1
|
Li X, Yang Y, Shen H, Zhou M, Huang B, Cui L, Hao S. Research progress on surface modification and coating technologies of biomedical NiTi alloys. Colloids Surf B Biointerfaces 2025; 249:114496. [PMID: 39793210 DOI: 10.1016/j.colsurfb.2025.114496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
NiTi alloys are an important class of biomaterials with extensive clinical applications such as cardiovascular stents, orthodontic arch-wires, esophageal stents, orthopedic implants and more. However, the long-term implantation of NiTi alloys presents significant challenges due to their susceptibility to wear, corrosion and the excessive release of harmful nickel ions. These factors can severely compromise both the biocompatibility and the overall service life of the implants. To better meet the demands for safety, durability and superior biological performance after implantation, surface modification of NiTi alloys has become a focal point of current research. Based on the fundamental properties of the NiTi alloys and the challenges encountered in their practical applications, this article provides a focused review of recent advances in improving their corrosion resistance, wear resistance, antibacterial properties and biological performance through surface modification and coating techniques. In addition, the paper outlines current research challenges and proposes recommendations for future development directions.
Collapse
Affiliation(s)
- Xiang Li
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Ying Yang
- College of Chemical Engineering and Environment, China University of Petroleum, Beijing 102249, China.
| | - Hui Shen
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Meng Zhou
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Bingmin Huang
- Jiangsu Smart Advanced Material Tech Co., Ltd, Xuzhou 221000, China
| | - Lishan Cui
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China
| | - Shijie Hao
- College of New Energy and Materials, China University of Petroleum, Beijing 102249, China.
| |
Collapse
|
2
|
Joo JH, Kim SH, Yim YJ, Bae JS, Seo MK. Interfacial Interlocking of Carbon Fiber-Reinforced Polymer Composites: A Short Review. Polymers (Basel) 2025; 17:267. [PMID: 39940470 PMCID: PMC11820605 DOI: 10.3390/polym17030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
The mechanical properties of the carbon fiber-reinforced polymer composites (CFRPs) are dependent on the interfacial interaction and adhesion between carbon fibers (CFs) and polymer matrices. Therefore, it is crucial to understand how modifying the CFs can influence the properties of these composites. This review outlines recent research progress with a focus on the relationship between the interfacial and mechanical properties of CFRPs and provides a systematic summary of state-of-the-art surface modification techniques. These techniques are divided into four categories: (i) wet, (ii) electrochemical, (iii) dry, and (iv) polymer matrix modifications. Several strategies for enhancing the interfacial interactions and adhesion of CFRPs are discussed, providing insights for future trends.
Collapse
Affiliation(s)
- Jong-Hyun Joo
- Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea; (J.-H.J.); (S.-H.K.)
- Department of Textile System Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong-Hwang Kim
- Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea; (J.-H.J.); (S.-H.K.)
| | - Yoon-Ji Yim
- Busan Textile Materials Research Center, Korea Dyeing and Finishing Technology Institute, Busan 46744, Republic of Korea;
| | - Jin-Seok Bae
- Department of Textile System Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min-Kang Seo
- Korea Institute of Convergence Textile, Iksan 54588, Republic of Korea; (J.-H.J.); (S.-H.K.)
| |
Collapse
|
3
|
Barshutina M, Yakubovsky D, Arsenin A, Volkov V, Barshutin S, Vladimirova A, Baymiev A. Biomimetic Silicone Surfaces for Antibacterial Applications. Polymers (Basel) 2025; 17:213. [PMID: 39861284 PMCID: PMC11768613 DOI: 10.3390/polym17020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Biomimetic patterning emerges as a promising antibiotic-free approach to protect medical devices from bacterial adhesion and biofilm formation. The main advantage of this approach lies in its simplicity and scalability for industrial applications. In this study, we employ it to produce antibacterial coatings based on silicone materials, widely used in the healthcare industry. In doing so, we patterned silicone substrates with a topography of various flower petals (rose, chamomile, pansy, and magnolia) and studied the relationship between the antibacterial properties of the obtained biomimetic substrates and their surface topography. To study the surface topography of biomimetic surfaces, we used the fractal analysis of their SEM images. In particular, as a measure of surface complexity and heterogeneity, we used the values of the developed interfacial area ratio (Sdr) and lacunarity coefficient (β). In the result, we found that the bacterial area coverage of biomimetic substrates decreased exponentially with the increase in their surface complexity and heterogeneity, and prominent antibacterial properties were observed at β > 1.6 and Sdr > 50. The results of this study can be used to identify biomimetic materials with superior antibacterial properties and produce efficient antibacterial silicone coatings for biomedical and healthcare applications.
Collapse
Affiliation(s)
| | | | - Aleksey Arsenin
- Moscow Center for Advanced Studies, Moscow 123592, Russia
- Emerging Technologies Research Center, XPANCEO, Dubai P.O. Box 393047, United Arab Emirates
| | - Valentyn Volkov
- Emerging Technologies Research Center, XPANCEO, Dubai P.O. Box 393047, United Arab Emirates
| | - Sergey Barshutin
- Institute of Power Engineering, Instrument Engineering, and Electronics, Tambov State Technical University, Tambov 392000, Russia
| | - Anastasiya Vladimirova
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa 450054, Russia
| | - Andrei Baymiev
- Institute of Biochemistry and Genetics, Subdivision of the Ufa Federal Research Center of the Russian Academy of Sciences, Ufa 450054, Russia
| |
Collapse
|
4
|
Silva CA, Moreira J, Fernandes M, Zille A, Cardoso VF, Nine MJ, Silva FS, Fernandes MM. Acylase-Based Coatings on Sandblasted Polydimethylsiloxane-Based Materials for Antimicrobial Applications. Polymers (Basel) 2025; 17:182. [PMID: 39861255 PMCID: PMC11768103 DOI: 10.3390/polym17020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Indwelling medical devices, such as urinary catheters, often experience bacterial colonization, forming biofilms that resist antibiotics and the host's immune defenses through quorum sensing (QS), a chemical communication system. This study explores the development of antimicrobial coatings by immobilizing acylase, a quorum-quenching enzyme, on sandblasted polydimethylsiloxane (PDMS) surfaces. PDMS, commonly used in medical devices, was sandblasted to increase its surface roughness, enhancing acylase attachment. FTIR analysis confirmed that acylase retained its three-dimensional structure upon immobilization, preserving its enzymatic activity. The antibacterial efficacy of the coatings was tested against Pseudomonas aeruginosa (P. aeruginosa) (a common biofilm-forming pathogen), Staphylococcus aureus (S. aureus), and Escherichia coli (E. coli). The results showed that sandblasted PDMS surfaces had improved bacterial adhesion due to increased focal adhesion points, but acylase-functionalized surfaces had significantly reduced bacterial attachment and biofilm formation. Notably, the coatings inhibited P. aeruginosa growth by 40% under static conditions, demonstrating the potential of acylase-functionalized PDMS for medical applications. This approach offers a promising strategy for creating antimicrobial surfaces that prevent biofilm-related infections in urinary catheters and other medical devices. The findings highlight the dual role of surface roughness in enhancing enzyme attachment while reducing bacterial adhesion through effective QS inhibition.
Collapse
Affiliation(s)
- Cláudia A. Silva
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Joana Moreira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus Gualtar, University of Minho, 4710-057 Braga, Portugal
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
- Centre of Chemistry, Campus Gualtar, University of Minho, 4710-053 Braga, Portugal
| | - Marta Fernandes
- 2C2T—Centre for Textile Science and Technology, Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Andrea Zille
- 2C2T—Centre for Textile Science and Technology, Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
| | - Vanessa F. Cardoso
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Md Julker Nine
- Centre of Chemistry, Campus Gualtar, University of Minho, 4710-053 Braga, Portugal
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Filipe S. Silva
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| | - Margarida M. Fernandes
- Center for Micro-Electro Mechanical Systems (CMEMS), Campus Azurém, University of Minho, 4800-058 Guimarães, Portugal
- LABBELS-Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
5
|
Li S, Mo K, Du C. Investigating the bacterial cleaning performance on Zr-BMG with LIPSS after ultrasonic vibration assisted cleaning. Proc Inst Mech Eng H 2024:9544119241303307. [PMID: 39663631 DOI: 10.1177/09544119241303307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
High-efficiency and high-quality sterilization technologies for medical materials can significantly reduce iatrogenic infection. This study investigates the synergistic effects of laser-induced periodic surface structures (LIPSS) and ultrasonic cleaning on the removal of bacteria from medical material surfaces. We specifically examined how ultrasonic parameters and structural defects in LIPSS impact the effectiveness of bacterial removal. As an emerging medical metal, Zr-BMG was chosen for the target material. Femtosecond laser processing was employed to create LIPSS with both complete linear arrays and discontinuous linear arrays structures featuring surface defects by adjusting the scanning overlap rate. A high-concentration solution of S. aureus was used for co-cultivation, resulting in a surface bacterial coverage rate exceeding 95%. The study analyzed the synergistic sterilization effect of microstructured surfaces through variations in ultrasonic cleaning power and duration. The results indicated that surfaces with microstructures demonstrated significantly improved bacterial removal following ultrasonic cleaning. The bacterial removal rate was found to be proportional to the ultrasonic vibrator power, and the surface with a LIPSS structure outperformed the discontinuous LIPSS surface in bacterial removal efficiency. Optimal results were achieved with the LIPSS surface after 30 min of cleaning at 100 W ultrasonic power. However, there was minimal difference in bacterial removal between 10 and 30 min at the same power level. This study aims to provide methodological insights and data support for the efficient and high-quality cleaning of medical metal surfaces.
Collapse
Affiliation(s)
- Songlin Li
- Chenzhou Vocational Technical College, ChenZhou, Hunan, China
| | - Kekang Mo
- Guangdong Academy of Science, Guangzhou, Guangdong, China
| | - Cezhi Du
- Guangdong Academy of Science, Guangzhou, Guangdong, China
- Guangdong university of technology, Guangzhou, China
| |
Collapse
|
6
|
Golba S, Kubisztal J. The Influence of Roughness on the Properties of Electroactive Polypyrrole. Molecules 2024; 29:5436. [PMID: 39598824 PMCID: PMC11597700 DOI: 10.3390/molecules29225436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study describes the properties of electroactive polypyrrole and its applications, with a focus on the roughness of the material. This parameter is crucial as it influences the applicability of coated layers, leading to highly adherent coatings or programmed wettability. The first raised aspect covers the electrodeposition procedure, which can help tailor the desired smoothness determined by roughness parameters. Features such as the deposition method, synthetic solution components, potential boundaries, substrate type, and utilized additives are evaluated. In the following section, the application aspects are discussed with a focus on modern, currently developed subjects such as medical applications, including cell-adherent coatings, antibacterial coatings, and drug delivery modules, as well as more technological fields like improved adhesion to the substrate and the improved mechanical properties of the deposited coating.
Collapse
Affiliation(s)
- Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty Street 1A, 41-500 Chorzow, Poland;
| | | |
Collapse
|
7
|
Yuan P, Chen M, Lu X, Yang H, Wang L, Bai T, Zhou W, Liu T, Yu S. Application of advanced surface modification techniques in titanium-based implants: latest strategies for enhanced antibacterial properties and osseointegration. J Mater Chem B 2024; 12:10516-10549. [PMID: 39311411 DOI: 10.1039/d4tb01714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Titanium-based implants, renowned for their excellent mechanical properties, corrosion resistance, and biocompatibility, have found widespread application as premier implant materials in the medical field. However, as bioinert materials, they often face challenges such as implant failure caused by bacterial infections and inadequate osseointegration post-implantation. Thus, to address these issues, researchers have developed various surface modification techniques to enhance the surface properties and bioactivity of titanium-based implants. This review aims to outline several key surface modification methods for titanium-based implants, including acid etching, sol-gel method, chemical vapor deposition, electrochemical techniques, layer-by-layer self-assembly, and chemical grafting. It briefly summarizes the advantages, limitations, and potential applications of these technologies, presenting readers with a comprehensive perspective on the latest advances and trends in the surface modification of titanium-based implants.
Collapse
Affiliation(s)
- Pingyun Yuan
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Mi Chen
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Xiaotong Lu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Hui Yang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Lan Wang
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tian Bai
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Wenhao Zhou
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| | - Tao Liu
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Sen Yu
- Shaanxi Key Laboratory of Biomedical Metallic Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, China.
| |
Collapse
|
8
|
Fujii Y, Nakatani T, Ousaka D, Oozawa S, Sasai Y, Kasahara S. Development of Antimicrobial Surfaces Using Diamond-like Carbon or Diamond-like Carbon-Based Coatings. Int J Mol Sci 2024; 25:8593. [PMID: 39201280 PMCID: PMC11354288 DOI: 10.3390/ijms25168593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
The medical device market is a high-growth sector expected to sustain an annual growth rate of over 5%, even in developed countries. Daily, numerous patients have medical devices implanted or inserted within their bodies. While medical devices have significantly improved patient outcomes, as foreign objects, their wider use can lead to an increase in device-related infections, thereby imposing a burden on healthcare systems. Multiple materials with significant societal impact have evolved over time: the 19th century was the age of iron, the 20th century was dominated by silicon, and the 21st century is often referred to as the era of carbon. In particular, the development of nanocarbon materials and their potential applications in medicine are being explored, although the scope of these applications remains limited. Technological innovations in carbon materials are remarkable, and their application in medicine is expected to advance greatly. For example, diamond-like carbon (DLC) has garnered considerable attention for the development of antimicrobial surfaces. Both DLC itself and its derivatives have been reported to exhibit anti-microbial properties. This review discusses the current state of DLC-based antimicrobial surface development.
Collapse
Affiliation(s)
- Yasuhiro Fujii
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan
| | - Tatsuyuki Nakatani
- Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan;
| | - Daiki Ousaka
- Department of Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| | - Susumu Oozawa
- Division of Medical Safety Management, Safety Management Facility, Okayama University Hospital, Okayama University, Okayama 700-8558, Japan;
| | - Yasushi Sasai
- Department of Pharmacy, Gifu University of Medical Science, Kani 509-0293, Japan;
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan;
| |
Collapse
|
9
|
Šístková J, Fialová T, Svoboda E, Varmužová K, Uher M, Číhalová K, Přibyl J, Dlouhý A, Pávková Goldbergová M. Insight into antibacterial effect of titanium nanotubular surfaces with focus on Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2024; 14:17303. [PMID: 39068252 PMCID: PMC11283573 DOI: 10.1038/s41598-024-68266-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Materials used for orthopedic implants should not only have physical properties close to those of bones, durability and biocompatibility, but should also exhibit a sufficient degree of antibacterial functionality. Due to its excellent properties, titanium is still a widely used material for production of orthopedic implants, but the unmodified material exhibits poor antibacterial activity. In this work, the physicochemical characteristics, such as chemical composition, crystallinity, wettability, roughness, and release of Ti ions of the titanium surface modified with nanotubular layers were analyzed and its antibacterial activity against two biofilm-forming bacterial strains responsible for prosthetic joint infection (Staphylococcus aureus and Pseudomonas aeruginosa) was investigated. Electrochemical anodization (anodic oxidation) was used to prepare two types of nanotubular arrays with nanotubes differing in dimensions (with diameters of 73 and 118 nm and lengths of 572 and 343 nm, respectively). These two surface types showed similar chemistry, crystallinity, and surface energy. The surface with smaller nanotube diameter (TNT-73) but larger values of roughness parameters was more effective against S. aureus. For P. aeruginosa the sample with a larger nanotube diameter (TNT-118) had better antibacterial effect with proven cell lysis. Antibacterial properties of titanium nanotubular surfaces with potential in implantology, which in our previous work demonstrated a positive effect on the behavior of human gingival fibroblasts, were investigated in terms of surface parameters. The interplay between nanotube diameter and roughness appeared critical for the bacterial fate on nanotubular surfaces. The relationship of nanotube diameter, values of roughness parameters, and other surface properties to bacterial behavior is discussed in detail. The study is believed to shed more light on how nanotubular surface parameters and their interplay affect antibacterial activity.
Collapse
Affiliation(s)
- Jana Šístková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Tatiana Fialová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Emil Svoboda
- Department of Mechanical Engineering, Faculty of Military Technology, University of Defence, Kounicova 65, Brno, 662 10, Czech Republic
| | - Kateřina Varmužová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Martin Uher
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kristýna Číhalová
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, Brno, 613 00, Czech Republic
| | - Jan Přibyl
- Central European Institute for Technology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Antonín Dlouhý
- Institute of Physics of Materials, Czech Academy of Sciences, v. v. i., Žižkova 513/22, Brno, 616 62, Czech Republic
| | - Monika Pávková Goldbergová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic.
| |
Collapse
|
10
|
Marković ZM, Milivojević DD, Kovač J, Todorović Marković BM. Phloroglucinol-Based Carbon Quantum Dots/Polyurethane Composite Films: How Structure of Carbon Quantum Dots Affects Antibacterial and Antibiofouling Efficiency of Composite Films. Polymers (Basel) 2024; 16:1646. [PMID: 38931997 PMCID: PMC11207477 DOI: 10.3390/polym16121646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, bacteria resistance to many antibiotics is a huge problem, especially in clinics and other parts of the healthcare system. This critical health issue requires a dynamic approach to produce new types of antibacterial coatings to combat various pathogen microbes. In this research, we prepared a new type of carbon quantum dots based on phloroglucinol using the bottom-up method. Polyurethane composite films were produced using the swell-encapsulation-shrink method. Detailed electrostatic force and viscoelastic microscopy of carbon quantum dots revealed inhomogeneous structure characterized by electron-rich/soft and electron-poor/hard regions. The uncommon photoluminescence spectrum of carbon quantum dots core had a multipeak structure. Several tests confirmed that carbon quantum dots and composite films produced singlet oxygen. Antibacterial and antibiofouling efficiency of composite films was tested on eight bacteria strains and three bacteria biofilms.
Collapse
Affiliation(s)
- Zoran M. Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Dušan D. Milivojević
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| | - Janez Kovač
- Department of Surface Engineering, Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia;
| | - Biljana M. Todorović Marković
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11158 Belgrade, Serbia;
| |
Collapse
|
11
|
Kaloper S, Plohl O, Smole Možina S, Vesel A, Šimat V, Fras Zemljič L. Exploring chitosan-plant extract bilayer coatings: Advancements in active food packaging via polypropylene modification. Int J Biol Macromol 2024; 270:132308. [PMID: 38740163 DOI: 10.1016/j.ijbiomac.2024.132308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/11/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
UV-ozone activated polypropylene (PP) food films were subjected to a novel bilayer coating process involving primary or quaternary chitosan (CH/QCH) as the first layer and natural extracts from juniper needles (Juniperus oxycedrus; JUN) or blackberry leaves (Rubus fruticosus; BBL) as the second layer. This innovative approach aims to redefine active packaging (AP) development. Through a detailed analysis by surface characterization and bioactivity assessments (i.e., antioxidant and antimicrobial functionalities), we evaluated different coating combinations. Furthermore, we investigated the stability and barrier characteristics inherent in these coatings. The confirmed deposition, coupled with a comprehensive characterization of their composition and morphology, underscored the efficacy of the coatings. Our investigation included wettability assessment via contact angle (CA) measurements, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), which revealed substantial enhancements in surface concentrations of elements and functional groups of CH, QCH, JUN, and BBL. Scanning electron microscopy (SEM) unveiled the coatings' heterogeneity, while time-of-flight secondary ion mass spectrometry (ToF-SIMS) and CA profiling showed moderately compact bilayers on PP, providing active species on the hydrophilic surface, respectively. The coatings significantly reduced the oxygen permeability. Additionally, single-layer depositions of CH and QCH remained below the overall migration limit (OML). Remarkably, the coatings exhibited robust antioxidative properties due to plant extracts and exceptional antimicrobial activity against S. aureus, attributed to QCH. These findings underscore the pivotal role of film surface properties in governing bioactive characteristics and offer a promising pathway for enhancing food packaging functionality.
Collapse
Affiliation(s)
- Saša Kaloper
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| | - Sonja Smole Možina
- University of Ljubljana, Biotechnical Faculty, Department of Food Science and Technology, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia.
| | - Alenka Vesel
- Department of Surface Engineering and Optoelectronics, Jožef Stefan Institute, Teslova ulica 30, 1000 Ljubljana, Slovenia.
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Ruđera Boškovića 37, 21000 Split, Croatia.
| | - Lidija Fras Zemljič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
12
|
Chen S, Bao J, Hu Z, Liu X, Cheng S, Zhao W, Zhao C. Porous Microspheres as Pathogen Traps for Sepsis Therapy: Capturing Active Pathogens and Alleviating Inflammatory Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38682663 DOI: 10.1021/acsami.4c01270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by pathogen infection, while the current antibiotics mainly utilized in clinical practice to combat infection result in the release of pathogen-associated molecular patterns (PAMPs) in the body. Herein, we provide an innovative strategy for controlling sepsis, namely, capturing active pathogens by means of extracorporeal blood purification. Carbon nanotubes (CNTs) were modified with dimethyldiallylammonium chloride (DDA) through γ-ray irradiation-induced graft polymerization to confer a positive charge. Then, CNT-DDAs are blended with polyurethane (PU) to prepare porous microspheres using the electro-spraying method. The obtained microspheres with a pore diameter of 2 μm served as pathogen traps and are termed as PU-CNT-DDA microspheres. Even at a high flow rate of 50 mL·min-1, the capture efficiencies of the PU-CNT-DDAs for Escherichia coli and Staphylococcus aureus remained 94.7% and 98.8%, respectively. This approach circumvents pathogen lysis and mortality, significantly curtails the release of PAMPs, and hampers the production of pro-inflammatory cytokines. Therefore, hemoperfusion using porous PU-CNT-DDAs as pathogen traps to capture active pathogens and alleviate inflammation opens a new route for sepsis therapy.
Collapse
Affiliation(s)
- Shifan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianxu Bao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhen Hu
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu, Sichuan 610101, PR China
| | - Xianda Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shengjun Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Korkmaz ME, Gupta MK. A State of the Art on Cryogenic Cooling and Its Applications in the Machining of Difficult-to-Machine Alloys. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2057. [PMID: 38730865 PMCID: PMC11084919 DOI: 10.3390/ma17092057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Cryogenic cooling has gathered significant attention in the manufacturing industry. There are inherent difficulties in machining materials that are difficult to machine because of high levels of hardness, abrasiveness, and heat conductivity. Increased tool wear, diminished surface finish, and reduced machining efficiency are the results of these problems, and traditional cooling solutions are insufficient to resolve them. The application of cryogenic cooling involves the use of extremely low temperatures, typically achieved by employing liquid nitrogen or other cryogenic fluids. This study reviews the current state of cryogenic cooling technology and its use in machining difficult-to-machine materials. In addition, this review encompasses a thorough examination of cryogenic cooling techniques, including their principles, mechanisms, and effects on machining performance. The recent literature was used to discuss difficult-to-machine materials and their machining properties. The role of cryogenic cooling in machining difficult materials was then discussed. Finally, the latest technologies and methods involved in cryogenic cooling condition were discussed in detail. The outcome demonstrated that the exploration of cryogenic cooling methods has gained prominence in the manufacturing industry due to their potential to address challenges associated with the machining of exotic alloys.
Collapse
Affiliation(s)
- Mehmet Erdi Korkmaz
- Department of Mechanical Engineering, Karabük University, Karabük 78000, Turkey;
| | - Munish Kumar Gupta
- Faculty of Mechanical Engineering, Opole University of Technology, 76 Proszkowska Str., 45-758 Opole, Poland
- Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India
| |
Collapse
|
14
|
Yang G, Ming P, Niu S, Qin G, Liu H, Li D, Zhang A. An Investigation of the Efficient-Precise Continuous Electrochemical Grinding Process of Ti-6Al-4V. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1729. [PMID: 38673087 PMCID: PMC11051527 DOI: 10.3390/ma17081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Titanium alloys have many excellent characteristics, and they are widely used in aerospace, biomedicine, and precision engineering. Meanwhile, titanium alloys are difficult to machine and passivate readily. Electrochemical grinding (ECG) is an ideal technology for the efficient-precise machining of titanium alloys. In the ECG process of titanium alloys, the common approach of applying high voltage and active electrolytes to achieve high efficiency of material removal will lead to serious stray corrosion, and the time utilized for the subsequent finishing will be extended greatly. Therefore, the application of ECG in the field of high efficiency and precision machining of titanium alloys is limited. In order to address the aforementioned issues, the present study proposed an efficient-precise continuous ECG (E-P-C-ECG) process for Ti-6Al-4V applying high-pulsed voltage with an optimized duty cycle and low DC voltage in the efficient ECG stage and precise ECG stage, respectively, without changing the grinding wheel. According to the result of the passivation properties tests, the ideal electrolyte was selected. Optimization of the process parameters was implemented experimentally to improve the processing efficiency and precision of ECG of Ti-6Al-4V. Utilizing the process advantages of the proposed process, a thin-walled structure of Ti-6Al-4V was obtained with high efficiency and precision. Compared to the conventional mechanical grinding process, the compressive residual stress of the machined surface and the processing time were reduced by 90.5% and 63.3% respectively, and both the surface roughness and tool wear were obviously improved.
Collapse
Affiliation(s)
| | - Pingmei Ming
- School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | | | | | | | | | | |
Collapse
|
15
|
Putra NE, Moosabeiki V, Leeflang MA, Zhou J, Zadpoor AA. Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron-manganese scaffolds. Acta Biomater 2024; 178:340-351. [PMID: 38395100 DOI: 10.1016/j.actbio.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Additively manufactured (AM) biodegradable porous iron-manganese (FeMn) alloys have recently been developed as promising bone-substituting biomaterials. However, their corrosion fatigue behavior has not yet been studied. Here, we present the first study on the corrosion fatigue behavior of an extrusion-based AM porous Fe35Mn alloy under cyclic loading in air and in the revised simulated body fluid (r-SBF), including the fatigue crack morphology and distribution in the porous structure. We hypothesized that the fatigue behavior of the architected AM Fe35Mn alloy would be strongly affected by the simultaneous biodegradation process. We defined the endurance limit as the maximum stress at which the scaffolds could undergo 3 million loading cycles without failure. The endurance limit of the scaffolds was determined to be 90 % of their yield strength in air, but only 60 % in r-SBF. No notable crack formation in the specimens tested in air was observed even after loading up to 90 % of their yield strength. As for the specimens tested in r-SBF, however, cracks formed in the specimens subjected to loads exceeding 60 % of their yield strength appeared to initiate on the periphery and propagate toward the internal struts. Altogether, the results show that the extrusion-based AM porous Fe35Mn alloy is capable of tolerating up to 60 % of its yield strength for up to 3 million cycles, which corresponds to 1.5 years of use of load-bearing implants subjected to repetitive gait cycles. The fatigue performance of the alloy thus further enhances its potential for trabecular bone substitution subjected to cyclic compressive loading. STATEMENT OF SIGNIFICANCE: Fatigue behavior of extrusion-based AM porous Fe35Mn alloy scaffolds in air and revised simulated body fluid was studied. The Fe35Mn alloy scaffolds endured 90 % of their yield strength for up to 3 × 106 loading cycles in air. Moreover, the scaffolds tolerated 3 × 106 loading cycles at 60 % of their yield strength in revised simulated body fluid. The Fe35Mn alloy scaffolds exhibited a capacity of withstanding 1.5-year physiological loading when used as bone implants.
Collapse
Affiliation(s)
- Niko E Putra
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands.
| | - Vahid Moosabeiki
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Marius A Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Jie Zhou
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| | - Amir A Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology, the Netherlands
| |
Collapse
|
16
|
Liu M, Lu B, Lv J, Wang J, Li C, Zhang G, Bai J, Stoian R, Cheng G. Polarization-Dependent Anisotropy of LIPSSs' Morphology Evolution on a Single-Crystal Silicon Surface. MICROMACHINES 2024; 15:200. [PMID: 38398929 PMCID: PMC10891580 DOI: 10.3390/mi15020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Utilizing the principle of laser-induced periodic surface structures (LIPSSs), this research delves into the morphological evolution of single-crystal silicon surfaces irradiated by a near-infrared picosecond laser through a scanning mode. With the increase in laser energy density, the nanostructure morphology on single-crystal silicon surfaces induced by incident lasers with different polarization directions sequentially produces high spatial-frequency LIPSSs (HSFLs) with a period of 220 nm ± 10 nm parallel to the laser polarization, low spatial-frequency LIPSSs (LSFLs) with a period of 770 nm ± 85 nm perpendicular to the direction of the polarization, and groove structures. Furthermore, by varying the angle between the laser polarization and the scanning direction, the study examined the combined anisotropic effects of the laser polarization scanning direction angle and the laser polarization crystal orientation angle on the genesis of LIPSSs on single-crystal silicon (100) surfaces. The experiments revealed polarization-related anisotropic characteristics in the morphology of HSFLs. It was found that when the polarization angle approached 45°, the regularity of the LSFLs deteriorated, the modification width decreased, and the periodicity increased. This is critical for the precise control of the LSFLs' morphology.
Collapse
Affiliation(s)
- Mengting Liu
- Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China; (M.L.); (B.L.); (J.B.)
| | - Baole Lu
- Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China; (M.L.); (B.L.); (J.B.)
| | - Jing Lv
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China; (J.L.); (J.W.); (G.Z.)
| | - Jiang Wang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China; (J.L.); (J.W.); (G.Z.)
| | - Chen Li
- College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China;
| | - Guodong Zhang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China; (J.L.); (J.W.); (G.Z.)
| | - Jintao Bai
- Institute of Photonics & Photon Technology, Northwest University, Xi’an 710127, China; (M.L.); (B.L.); (J.B.)
| | - Razvan Stoian
- Laboratoire Hubert Curien, UMR 5516 CNRS, Université Jean Monnet, 42000 Saint Etienne, France;
| | - Guanghua Cheng
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China; (J.L.); (J.W.); (G.Z.)
| |
Collapse
|
17
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|