1
|
Sonmez UM, Frey N, LeDuc PR, Minden JS. Fly Me to the Micron: Microtechnologies for Drosophila Research. Annu Rev Biomed Eng 2024; 26:441-473. [PMID: 38959386 DOI: 10.1146/annurev-bioeng-050423-054647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Multicellular model organisms, such as Drosophila melanogaster (fruit fly), are frequently used in a myriad of biological research studies due to their biological significance and global standardization. However, traditional tools used in these studies generally require manual handling, subjective phenotyping, and bulk treatment of the organisms, resulting in laborious experimental protocols with limited accuracy. Advancements in microtechnology over the course of the last two decades have allowed researchers to develop automated, high-throughput, and multifunctional experimental tools that enable novel experimental paradigms that would not be possible otherwise. We discuss recent advances in microtechnological systems developed for small model organisms using D. melanogaster as an example. We critically analyze the state of the field by comparing the systems produced for different applications. Additionally, we suggest design guidelines, operational tips, and new research directions based on the technical and knowledge gaps in the literature. This review aims to foster interdisciplinary work by helping engineers to familiarize themselves with model organisms while presenting the most recent advances in microengineering strategies to biologists.
Collapse
Affiliation(s)
- Utku M Sonmez
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Current affiliation: Department of Neuroscience, Scripps Research, San Diego, California, USA
- Current affiliation: Department of NanoEngineering, University of California San Diego, La Jolla, California, USA
| | - Nolan Frey
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
| | - Philip R LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Computational Biology, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jonathan S Minden
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA;
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Tanaka D, Zheng S, Furuya M, Kobayashi M, Fujita H, Akitsu T, Sekiguchi T, Shoji S. Efficient Separation of Methanol Single-Micron Droplets by Tailing Phenomenon Using a PDMS Microfluidic Device. Molecules 2024; 29:1949. [PMID: 38731440 PMCID: PMC11085517 DOI: 10.3390/molecules29091949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024] Open
Abstract
Microdroplet-based fluidic systems have the advantages of small size, short diffusion time, and no cross-contamination; consequently, droplets often provide a fast and precise reaction environment as well as an analytical environment for individual molecules. In order to handle diverse reactions, we developed a method to create organic single-micron droplets (S-MDs) smaller than 5 μm in diameter dispersed in silicone oil without surfactant. The S-MD generation microflow device consists of a mother droplet (MoD) generator and a tapered separation channel featuring multiple side channels. The tapered channel enhanced the shear forces to form tails from the MoDs, causing them to break up. Surface treatment with the fluoropolymer CYTOP protected PDMS fluid devices from organic fluids. The tailing separation of methanol droplets was accomplished without the use of surfactants. The generation of tiny organic droplets may offer new insights into chemical separation and help study the scaling effects of various chemical reactions.
Collapse
Affiliation(s)
- Daiki Tanaka
- Department of Electronic and Physical Systems, School of Fundamental Science and Engineering, Waseda University, Tokyo 145-0065, Japan; (S.Z.); (S.S.)
| | - Shengqi Zheng
- Department of Electronic and Physical Systems, School of Fundamental Science and Engineering, Waseda University, Tokyo 145-0065, Japan; (S.Z.); (S.S.)
| | - Masahiro Furuya
- Cooperative Major in Nuclear Energy, Waseda University, Tokyo 169-8555, Japan; (M.F.); (M.K.)
| | - Masashi Kobayashi
- Cooperative Major in Nuclear Energy, Waseda University, Tokyo 169-8555, Japan; (M.F.); (M.K.)
| | | | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-0825, Japan;
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 162-0041, Japan;
| | - Shuichi Shoji
- Department of Electronic and Physical Systems, School of Fundamental Science and Engineering, Waseda University, Tokyo 145-0065, Japan; (S.Z.); (S.S.)
| |
Collapse
|
3
|
Teixidó E, Riera-Colomer C, Raldúa D, Pubill D, Escubedo E, Barenys M, López-Arnau R. First-Generation Synthetic Cathinones Produce Arrhythmia in Zebrafish Eleutheroembryos: A New Approach Methodology for New Psychoactive Substances Cardiotoxicity Evaluation. Int J Mol Sci 2023; 24:13869. [PMID: 37762171 PMCID: PMC10531093 DOI: 10.3390/ijms241813869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The increasing number of new psychoactive substances (NPS) entering the illicit drug market, especially synthetic cathinones, as well as the risk of cardiovascular complications, is intensifying the need to quickly assess their cardiotoxic potential. The present study aims to evaluate the cardiovascular toxicity and lethality induced by first-generation synthetic cathinones (mephedrone, methylone, and MDPV) and more classical psychostimulants (cocaine and MDMA) in zebrafish embryos using a new approach methodology (NAM). Zebrafish embryos at 4 dpf were exposed to the test drugs for 24 h to identify drug lethality. Drug-induced effects on ventricular and atrial heart rate after 2 h exposure were evaluated, and video recordings were properly analyzed. All illicit drugs displayed similar 24 h LC50 values. Our results indicate that all drugs are able to induce bradycardia, arrhythmia, and atrial-ventricular block (AV block), signs of QT interval prolongation. However, only MDPV induced a different rhythmicity change depending on the chamber and was the most potent bradycardia and AV block-inducing drug compared to the other tested compounds. In summary, our results strongly suggest that the NAM presented in this study can be used for screening NPS for their cardiotoxic effect and especially for their ability to prolong the QT intervals.
Collapse
Affiliation(s)
- Elisabet Teixidó
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Clara Riera-Colomer
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Barenys
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nutrition and Food Safety, University of Barcelona (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, Pharmacology Section, Institute of Biomedicine (IBUB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
4
|
Khalili A, van Wijngaarden E, Zoidl GR, Rezai P. Simultaneous screening of zebrafish larvae cardiac and respiratory functions: a microfluidic multi-phenotypic approach. INTEGRATIVE BIOLOGY : QUANTITATIVE BIOSCIENCES FROM NANO TO MACRO 2022; 14:162-170. [PMID: 36416255 DOI: 10.1093/intbio/zyac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022]
Abstract
Multi-phenotypic screening of multiple zebrafish larvae plays an important role in enhancing the quality and speed of biological assays. Many microfluidic platforms have been presented for zebrafish phenotypic assays, but multi-organ screening of multiple larvae, from different needed orientations, in a single device that can enable rapid and large-sample testing is yet to be achieved. Here, we propose a multi-phenotypic quadruple-fish microfluidic chip for simultaneous monitoring of heart activity and fin movement of 5-7-day postfertilization zebrafish larvae trapped in the chip. In each experiment, fin movements of four larvae were quantified in the dorsal view in terms of fin beat frequency (FBF). Positioning of four optical prisms next to the traps provided the lateral views of the four larvae and enabled heart rate (HR) monitoring. The device's functionality in chemical testing was validated by assessing the impacts of ethanol on heart and fin activities. Larvae treated with 3% ethanol displayed a significant drop of 13.2 and 35.8% in HR and FBF, respectively. Subsequent tests with cadmium chloride highlighted the novel application of our device for screening the effect of heavy metals on cardiac and respiratory function at the same time. Exposure to 5 $\mu$g/l cadmium chloride revealed a significant increase of 8.2% and 39.2% in HR and FBF, respectively. The device can be employed to monitor multi-phenotypic behavioral responses of zebrafish larvae induced by chemical stimuli in various chemical screening assays, in applications such as ecotoxicology and drug discovery.
Collapse
Affiliation(s)
- Arezoo Khalili
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | | | - Georg R Zoidl
- Department of Biology, York University, Toronto, ON, Canada
| | - Pouya Rezai
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| |
Collapse
|
5
|
Zabihihesari A, Parand S, Coulthard AB, Molnar A, Hilliker AJ, Rezai P. An in-vivo microfluidic assay reveals cardiac toxicity of heavy metals and the protective effect of metal responsive transcription factor (MTF-1) in Drosophila model. 3 Biotech 2022; 12:279. [PMID: 36275358 PMCID: PMC9478020 DOI: 10.1007/s13205-022-03336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Previous toxicity assessments of heavy metals on Drosophila are limited to investigating the survival, development rate, and climbing behaviour by oral administration while cardiac toxicity of these elements have not been investigated. We utilized a microfluidic device to inject known dosages of zinc (Zn) or cadmium (Cd) into the larvae's hemolymph to expose their heart directly and study their heart rate and arrhythmicity. The effect of heart-specific overexpression of metal responsive transcription factor (MTF-1) on different heartbeat parameters and survival of Drosophila larvae was investigated. The heart rate of wild-type larvae decreased by 24.8% or increased by 11.9%, 15 min after injection of 40 nL of 100 mM Zn or 10 mM Cd solution, respectively. The arrhythmicity index of wild-type larvae increased by 58.2% or 76.8%, after injection of Zn or Cd, respectively. MTF-1 heart overexpression ameliorated these effects completely. Moreover, it increased larvae's survival to pupal and adulthood stages and prolonged the longevity of flies injected with Zn and Cd. Our microfluidic-based cardiac toxicity assay illustrated that heart is an acute target of heavy metals toxicity, and MTF-1 overexpression in this tissue can ameliorate cardiac toxicity of Zn and Cd. The method can be used for cardiotoxicity assays with other pollutants in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03336-7.
Collapse
Affiliation(s)
- Alireza Zabihihesari
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| | - Shahrzad Parand
- Department of Psychology, Faculty of Health, York University, Toronto, ON Canada
| | | | | | | | - Pouya Rezai
- Department of Mechanical Engineering, York University, BRG 433B, 4700 Keele St, Toronto, ON M3J 1P3 Canada
| |
Collapse
|
6
|
Ibbini Z, Spicer JI, Truebano M, Bishop J, Tills O. HeartCV: a tool for transferrable, automated measurement of heart rate and heart rate variability in transparent animals. J Exp Biol 2022; 225:276574. [PMID: 36073614 PMCID: PMC9659326 DOI: 10.1242/jeb.244729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022]
Abstract
Heart function is a key component of whole-organismal physiology. Bioimaging is commonly, but not exclusively, used for quantifying heart function in transparent individuals, including early developmental stages of aquatic animals, many of which are transparent. However, a central limitation of many imaging-related methods is the lack of transferability between species, life-history stages and experimental approaches. Furthermore, locating the heart in mobile individuals remains challenging. Here, we present HeartCV: an open-source Python package for automated measurement of heart rate and heart rate variability that integrates automated localization and is transferrable across a wide range of species. We demonstrate the efficacy of HeartCV by comparing its outputs with measurements made manually for a number of very different species with contrasting heart morphologies. Lastly, we demonstrate the applicability of the software to different experimental approaches and to different dataset types, such as those corresponding to longitudinal studies.
Collapse
Affiliation(s)
- Ziad Ibbini
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
- Author for correspondence ()
| | - John I. Spicer
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - Manuela Truebano
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| | - John Bishop
- Marine Biological Association of the UK, Citadel Hill Laboratory, Plymouth PL1 2PB, UK
| | - Oliver Tills
- Marine Biology and Ecology Research Centre, Plymouth University, Plymouth PL4 8AA, UK
| |
Collapse
|
7
|
Kodirov SA. Probability that there is a mammalian counterpart of cardiac clock in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21867. [PMID: 35106839 PMCID: PMC9250754 DOI: 10.1002/arch.21867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Whether or not the hyperpolarization-activated cyclic nucleotide-gated nonselective cation channel (HCN or funny current If ) is involved in pacemaking - recurrent heartbeat, it is attributed to electrical activities in all excitable cells, including those of invertebrates. In latter group of animals prevailingly the electrical signals and function of heart in terms of chrono- and inotropy are elucidated. Although in simpler models including insects experimental outcomes are reproducible and robust, involvement of "cardiac clock" mechanism in pacemaking is not conclusive. In this assay, the mechanisms of heartbeat are synthesized by focused comparisons between insect and mammalian hearts.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, Texas, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|