Mn: ZnSe QDs, different types and affecting factors of photo irradiation had been systematically investigated. Under the effect of photoinduced fluorescence enhancement, the photoluminescence (PL) intensity increases significantly by about 5-10 times after 1-3 h of UV irradiation. The position of the fluorescence peak was red-shifted by about 17 nm, emitting orange-red fluorescence. The photoluminescence quantum yield (PL QY) was markedly improved (up to 35%). The structure and morphology of Mn: ZnSe@ZnS core-shell QDs were also confirmed by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDS) in detail. The mechanism of photoinduced fluorescence enhancement was attributed to L-cysteine allowed to release S2- to form a ZnS shell, and the passivated surface non-radiative relaxation centers of Mn: ZnSe@ZnS QDs was successfully synthesized with highuniform size, excellent photoluminescence performance, and good stability, all ofwhichmakethemgood potential candidates for white LEDs, and biological labels.
Collapse
Affiliation(s)
- Qiuju Chen
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zizhi Huang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiong Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China; Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Yunchu Hu
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Tang
- Ministry of Education Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ruizhi Wen
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenlei Wang
- College of Science, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
10
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
11
|
Qian J, Kai G. Application of micro/nanomaterials in adsorption and sensing of active ingredients in traditional Chinese medicine. J Pharm Biomed Anal 2020; 190:113548. [PMID: 32861928 DOI: 10.1016/j.jpba.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Traditional Chinese medicine (TCM) has been widely applied for the prevention and cure of various diseases for centuries. Ingredient with pharmacological activity is the key to the application of TCM. Hence, it is of significance to separate and detect active ingredients in TCM effectively. Micro/nanomaterial is the promising candidate for adsorption and sensing due to its unique physical and chemical properties. For years, many efforts have been made to develop functional micro/nanomaterials to realize the effective adsorption or sensing of bioactive compounds in TCM. In this review, we discussed recent progresses in the application of various functional micro/nanomaterials for adsorption or detection (electrochemical detection, fluorescent detection, and colorimetric detection) of active ingredients. Based on the kind of matrix materials, micro/nano-adsorbents or sensors can be classified into following categories: metal-based micro/nanomaterials, porous materials, carbon-based materials, graphene/graphite-liked micro/nanomaterials and hybrid micro/nanomaterials.
Collapse
Affiliation(s)
- Jun Qian
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 311402, PR China.
| |
Collapse
|
12
|
Chien HW, Tsai MT, Yang CH, Lee RH, Wang TL. Interaction of LiYF 4:Yb 3+/Er 3+/Ho 3+/Tm 3+@LiYF 4:Yb 3+ upconversion nanoparticles, molecularly imprinted polymers, and templates. RSC Adv 2020; 10:35600-35610. [PMID: 35517120 PMCID: PMC9056933 DOI: 10.1039/d0ra05771a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
In this work, LiYF4:Yb0.253+/Er0.013+/Tm0.013+/Ho0.013+@LiYF4:Yb0.23+ upconverting nanoparticles (UCNP) were used as luminescent materials for the preparation of molecular imprinting polymer nanocomposites. Three luminescent molecularly imprinted polymer (MIP) nanocomposites were prepared by in situ polymerization. The relationship between the functional monomers, templates, and upconversion nanoparticles was investigated. Two hydrophilic monomers (acrylic acid (AA) and acrylamide (AAm)) and one hydrophobic monomer (N-tert-butylacrylamide (TBAm)) were employed as functional monomers, while one amino acid (cysteine) and two proteins (albumin and hemoglobin) were employed as the templates to investigate the effect of their interaction with LiYF4:Yb3+/Er3+/Ho3+/Tm3+@LiYF4:Yb3+ core/shell UCNPs on the polymerization process, luminescence properties, and adsorption capacity. The results showed that the UCNPs were embedded in the polymeric matrix to form an irregular quasimicrospherical UCNPs@MIP with diameters ranging from several hundred nanometers to several micrometers depending on the functional monomer. The quenching effect was more pronounced for the adsorption of hemoglobin with UCNPs@MIP compared to cysteine and albumin. In addition, the adsorption capacities of the AA- and AAm-made UCNPs@MIP were greater than those of TBAm-made UCNPs@MIP. The rebinding of the templates onto UCNPs@MIP was very fast and approached equilibrium within 30 min, indicating that the synthesized UCNPs@MIP can be employed as fluorescent probes to offer rapid detection of molecules. In this work, LiYF4:Yb0.253+/Er0.013+/Tm0.013+/Ho0.013+@LiYF4:Yb0.23+ upconverting nanoparticles (UCNP) were used as luminescent materials for the preparation of molecular imprinting polymer nanocomposites.![]()
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology Kaohsiung 807 Taiwan +886-7-3830674
| | - Min-Ting Tsai
- Department of Chemical and Materials Engineering, National University of Kaohsiung Kaohsiung 811 Taiwan +886-7-591-9368 ext. 5000
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung Kaohsiung 811 Taiwan +886-7-591-9368 ext. 5000
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University Taichung 402 Taiwan
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung Kaohsiung 811 Taiwan +886-7-591-9368 ext. 5000
| |
Collapse
|