1
|
Mishra A, Vasanthan M, Malliappan SP. Drug Repurposing: A Leading Strategy for New Threats and Targets. ACS Pharmacol Transl Sci 2024; 7:915-932. [PMID: 38633585 PMCID: PMC11019736 DOI: 10.1021/acsptsci.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Less than 6% of rare illnesses have an appropriate treatment option. Repurposed medications for new indications are a cost-effective and time-saving strategy that results in excellent success rates, which may significantly lower the risk associated with therapeutic development for rare illnesses. It is becoming a realistic alternative to repurposing "conventional" medications to treat joint and rare diseases considering the significant failure rates, high expenses, and sluggish stride of innovative medication advancement. This is due to delisted compounds, cheaper research fees, and faster development time frames. Repurposed drug competitors have been developed using strategic decisions based on data analysis, interpretation, and investigational approaches, but technical and regulatory restrictions must also be considered. Combining experimental and computational methodologies generates innovative new medicinal applications. It is a one-of-a-kind strategy for repurposing human-safe pharmaceuticals to treat uncommon and difficult-to-treat ailments. It is a very effective method for discovering and creating novel medications. Several pharmaceutical firms have developed novel therapies by repositioning old medications. Repurposing drugs is practical, cost-effective, and speedy and generally involves lower risks when compared to developing a new drug from the beginning.
Collapse
Affiliation(s)
- Ashish
Sriram Mishra
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Manimaran Vasanthan
- Department
of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603202, Tamil Nadu, India
| | - Sivakumar Ponnurengam Malliappan
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang Vietnam, Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
2
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
3
|
Yang S, Kar S. Are we ready to fight the Nipah virus pandemic? An overview of drug targets, current medications, and potential leads. Struct Chem 2023:1-19. [PMID: 37363045 PMCID: PMC9993391 DOI: 10.1007/s11224-023-02148-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 03/11/2023]
Abstract
Nipah virus (NiV) is a high-lethality RNA virus from the family of Paramyxoviridae and genus Henipavirus, classified under Biosafety Level-4 (BSL-4) pathogen due to the severity of pathogenicity and lack of medications and vaccines. Direct contacts or the body fluids of infected animals are the major factor of transmission of NiV. As it is not an airborne infection, the transmission rate is relatively low. Still, mutations of the NiV in the animal reservoir over the years, followed by zoonotic transfer, can make the deadliness of the virus manifold in upcoming years. Therefore, there is no denial of the possibility of a pandemic after COVID-19 considering the severe pathogenicity of NiV, and that is why we need to be prepared with possible drugs in upcoming days. Considering the time constraints, computational aided drug design (CADD) is an efficient way to study the virus and perform the drug design and test the HITs to lead experimentally. Therefore, this review focuses primarily on NiV target proteins (covering NiV and human), experimentally tested repurposed drug details, and latest computational studies on potential lead molecules, which can be explored as potential drug candidates. Computationally identified drug candidates, including their chemical structures, docking scores, amino acid level interaction with corresponding protein, and the platform used for the studies, are thoroughly discussed. The review will offer a one-stop study to access what had been performed and what can be performed in the CADD of NiV.
Collapse
Affiliation(s)
- Siyun Yang
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| | - Supratik Kar
- Chemometrics and Molecular Modeling Laboratory, Department of Chemistry, Kean University, 1000 Morris Avenue, Union, NJ 07083 USA
| |
Collapse
|
4
|
Liang J, Zheng Y, Tong X, Yang N, Dai S. In Silico Identification of Anti-SARS-CoV-2 Medicinal Plants Using Cheminformatics and Machine Learning. Molecules 2022; 28:208. [PMID: 36615401 PMCID: PMC9821958 DOI: 10.3390/molecules28010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pathogen of COVID-19, is spreading rapidly and has caused hundreds of millions of infections and millions of deaths worldwide. Due to the lack of specific vaccines and effective treatments for COVID-19, there is an urgent need to identify effective drugs. Traditional Chinese medicine (TCM) is a valuable resource for identifying novel anti-SARS-CoV-2 drugs based on the important contribution of TCM and its potential benefits in COVID-19 treatment. Herein, we aimed to discover novel anti-SARS-CoV-2 compounds and medicinal plants from TCM by establishing a prediction method of anti-SARS-CoV-2 activity using machine learning methods. We first constructed a benchmark dataset from anti-SARS-CoV-2 bioactivity data collected from the ChEMBL database. Then, we established random forest (RF) and support vector machine (SVM) models that both achieved satisfactory predictive performance with AUC values of 0.90. By using this method, a total of 1011 active anti-SARS-CoV-2 compounds were predicted from the TCMSP database. Among these compounds, six compounds with highly potent activity were confirmed in the anti-SARS-CoV-2 experiments. The molecular fingerprint similarity analysis revealed that only 24 of the 1011 compounds have high similarity to the FDA-approved antiviral drugs, indicating that most of the compounds were structurally novel. Based on the predicted anti-SARS-CoV-2 compounds, we identified 74 anti-SARS-CoV-2 medicinal plants through enrichment analysis. The 74 plants are widely distributed in 68 genera and 43 families, 14 of which belong to antipyretic detoxicate plants. In summary, this study provided several medicinal plants with potential anti-SARS-CoV-2 activity, which offer an attractive starting point and a broader scope to mine for potentially novel anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Jihao Liang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yang Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xin Tong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Naixue Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
5
|
Kamboj S, Rajput A, Rastogi A, Thakur A, Kumar M. Targeting non-structural proteins of Hepatitis C virus for predicting repurposed drugs using QSAR and machine learning approaches. Comput Struct Biotechnol J 2022; 20:3422-3438. [PMID: 35832613 PMCID: PMC9271984 DOI: 10.1016/j.csbj.2022.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5-10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed the "Anti-HCV" platform using machine learning and quantitative structure-activity relationship (QSAR) approaches to predict repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A (495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using a recursive feature elimination algorithm. Different machine learning techniques viz. support vector machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the predictive models. We achieved Pearson's correlation coefficients from 0.80 to 0.92 during 10-fold cross validation and similar performance on independent datasets using the best developed models. The robustness and reliability of developed predictive models were also supported by applicability domain, chemical diversity and decoy datasets analyses. The "Anti-HCV" predictive models were used to identify potential repurposing drugs. Representative candidates were further validated by molecular docking which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naftifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove useful in antiviral drug development against HCV.
Collapse
Affiliation(s)
- Sakshi Kamboj
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Rajput
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
| | - Amber Rastogi
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Thakur
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Kleandrova VV, Scotti MT, Speck-Planche A. Indirect-Acting Pan-Antivirals vs. Respiratory Viruses: A Fresh Perspective on Computational Multi-Target Drug Discovery. Curr Top Med Chem 2021; 21:2687-2693. [PMID: 34636311 DOI: 10.2174/1568026621666211012110819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/22/2022]
Abstract
Respiratory viruses continue to afflict mankind. Among them, pathogens such as coronaviruses [including the current pandemic agent known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)] and the one causing influenza A (IAV) are highly contagious and deadly. These can evade the immune system defenses while causing a hyperinflammatory response that can damage different tissues/organs. Simultaneously targeting immunomodulatory proteins is a plausible antiviral strategy since it could lead to the discovery of indirect-acting pan-antiviral (IAPA) agents for the treatment of diseases caused by respiratory viruses. In this context, computational approaches, which are an essential part of the modern drug discovery campaigns, could accelerate the identification of multi-target immunomodulators. This perspective discusses the usefulness of computational multi-target drug discovery for the virtual screening (drug repurposing) of IAPA agents capable of boosting the immune system through the activation of the toll-like receptor 7 (TLR7) and/or the stimulator of interferon genes (STING) while inhibiting key pro-inflammatory proteins, such as caspase-1 and tumor necrosis factor-alpha (TNF-α).
Collapse
Affiliation(s)
- Valeria V Kleandrova
- Laboratory of Fundamental and Applied Research of Quality and Technology of Food Production, Moscow State University of Food Production, Volokolamskoe shosse 11, 125080, Moscow. Russian Federation
| | - Marcus T Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| | - Alejandro Speck-Planche
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, 58051-900, João Pessoa. Brazil
| |
Collapse
|