1
|
Singh A, Dasgupta S, Bhattacharya A, Mukherjee G, Chaudhury K. Therapeutic potential of curcumin in endometrial disorders: Current status and future perspectives. Drug Discov Today 2021; 27:900-911. [PMID: 34775103 DOI: 10.1016/j.drudis.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 08/27/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Endometrial disorders collectively encompass a broad spectrum of pathologies, including but not limited to endometriosis, endometrial cancer and endometritis. The current therapeutic management of these diseases is associated with several limitations. This has prompted interest in the use of plant-based bioactive compounds as alternative strategies to achieve high therapeutic efficacy and avoid adverse effects. In this context, curcumin, a polyphenol abundantly present in turmeric, is gaining increasing attention for its therapeutic potential to restore homeostasis in endometrial dysfunctionality. We comprehensively review the multifaceted role of curcumin, discussing mechanistic insights in various endometrial pathologies. We also provide an in-depth analysis of the concerns and challenges associated with the role of curcumin in endometrial research and outline a road map for future investigations.
Collapse
Affiliation(s)
- Apoorva Singh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
2
|
Winiarska-Mieczan A, Tomaszewska E, Jachimowicz K. Antioxidant, Anti-Inflammatory, and Immunomodulatory Properties of Tea-The Positive Impact of Tea Consumption on Patients with Autoimmune Diabetes. Nutrients 2021; 13:nu13113972. [PMID: 34836227 PMCID: PMC8625657 DOI: 10.3390/nu13113972] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The physiological markers of autoimmune diabetes include functional disorders of the antioxidative system as well as progressing inflammation and the presence of autoantibodies. Even though people with type 1 diabetes show genetic predispositions facilitating the onset of the disease, it is believed that dietary factors can stimulate the initiation and progression of the disease. This paper analyses the possibility of using tea as an element of diet therapy in the treatment of type 1 diabetes. Based on information available in literature covering the last 10 years, the impact of regular tea consumption or diet supplements containing tea polyphenols on the oxidative status as well as inflammatory and autoimmune response of the organism was analyzed. Studies conducted on laboratory animals, human patients, and in vitro revealed positive effects of the consumption of tea or polyphenols isolated therefrom on the diabetic body. Few reports available in the literature pertain to the impact of tea on organisms affected by type 1 diabetes as most (over 85%) have focused on cases of type 2 diabetes. It has been concluded that by introducing tea into the diet, it is possible to alleviate some of the consequences of oxidative stress and inflammation, thus limiting their destructive impact on the patients' organisms, consequently improving their quality of life, regardless of the type of diabetes. Furthermore, elimination of inflammation should reduce the incidence of immune response. One should consider more widespread promotion of tea consumption by individuals genetically predisposed to diabetes, especially considering the drink's low price, easy availability, overall benefits to human health, and above all, the fact that it can be safely used over extended periods of time, regardless of the patient's age.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
- Correspondence: (A.W.-M.); (E.T.); Tel.: +48-81-445-67-44 (A.W.-M.); +48-81-445-69-63 (E.T.)
| | - Karolina Jachimowicz
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland;
| |
Collapse
|
3
|
Retrospecting the Antioxidant Activity of Japanese Matcha Green Tea–Lack of Enthusiasm? APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matcha tea is a traditional Japanese tea that is said to possess ten times higher bioactive components and polyphenols than that of conventional green teas. Matcha is remotely popular among the global community and meagerly researched and infamous among the scientific population. It is the powdered form of green tea leaves that are directly suspended in hot water and drunk without filtration. Matcha is said to be one of the richest antioxidant sources naturally available. This review summarizes the available research publications related to matcha and compares the research accomplishments of green tea and matcha researchers. The fact that green tea is backed up by 35,000 publications while matcha has merely 54 publications to its credit is highlighted in this review for the first time. The future of matcha for tapping its enormous antioxidant activity and health potentials remains connected to the volume of scientific awareness and enhanced research attention in this area. If green tea has so much to offer towards human health and welfare, there is certainly room for more benefits from matcha, which is yet to be disclosed. As public awareness cannot be won without scientific approval, this review seeks that this gap may be bridged using essential knowledge gained from matcha applications and allied research.
Collapse
|
4
|
Ding S, Yu Q, Wang J, Zhu L, Li T, Guo X, Zhang X. Activation of ATF3/AP-1 signaling pathway is required for P2X3-induced endometriosis pain. Hum Reprod 2021; 35:1130-1144. [PMID: 32303740 DOI: 10.1093/humrep/deaa061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does P2X ligand-gated ion channel 3 (P2X3) play a role in endometriosis pain? SUMMARY ANSWER Upregulation of P2X3 in dorsal root ganglia (DRG) tissues via the activating transcription factor 3 (ATF3)/activator protein (AP)-1 pathway contributed to endometriosis-associated hyperalgesia, which could be attenuated by the chitosan oligosaccharide stearic acid (CSOSA)/liposomes (LPs)/SP600125 delivery system. WHAT IS KNOWN ALREADY Infiltrating nerve fibers and elevated nociceptors in endometriotic lesions are associated with endometriosis pain. P2X3 has been demonstrated to play an important role in neuropathic pain. STUDY DESIGN, SIZE, DURATION A rat model of endometriosis was used to investigate the signaling pathways involved in P2X3-induced pain. PARTICIPANTS/MATERIALS, SETTING, METHODS Degrees of hyperalgesia, endogenous adenosine 5'-triphosphate (ATP) contents and P2X3 expression levels in endometriotic lesions and DRG tissues were detected in a rat model of endometriosis. The expression levels of ATF3 and P2X3 were measured using qRT-PCR, western blot analysis and immunofluorescence analysis after adenosine 5'-diphosphate (ADP) exposure in DRG cells. Plasmids encoding ATF3 and its siRNA were used to investigate the role of ATF3 on ADP-induced P2X3 upregulation. The activity of ATF binding to the P2X3 promoter was evaluated by using chromatin immunoprecipitation (CHIP) and luciferase assays. SP600125, an inhibitor of c-JUN N-terminal kinase, was wrapped in CSOSA/LPs delivery system and its inhibitory effects on ADP-induced upregulation of P2X3 in DRG cells and endometriosis-induced hyperalgesia in rats were tested. MAIN RESULTS AND THE ROLE OF CHANCE The concentrations of endogenous ATP and expression levels of P2X3 were significantly increased in both endometriotic lesions and DRG tissues in endometriosis rat models and were found to be positively correlated with the severity of hyperalgesia. In DRG cells, P2X3 expression levels were elevated by ADP stimulation, but dramatically inhibited by blocking ATF3 with its siRNA and SP600125. CHIP and luciferase assay showed that ADP increased the binding of ATF3 to the P2X3 promoter, resulting in an increase in P2X3 expression levels. In the CSOSA/LPs/SP600125 delivery system, the drug could be effectively concentrated in endometriotic lesions, and it could alleviate endometriosis-induced hyperalgesia, reduce the size of endometriotic lesions and attenuate upregulated P2X3 expression levels in endometriosis rat models. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Changes in the sensitivity and function of P2X3 caused by endometriosis need to be further investigated. WIDER IMPLICATIONS OF THE FINDINGS This study indicates that ATP and the P2X3 receptor are involved in endometriosis pain, thus providing a novel therapeutic approach for the treatment of endometriosis pain by targeting the P2X3 receptor. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by National Key R&D Program of China (Grant No. 2017YFC1001202) and National Natural Science Foundation of China (Grant Nos. 81974225, 81671429 and 81471433). There are no competing interests.
Collapse
Affiliation(s)
- Shaojie Ding
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Qin Yu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Jianzhang Wang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Libo Zhu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Tiantian Li
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinyue Guo
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| | - Xinmei Zhang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, P.R. China
| |
Collapse
|
5
|
Liu Y, Song Z, Chen X, Zhu Z, Zhang L, Hong Z, Chai Y. Nuclear magnetic resonance-based plasma metabolomics revealed the protective effect of tea polyphenols on sulfur mustard-induced injury in rats. J Pharm Biomed Anal 2020; 186:113278. [PMID: 32380352 DOI: 10.1016/j.jpba.2020.113278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 12/01/2022]
Abstract
Tea polyphenols (TP) are the major antioxidant components from tea, which could be beneficial to oxidative stress injury, such as sulfur mustard (SM) exposure. However, the holistic efficacy of TP on SM poisoning remains unexplored and needs further investigation. In this study, Nuclear magnetic resonance(NMR)-based metabolomics along with multivariate statistical analysis was used to explore the metabolic alteration after SM injury and the protective mechanism of TP. Thirteen potential plasma biomarkers of SM injury were identified, which primarily related to synthesis of ketone bodies, arginine and proline metabolism, butanoate metabolism and alanine aspartate and glutamate metabolism. After TP pre-treatment, the biomarkers were mostly restored to normal levels, which suggested that TP provided effective protection against SM injury and might play its role by rebalancing disordered metabolism pathways. This work enhanced our comprehension of the metabolic profiling of SM injury and revealed the protective mechanism of TP.
Collapse
Affiliation(s)
- Yue Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Zhiqiang Song
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China
| | - Liming Zhang
- Department of Marine Biotechnology, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhanying Hong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
6
|
Zheng W, Wu J, Gu J, Weng H, Wang J, Wang T, Liang X, Cao L. Modular Characteristics and Mechanism of Action of Herbs for Endometriosis Treatment in Chinese Medicine: A Data Mining and Network Pharmacology-Based Identification. Front Pharmacol 2020; 11:147. [PMID: 32210799 PMCID: PMC7069061 DOI: 10.3389/fphar.2020.00147] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis is a common benign disease in women of reproductive age. It has been defined as a disorder characterized by inflammation, compromised immunity, hormone dependence, and neuroangiogenesis. Unfortunately, the mechanisms of endometriosis have not yet been fully elucidated, and available treatment methods are currently limited. The discovery of new therapeutic drugs and improvements in existing treatment schemes remain the focus of research initiatives. Chinese medicine can improve the symptoms associated with endometriosis. Many Chinese herbal medicines could exert antiendometriosis effects via comprehensive interactions with multiple targets. However, these interactions have not been defined. This study used association rule mining and systems pharmacology to discover a method by which potential antiendometriosis herbs can be investigated. We analyzed various combinations and mechanisms of action of medicinal herbs to establish molecular networks showing interactions with multiple targets. The results showed that endometriosis treatment in Chinese medicine is mainly based on methods of supplementation with blood-activating herbs and strengthening qi. Furthermore, we used network pharmacology to analyze the main herbs that facilitate the decoding of multiscale mechanisms of the herbal compounds. We found that Chinese medicine could affect the development of endometriosis by regulating inflammation, immunity, angiogenesis, and other clusters of processes identified by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The antiendometriosis effect of Chinese medicine occurs mainly through nervous system–associated pathways, such as the serotonergic synapse, the neurotrophin signaling pathway, and dopaminergic synapse, among others, to reduce pain. Chinese medicine could also regulate VEGF signaling, toll-like reporter signaling, NF-κB signaling, MAPK signaling, PI3K-Akt signaling, and the HIF-1 signaling pathway, among others. Synergies often exist in herb pairs and herbal prescriptions. In conclusion, we identified some important targets, target pairs, and regulatory networks, using bioinformatics and data mining. The combination of data mining and network pharmacology may offer an efficient method for drug discovery and development from herbal medicines.
Collapse
Affiliation(s)
- Weilin Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayi Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangyong Gu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Heng Weng
- Department of Big Medical Data, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tao Wang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuefang Liang
- Department of Gynecology, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lixing Cao
- Team of Application of Chinese Medicine in Perioperative Period, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. ACTA ACUST UNITED AC 2020; 6:115-123. [PMID: 32542190 PMCID: PMC7283370 DOI: 10.1016/j.aninu.2020.01.001] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
Tea trees have a long history of cultivation and utilization. People in many countries have the habit of drinking tea and choosing green tea, oolong tea, or black tea according to different regions and personal tastes. Tea polyphenols are a general term for polyphenol compounds in tea, and has been shown to have good effects on antioxidant, anti-inflammatory, cancer prevention and regulation of lipid metabolism. Tea polyphenols have been widely used as antioxidants in disease treatment and animal husbandry, but their specific mechanism of action needs to be further clarified and revealed. This review focuses on the definition, classification, antioxidant activity and the regulation of signaling pathways of tea polyphenols. This paper also aims to examine the application of tea polyphenols in human and animal health, providing a scientific basis for this application in addition to proposing future directions for the development of this resource.
Collapse
Affiliation(s)
- Zhaoming Yan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.,Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Yinzhao Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yehui Duan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China
| | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture Chinese Academy of Sciences, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| |
Collapse
|
8
|
Xing L, Zhang H, Qi R, Tsao R, Mine Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1029-1043. [PMID: 30653316 DOI: 10.1021/acs.jafc.8b06146] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tea, leaf, or bud from the plant Camellia sinensis, make up some of the beverages popularly consumed in different parts of the world as green tea, oolong tea, or black tea. More particularly, as a nonfermented tea, green tea has gained more renown because of the significant health benefits assigned to its rich content in polyphenols. As a main constituent, green tea polyphenols were documented for their antioxidant, anti-inflammation, anticancer, anticardiovascular, antimicrobial, antihyperglycemic, and antiobesity properties. Recent reports demonstrate that green tea may exert a positive effect on the reduction of medical chronic conditions such as cardiovascular disease, cancer, Alzheimer's disease, Parkinson's disease, and diabetes. The health benefits of green teas, in particular EGCG, are widely investigated, and these effects are known to be primarily associated with the structure and compositions of its polyphenols. This Review focuses on the diverse constituents of green tea polyphenols and their molecular mechanisms from the perspective of their potential therapeutic function. Recent advances of green tea polyphenols on their bioavailability, bioaccessibility, and microbiota were also summarized in this article. Dietary supplementation with green tea represents an attractive alternative toward promoting human health.
Collapse
Affiliation(s)
- Lujuan Xing
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
- Key Lab of Meat Processing and Quality Control, College of Food Science and Technology , Nanjing Agricultural University , Nanjing , Jiangsu 210095 , China
| | - Hua Zhang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Ruili Qi
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Rong Tsao
- Guelph Food Research Centre, Agriculture and Agri-Food Canada , 93 Stone Road West , Guelph , Ontario N1G 5C9 , Canada
| | - Yoshinori Mine
- Department of Food Science , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| |
Collapse
|
9
|
Park S, Lim W, Song G. Delphinidin induces antiproliferation and apoptosis of endometrial cells by regulating cytosolic calcium levels and mitochondrial membrane potential depolarization. J Cell Biochem 2018; 120:5072-5084. [DOI: 10.1002/jcb.27784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/06/2018] [Indexed: 02/01/2023]
Affiliation(s)
- Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| | - Whasun Lim
- Department of Biomedical Sciences Marine Biological Food & Drug Research Center, Catholic Kwandong University Gangneung Korea
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul Korea
| |
Collapse
|
10
|
Identification of small-molecule ligands that bind to MiR-21 as potential therapeutics for endometriosis by screening ZINC database and in-vitro assays. Gene 2018; 662:46-53. [DOI: 10.1016/j.gene.2018.03.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 12/20/2022]
|
11
|
Meng L, Huang Z. In silico-in vitro discovery of untargeted kinase-inhibitor interactions from kinase-targeted therapies: A case study on the cancer MAPK signaling pathway. Comput Biol Chem 2018; 75:196-204. [PMID: 29803964 DOI: 10.1016/j.compbiolchem.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/14/2022]
Abstract
Protein kinase inhibitors have been widely used as therapeutic agents to treat a variety of diseases, but many of them may cause off-target effects by unexpectedly targeting other noncognate kinases due to high conversion across the protein kinase family. The mitogen-activated protein kinase (MAPK) signaling pathway plays an essential role in tumorigenesis, which has been recognized as a high priority in the druggable target candidates of anticancer therapy. Here, we attempt to investigate the untargeted kinase-inhibitor interactions (UKIIs) of kinase-targeted therapies for the cancer MAPK signaling cascade via an integration of biomolecular modeling, cell viability assay and kinase inhibition analysis. A systematic kinase-inhibitor interaction profile is created for 28 FDA-approved kinase inhibitor drugs across 9 caner-related MAPK kinases. The created profile is analyzed at structural, energetic and dynamic levels and, consequently, totally 18 promising UKII pairs with high theoretical affinity are derived, from which the noncognate inhibitors Cabozantinib, Regorafenib and Crizotinib are selected to test their cytotoxic effects on human epithelial colorectal adenocarcinoma Caco-2 cell line and inhibition activity against the recombinant protein of human p38α kinase domain. The obtained results are compared with two cognate MAPK inhibitors JNK-IN-8 and BIRB796. As might be expected, the Regorafenib, Crizotinib and Cabozantinib exhibit high, moderate and low cytotoxicities, respectively. In addition, the Regorafenib is determined to have a potent p38α-inhibitory activity. This is basically in line with the test results of positive controls JNK-IN-8 and BIRB796 and can be well confirmed by computational modeling.
Collapse
Affiliation(s)
- Li Meng
- College of Pharmaceutical Sciences, Jiangsu Vocational College of Medicine, Yancheng 224008, China
| | - Zhijun Huang
- Department of General Surgery, Yancheng First People's Hospital, Yancheng 224005, China.
| |
Collapse
|
12
|
Zhao ML, Wang W, Nie H, Cao SS, Du LF. In silico structure prediction and inhibition mechanism studies of AtHDA14 as revealed by homology modeling, docking, molecular dynamics simulation. Comput Biol Chem 2018; 75:120-130. [PMID: 29775968 DOI: 10.1016/j.compbiolchem.2018.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/03/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs) play a significant role in the epigenetic mechanism by catalyzing deacetylation of lysine on histone in both animals and plants. HDACs involved in growth, development and response to stresses in plants. Arabidopsis thaliana histone deacetylase 14 (AtHDA14) is found to localize in the mitochondria and chloroplasts, and it involved in photosynthesis and melatonin biosynthesis. However, its mechanism of action was still unknowns so far. Therefore, in this study, we constructed AtHDA14 protein model using homology modeling method, validated using PROCHECK and presented using Ramachandran plots. We also performed virtual screening of AtHDA14 by docking with small molecule drugs and predicted their ADMET properties to select representative inhibitors. MD simulation for representative AtHDA14-ligand complexes was carried out to further research and reveal their stability and inhibition mechanism. Meanwhile, MM/PBSA method was utilized to obtain more valuable information about the residues energy contribution. Moreover, compared with four candidate inhibitors, we also found that compound 645533 and 6918837 might be a more potent AtHDA14 inhibitor than TSA (444732) and SAHA (5311). Therefore, compound 6445533 and 6918837 was anticipated to be a promising drug candidate for inhibition of AtHDA14.
Collapse
Affiliation(s)
- Ming-Lang Zhao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Wang Wang
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Hu Nie
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Sha-Sha Cao
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China
| | - Lin-Fang Du
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
13
|
Zhuang RJ, Jin WD, Wang XY, Wu XM. Identification and characterization of the druggable kinase targets of olmesartan and its analogues from a systematic kinase-chemical interaction profile in atherosclerosis. J Mol Graph Model 2018; 80:211-216. [PMID: 29414040 DOI: 10.1016/j.jmgm.2018.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 10/17/2022]
Abstract
Olmesartan (OL) is the pharmacologically active metabolite of Olmesartan medoxomil (OM), an FDA-approved angiotensin II receptor antagonist for administrating cardiovascular diseases. The drug has been found to have potential effects on diverse protein kinase signaling involved in the pathogenesis of atherosclerosis, either by directly inhibiting the hub kinases or by indirectly modulating marginal members in the signaling pathways. In the present study, we computationally model the kinase-chemical Interaction Profile between six OL-related chemicals (i.e. OL, OM, Valsartan [VL], Losartan [LS], Candesartan [CD] and Telmisartan [TL]) and 23 human protein kinases in atherosclerosis. The profile is analyzed systematically at molecular level to identify unexpected kinase targets for OL. There is a good consistence between co-citation frequency and affinity scoring for the chemical association with kinase candidates; the OL and its analogs VL and LS exhibit a similar binding profile to the atherosclerosis kinase spectrum. It is suggested that the Ser/Thr-specific kinases PI3Kα and ROCK1 are potential druggable targets of OL for atherosclerosis therapy. As a paradigm, kinase assays reveal that the inhibitory potency of OL and Y-27632 (positive control) on ROCK1 is determined at micromolar level, while the OM (negative control) possesses no detectable activity for the kinase.
Collapse
Affiliation(s)
- Rui-Juan Zhuang
- Department of Cardioloy, Affiliated Third Hospital of Nantong University, Wuxi 214041, China
| | - Wei-Dong Jin
- Department of Cardioloy, Affiliated Third Hospital of Nantong University, Wuxi 214041, China
| | - Xiao-Yan Wang
- Department of Cardioloy, Affiliated Third Hospital of Nantong University, Wuxi 214041, China
| | - Xue-Ming Wu
- Department of Cardioloy, Affiliated Third Hospital of Nantong University, Wuxi 214041, China.
| |
Collapse
|