1
|
Zhu W, Zhang D, Xu W, Gan Y, Huang J, Liu Y, Tan Y, Song Y, Xin P. Comparative genomics and phylogenetic analysis of mitochondrial genomes of Neocinnamomum. BMC PLANT BIOLOGY 2025; 25:289. [PMID: 40045193 PMCID: PMC11883965 DOI: 10.1186/s12870-025-06238-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Neocinnamomum plants are considered a promising feedstock for biodiesel in China, due to the richness in long-chain fatty acids (LCFAs) found in their seeds. However, the mitochondrial genome (mitogenome) of this genus has not yet been systematically described, and the exploration of species relationships within this genus using mitogenome sequences is also an uncharted territory. This has hindered our understanding of mitogenome diversity and the evolutionary relationships within Neocinnamomum. RESULTS In this study, a total of 24 individuals representing seven distinct taxa from the genus Neocinnamomum were subjected to Illumina sequencing, and the species N. delavayi was sequenced using Oxford Nanopore sequencing technology. We successfully assembled the mitogenome of N. delavayi, which is 778,066 bp in size and exhibits a single circular structure. The analysis identified 659 dispersed repeats, 211 simple sequence repeats (SSRs), and 30 tandem repeats within the mitogenome. Additionally, 37 homologous fragments, totaling 9929 bp, were found between the mitogenome and the plastid genome (plastome). The codons of 41 protein-coding genes (PCGs) had a preference for ending in A/T, and the codon usage bias of the majority of these genes was influenced by natural selection pressures. Comparative genomic analysis revealed low collinearity and significant gene rearrangements between species. Phylogenetic analysis resulted in the classification of Neocinnamomum into six distinct clades, contradicting previous findings which based on complete plastomes and nuclear ribosomal cistron (nrDNA). In the PCGs of 24 individuals, 86 mutation events were identified, which included three indels and 83 SNPs. Notably, the ccmC gene underwent positive selection in pairwise comparisons of three species pairs. Furthermore, 748 RNA editing sites were predicted within the PCGs of the N. delavayi mitogenome. CONCLUSIONS This study enriches our knowledge of the mitogenomes in the family Lauraceae, and provides valuable data and a foundation for genomic evolution research, genetic resource conservation, and molecular breeding in Neocinnamomum.
Collapse
Affiliation(s)
- Wen Zhu
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Di Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wenbin Xu
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Yi Gan
- College of Advanced Agricultural Science Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jiepeng Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yanyu Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China
| | - Yunhong Tan
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu Song
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Ministry of Education) & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, Guilin, Guangxi, 541004, China.
| | - Peiyao Xin
- Engineering Technology Research Center of National Forestry and Grassland Administration on Southwest Landscape Architecture, Southwest Forestry University, Kunming, Yunnan, 650224, China.
| |
Collapse
|
2
|
Ma JX, Li HJ, Jin C, Wang H, Tang LX, Si J, Cui BK. Assembly and comparative analysis of the complete mitochondrial genome of Daedaleopsissinensis (Polyporaceae, Basidiomycota), contributing to understanding fungal evolution and ecological functions. IMA Fungus 2025; 16:e141288. [PMID: 40052081 PMCID: PMC11882022 DOI: 10.3897/imafungus.16.141288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025] Open
Abstract
Daedaleopsissinensis is a crucial wood-decaying fungus with significant lignocellulose-degrading ability, which plays a vital role in the material cycle and energy flow of forest ecosystems. However, the mitochondrial genome of D.sinensis has not yet been revealed. In the present study, the complete mitochondrial genome of D.sinensis was assembled and compared with related species. The mitochondrial genome spans 69,155 bp and has a GC content of 25.0%. It comprises 15 protein-coding genes (PCGs), 26 transfer RNA genes, two ribosomal RNA genes and one DNA polymerase gene (dpo). Herein, we characterised and analysed the codon preferences, variation and evolution of PCGs, repeats, intron dynamics, as well as RNA editing events in the D.sinensis mitochondrial genome. Further, a phylogenetic analysis of D.sinensis and the other 86 Basidiomycota species was performed using mitochondrial genome data. The results revealed that four species, D.confragosa, D.sinensis, D.nitida and Fomesfomentarius, were grouped in a closely-related cluster with high support values, indicating that a close phylogenetic relationship existed between Daedaleopsis and Fomes. This study reported on the initial assembly and annotation of the mitochondrial genome of D.sinensis, which greatly improved the knowledge of the fungus. These results contribute to the limited understanding of the mitochondrial repository of wood-decaying fungi, thereby laying the foundation for subsequent research on fungal evolution and ecological functions.
Collapse
Affiliation(s)
- Jin-Xin Ma
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hai-Jiao Li
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, ChinaNational Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and PreventionBeijingChina
| | - Can Jin
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Hao Wang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Lu-Xin Tang
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Jing Si
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| | - Bao-Kai Cui
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, ChinaBeijing Forestry UniversityBeijingChina
| |
Collapse
|
3
|
Cai L, Havird JC, Jansen RK. Recombination and retroprocessing in broomrapes reveal a universal roadmap for mitochondrial evolution in heterotrophic plants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.637881. [PMID: 39990427 PMCID: PMC11844532 DOI: 10.1101/2025.02.14.637881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The altered life history strategies of heterotrophic organisms often leave a profound genetic footprint on energy metabolism related functions. In parasitic plants, the reliance on host-derived nutrients and loss of photosynthesis in holoparasites have led to highly degraded to absent plastid genomes, but its impact on mitochondrial genome (mitogenome) evolution has remained controversial. By examining mitogenomes from 45 Orobanchaceae species including three independent transitions to holoparasitism and key evolutionary intermediates, we identified measurable and predictable genetic alterations in genomic shuffling, RNA editing, and intracellular (IGT) and horizontal gene transfer (HGT) en route to a nonphotosynthetic lifestyle. In-depth comparative analyses revealed DNA recombination and repair processes, especially RNA-mediated retroprocessing, as significant drivers for genome structure evolution. In particular, we identified a novel RNA-mediated IGT and HGT mechanism, which has not been demonstrated in cross-species and inter-organelle transfers. Based on this, we propose a generalized dosage effect mechanism to explain the biased transferability of plastid DNA to mitochondria across green plants, especially in heterotrophic lineages like parasites and mycoheterotrophs. Evolutionary rates scaled with these genomic changes, but the direction and strength of selection varied substantially among genes and clades, resulting in high contingency in mitochondrial genome evolution. Finally, we describe a universal roadmap for mitochondrial evolution in heterotrophic plants where increased recombination and repair activities, rather than relaxed selection alone, lead to differentiated genome structure compared to free-living species.
Collapse
|
4
|
Xiao Z, Gu Y, Zhou J, Lu M, Wang J, Lu K, Zeng Y, Tan X. De novo assembly of the complete mitochondrial genomes of two Camellia-oil tree species reveals their multibranch conformation and evolutionary relationships. Sci Rep 2025; 15:2899. [PMID: 39843537 PMCID: PMC11754599 DOI: 10.1038/s41598-025-86411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Camellia-oil trees are economically valuable, oil-rich species within the genus Camellia, family Theaceae. Among these species, C. oleifera, a member of Section Oleifera in the genus, is the most extensively cultivated in China. In this study, we assembled the mitochondrial genomes (mitogenomes) of two Camellia species, namely C. oleifera and C. lanceoleosa. These two species are closely related and belong to the same genus and section, with C. oleifera being hexaploid and C. lanceoleosa being diploid. The mitogenome of C. oleifera is comprised of 1,039,838 base pairs (bp), and C. lanceoleosa is comprised of 934,155 bp. Both genomes exhibit a multipartite genome structure, which is supported by our PCR experiments. We conducted codon usage and RNA editing site analysis on these two mitogenomes, which showed highly consistent results. However, analysis of repetitive sequences and mitochondrial plastid sequences (MTPTs) revealed differences between the two mitogenomes. Phylogenetic analysis indicated that these two species clustered together, suggesting a close evolutionary relationship. The collinearity analysis results showed extensive genome rearrangements in the mitogenomes of Camellia species. We successfully assembled the mitogenomes of C. oleifera and C. lanceoleosa, marking a significant advancement in understanding camellia-oil tree mitogenomes. Unlike circular mitogenomes reported before, our research confirms multiple-branched configurations in these two species. This sheds light on mitogenome structural complexities and contributes to our understanding of evolutionary processes. Additionally, these results enrich Camellia genetic resources and expand our knowledge of mitogenome variation.
Collapse
Affiliation(s)
- Zhun Xiao
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- School of Foreign Languages, Changsha Social Work College, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yiyang Gu
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Junqin Zhou
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Mengqi Lu
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
- Hunan Academy of Forestry, Changsha, 410004, China
| | - Jinfeng Wang
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kaizheng Lu
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yanling Zeng
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China.
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Xiaofeng Tan
- The Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China.
- Key Laboratory of Non-Wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha, 410004, China.
- Camellia Oil Tree Research Academy, Central South University of Forestry and Technology, Changsha, 410004, China.
| |
Collapse
|
5
|
Cui J, Yang Q, Zhang J, Ju C, Cui S. Mitochondrial Genome Insights into Evolution and Gene Regulation in Phragmites australis. Int J Mol Sci 2025; 26:546. [PMID: 39859262 PMCID: PMC11764873 DOI: 10.3390/ijms26020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As a globally distributed perennial Gramineae, Phragmites australis can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of P. australis using genomic data from the PacBio and BGI platforms. The P. australis mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively. A sequence-simplified succinate dehydrogenase 4 gene was identified in this mitogenome, which is often translocated to the nuclear genome in the mitogenomes of gramineous species. We also identified tissue-specific mitochondrial differentially expressed genes using RNAseq data, providing new insights into understanding energy allocation and gene regulatory strategies in the long-term adaptive evolution of P. australis mitochondria. In addition, we studied the mitogenome features of P. australis in more detail, including repetitive sequences, gene Ka/Ks analyses, codon preferences, intracellular gene transfer, RNA editing, and multispecies phylogenetic analyses. Our results provide an essential molecular resource for understanding the genetic characterisation of the mitogenome of P. australis and provide a research basis for population genetics and species evolution in Arundiaceae.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Qianhui Yang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Jiyue Zhang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| |
Collapse
|
6
|
Yang Z, Liu X, Qin X, Xiao Z, Luo Q, Pan D, Yang H, Liao S, Chen X. Unveiling the intricate structural variability induced by repeat-mediated recombination in the complete mitochondrial genome of Cuscuta gronovii Willd. Genomics 2025; 117:110966. [PMID: 39571828 DOI: 10.1016/j.ygeno.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 01/13/2025]
Abstract
Cuscuta gronovii Willd., a member of the Convolvulaceae family, is noted for its potential medicinal and nutritional benefits. In this study, we utilized a combination of Illumina and Oxford Nanopore sequencing technologies to successfully assemble the complete circular mitochondrial genome (mitogenome) of C. gronovii. The mitogenome, spanning 304,467 base pairs, includes 54 genes: 33 protein-coding genes, three ribosomal RNA (rRNA) genes, and 18 transfer RNA (tRNA) genes. Beyond its primary circular structure, we discovered and validated several alternative genomic conformations, driven by five specific repeat sequences. Three inverted repeats were found to initiate rearrangements, resulting in the creation of seven distinct chromosomal structures, while two direct repeats split a larger molecule into two subgenomic entities. We also mapped 421 RNA editing sites across the protein-coding sequences, influencing 33 protein-coding genes with varying distribution, particularly noting high frequencies in the nad4 and ccmB genes. Sixteen of these RNA editing sites were experimentally validated through PCR amplification and Sanger sequencing, confirming their presence with 100 % accuracy. This research not only introduces the first mitochondrial genome of C. gronovii but also highlights its complex conformational variability induced by repeat-mediated recombination, providing a valuable genomic resource for further molecular breeding efforts and phylogenetic evolution within the genus Cuscuta.
Collapse
Affiliation(s)
- Zhijian Yang
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xue Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China.
| | - Xiaohui Qin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Xiao
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Danni Pan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufeng Liao
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanyang Chen
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Wu Y, Zhang K, Zhang B, Li Y, Liu G, Liang Z, Zhang J. Characterization of the complete mitochondrial genome of the rice bean (Vigna umbellata). BMC PLANT BIOLOGY 2024; 24:1239. [PMID: 39716065 DOI: 10.1186/s12870-024-05963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Rice bean (Vigna umbellata), an underrated legume crop, demonstrates strong adaptability to poor soil fertility and has significant potential to enhance global food security. It is valuable both as a vegetable and fodder crop due to its high protein content, essential fatty acids, and micronutrients. Despite the sequencing of a high-quality genome of rice bean, its mitochondrial genome (mitogenome) sequence has not yet been reported. RESULTS For the first time, the rice bean mitogenome was assembled and annotated using PacBio HiFi sequencing and Geseq software. The mitogenome is a circular molecule with a length of 404,493 bp, containing 32 protein-coding genes, 17 tRNAs, and 3 rRNAs. Codon usage and sequence repeats were also determined. Six gene migration events from the chloroplast to the mitogenome were detected in rice bean. A phylogenetic analysis, including the rice bean mitogenome and 25 other taxa (23 of which are Fabales species), clarified the evolutionary and taxonomic status of rice bean. Additionally, a collinearity analysis of seven Fabales mitogenomes revealed high structural variability. In total, 473 RNA editing sites in protein-coding genes were identified. CONCLUSIONS This study presents the first sequencing, assembly, annotation, and analysis of the rice bean mitogenome, providing valuable background information for understanding the evolution of this species. These findings lay the groundwork for future genetic studies and molecular breeding efforts aimed at improving rice bean.
Collapse
Affiliation(s)
- Yuqing Wu
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Kai Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Boyang Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Yuqian Li
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Guiming Liu
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Jiewei Zhang
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
8
|
Li J, Ni Y, Yang H, Lu Q, Chen H, Liu C. Analysis of the complete mitochondrial genome of Panax quinquefolius reveals shifts from cis-splicing to trans-splicing of intron cox2i373. Gene 2024; 930:148869. [PMID: 39153707 DOI: 10.1016/j.gene.2024.148869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Panax quinquefolius is a perennial plant with medicinal values. In this study, we assembled the complete mitochondrial genome (mitogenome) of P. quinquefolius using PMAT assembler. The total length of P. quinquefolius mitogenome is 573,154 bp. We annotated a total of 34 protein-coding genes (PCGs), 35 tRNA genes, and 6 rRNA genes in this mitogenome. The analysis of repetitive elements shows that there are 153 SSRs, 24 tandem repeats and 242 pairs of dispersed repeats this mitogenome. Also, we found 24 homologous sequences with a total length of 64,070 bp among its mitogenome and plastome, accounting for 41.05 % of the plastome, and 11.18 % of the mitogenome, showing a remarkable frequent sequence dialogue between plastome and mitogenomes. Besides, a total of 583 C to U RNA editing sites on 34 PCGs of high confidence were predicted by using Deepred-mt. We also inferred the phylogenetic relationships of P. quinquefolius and other angiosperms based on mitochondrial PCGs. Finally, we observed a shift from cis- to trans-splicing in P. quinquefolius for two mitochondrial introns, namely cox2i373 and nad1i728, and a pair of 48 bp short repetitive sequences may be associated with the breaking and rearrangement of the cox2i373 intron. The fragmentation of the cox2i373 intron was further confirmed by our PCR amplification experiments. In summary, our report on the P. quinquefolius mitogenome provides a new perspective on the intron evolution of the mitogenome.
Collapse
Affiliation(s)
- Jingling Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Yang Ni
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Heyu Yang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qianqi Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haimei Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Chang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
9
|
Zhang C, Rasool A, Qi H, Zou X, Wang Y, Wang Y, Wang Y, Liu Y, Yu Y. Comprehensive analysis of the first complete mitogenome and plastome of a traditional Chinese medicine Viola diffusa. BMC Genomics 2024; 25:1162. [PMID: 39623304 PMCID: PMC11610153 DOI: 10.1186/s12864-024-11086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Viola diffusa is used in the formulation of various Traditional Chinese Medicines (TCMs), including antiviral, antimicrobial, antitussive, and anti-inflammatory drugs, due to its richness in flavonoids and triterpenoids. The biosynthesis of these compounds is largely mediated by cytochrome P450 enzymes, which are primarily located in the membranes of mitochondria and the endoplasmic reticulum. RESULTS This study presents the complete assembly of the mitogenome and plastome of Viola diffusa. The circular mitogenome spans 474,721 bp with a GC content of 44.17% and encodes 36 unique protein-coding genes, 21 tRNA, and 3 rRNA. Except for the RSCU values of 1 observed for the start codon (AUG) and tryptophan (UGG), the mitochondrial protein-coding genes exhibited a codon usage bias, with most estimates deviating from 1, similar to patterns observed in closely related species. Analysis of repetitive sequences in the mitogenome demonstrated potential homologous recombination mediated by these repeats. Sequence transfer analysis revealed 24 homologous sequences shared between the mitogenome and plastome, including nine full-length genes. Collinearity was observed among Viola diffusa species within the other members of Malpighiales order, indicated by the presence of homologous fragments. The length and arrangement of collinear blocks varied, and the mitogenome exhibited a high frequency of gene rearrangement. CONCLUSIONS We present the first complete assembly of the mitogenome and plastome of Viola diffusa, highlighting its implications for pharmacological, evolutionary, and taxonomic studies. Our research underscores the multifaceted importance of comprehensive mitogenome analysis.
Collapse
Affiliation(s)
- Chenshuo Zhang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Aamir Rasool
- Institute of Biochemistry, University of Balochistan, Quetta, 87300, Pakistan
| | - Huilong Qi
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Xu Zou
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yimeng Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yahui Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China
| | - Yang Wang
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| | - Yan Liu
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| | - Yuan Yu
- College of Life Sciences, North China University of Science and Technology, 21 Bo Hai Road, Tangshan, People's Republic of China.
| |
Collapse
|
10
|
Wang M, Li R, Yang X. The first complete mitochondrial genome of sesame (Sesamum indicum L.). Genet Mol Biol 2024; 47:e20240064. [PMID: 39621766 PMCID: PMC11613652 DOI: 10.1590/1678-4685-gmb-2024-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Sesame (Sesamum indicum L.), an important oilseed crop, has garnered considerable interest. The nuclear and chloroplast genomes of sesame have been extensively applied to sesame genetics and genomics research. The mitochondrial (mt) genome of sesame, however, has not been sequenced and annotated. In order to solve this issue, we reconstructed the first mt genome of sesame using third-generation sequencing data. The sesame mt genome was 724,998 bp in size and had 22 circular chromosomes. A total of 66 genes were annotated, including 37 protein-coding genes, 26 transfer RNAs, and three ribosomal RNAs. We investigated the codon usage patterns, simple sequence repeats, long tandem repeats, and dispersed repeats of the sesame mt genome. Furthermore, we investigated the DNA transfer from chloroplast to mitochondrion and compared the sesame mt genome to two other Lamiales mt genomes. Given the economic importance of this crop, our presented sesame mt genome is a valuable genomic resource and will allow for more comprehensive studies on sesame and related species.
Collapse
Affiliation(s)
- Mingcheng Wang
- Chengdu University, Institute for Advanced Study, Chengdu, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, China
| | - Xuchen Yang
- Guangzhou University, School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou, China
- Guangzhou University, School of Life Sciences, Innovative Center of Molecular Genetics and Evolution, Guangzhou Key Laboratory of Crop Gene Editing, Guangzhou, China
| |
Collapse
|
11
|
Zhai S, Lin F, Shu X, Niu H, Jing Q, Gao L, Gao X, Liu D. Mitochondrial Genome Assembly and Comparative Analysis of Chionanthus Retusus (Oleaceae). Genes (Basel) 2024; 15:1523. [PMID: 39766790 PMCID: PMC11675231 DOI: 10.3390/genes15121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Chionanthus retusus Lindl. & Paxton is an ornamental tree species native to North China. Research on the mitochondrial genome can elucidate the evolution and biological characteristics of C. retusus and better protect this important species. Methods and Results: This work aimed to clarify the evolutionary and phylogenetic links by sequencing, assembling, annotating, and analyzing the entire mitochondrial genome of C. retusus. The single-loop structure that made up the mitochondrial genome had a total length of 657,640 bp and a GC content of 44.52%. In total, 37 unique protein-coding genes, 20 tRNA genes, and 3 rRNA genes were identified. Numerous repeat sequences and migrating fragments of chloroplast sequences were found. Using the mitochondrial protein-coding genes to construct evolutionary trees, it was found that the closest relative of C. retusus is C. rupicola (Lingelsh.) Kiew. Conclusions: This research represents the first comprehensive set of data on the mitochondrial genome of an ancient (>500 yr) C. retusus specimen. In addition to elucidating the biological characteristics of C. retusus. The findings contribute to the Oleaceae mitochondrial genome database and offer valuable insights for future studies in molecular breeding, evolutionary biology, and genetic diversity conservation.
Collapse
Affiliation(s)
- Shasha Zhai
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.Z.); (L.G.)
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Xiuge Shu
- Shandong Academy of Forestry Sciences, Jinan 250014, China;
| | - Hongyun Niu
- Shandong Aviation Emergency Rescue Center, Jinan 250014, China;
| | - Qi Jing
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China;
| | - Lei Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.Z.); (L.G.)
| | - Xiangbin Gao
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China; (S.Z.); (L.G.)
| | - Dan Liu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China;
| |
Collapse
|
12
|
Han J, Xu W, Yu H, Han Y, Zhu M. Structural and evolutionary analyses of the mitochondrial genome of Spuriopimpinella brachycarpa. FRONTIERS IN PLANT SCIENCE 2024; 15:1492723. [PMID: 39659412 PMCID: PMC11628310 DOI: 10.3389/fpls.2024.1492723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Spuriopimpinella brachycarpa (Kom.) Kitag., a member of the Apiaceae family, is a perennial aromatic herb native to Northeast Asia with applications in culinary and traditional medicine. Despite its significance, most studies on S. brachycarpa have primarily focused on its phytochemical properties, with limited insights into its molecular and genomic characteristics. Methods This study presents the sequencing and assembly of the mitochondrial genome (mitogenome) of S. brachycarpa using second- and third-generation high-throughput sequencing technologies. Comprehensive analyses were performed on its structural organization, RNA editing sites, relative synonymous codon usage (RSCU), and repeat sequences. Comparative analyses with closely related species were also conducted. Results The mitogenome exhibited a multi-branched structure, with a total length of 523,512 bp and a GC content of 43.37%. Annotation revealed 30 unique protein-coding genes, 21 tRNA genes, and three rRNA genes. Comparative analysis indicated that the S. brachycarpa mitogenome contains structural variations but shares collinear features with other Apiaceae species. We identified 618 potential RNA editing sites involving C-to-U conversions and discovered 59 homologous fragments between the mitogenome and plastome, comprising 8.13% of the mitogenome. Discussion These results enrich the genomic database of Apiaceae, providing valuable insights into the evolutionary relationships and genetic diversity within the family.
Collapse
Affiliation(s)
- Jun Han
- Chinese Medicine Research Institute of Beijing Tcmages Pharmaceutical Co., Ltd., Beijing, China
| | - Wenbo Xu
- Chinese Medicine Research Institute of Beijing Tcmages Pharmaceutical Co., Ltd., Beijing, China
| | - Huanxi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People’s Republic of China, Nanjing, China
| | - Yun Han
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ming Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Lyu ZY, Yang GM, Zhou XL, Wang SQ, Zhang R, Shen SK. Deciphering the complex organelle genomes of two Rhododendron species and insights into adaptive evolution patterns in high-altitude. BMC PLANT BIOLOGY 2024; 24:1054. [PMID: 39511517 PMCID: PMC11545642 DOI: 10.1186/s12870-024-05761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND The genomes within organelles are crucial for physiological functions such as respiration and photosynthesis and may also contribute to environmental adaptation. However, the limited availability of genetic resources, particularly mitochondrial genomes, poses significant challenges for in-depth investigations. RESULTS Here, we explored various assembly methodologies and successfully reconstructed the complex organelle genomes of two Rhododendron species: Rhododendron nivale subsp. boreale and Rhododendron vialii. The mitogenomes of these species exhibit various conformations, as evidenced by long-reads mapping. Notably, only the mitogenome of R. vialii can be depicted as a singular circular molecule. The plastomes of both species conform to the typical quadripartite structure but exhibit elongated inverted repeat (IR) regions. Compared to the high similarity between plastomes, the mitogenomes display more obvious differences in structure, repeat sequences, and codon usage. Based on the analysis of 58 organelle genomes from angiosperms inhabiting various altitudes, we inferred the genetic adaptations associated with high-altitude environments. Phylogenetic analysis revealed partial inconsistencies between plastome- and mitogenome-derived phylogenies. Additionally, evolutionary lineage was determined to exert a greater influence on codon usage than altitude. Importantly, genes such as atp4, atp9, mttB, and clpP exhibited signs of positive selection in several high-altitude species, suggesting a potential link to alpine adaptation. CONCLUSIONS We tested the effectiveness of different organelle assembly methods for dealing with complex genomes, while also providing and validating high-quality organelle genomes of two Rhododendron species. Additionally, we hypothesized potential strategies for high-altitude adaptation of organelles. These findings offer a reference for the assembly of complex organelle genomes, while also providing new insights and valuable resources for understanding their adaptive evolution patterns.
Collapse
Affiliation(s)
- Zhen-Yu Lyu
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Gao-Ming Yang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Xiong-Li Zhou
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Si-Qi Wang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Rui Zhang
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China
| | - Shi-Kang Shen
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650504, China.
| |
Collapse
|
14
|
Xie Z, Zhang Y, Wu L, Li G. Mitochondrial Genome Assembly and Structural Characteristics Analysis of Gentiana rigescens. Int J Mol Sci 2024; 25:11428. [PMID: 39518981 PMCID: PMC11546909 DOI: 10.3390/ijms252111428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Gentiana rigescens, an alpine plant with significant medicinal value, possesses a complex genetic background. However, comprehensive genomic research on G. rigescens is still lacking, particularly concerning its organelle genome. In this study, G. rigescens was studied to sequence the mitochondrial genome (mitogenome) and ascertain the assembly, informational content, and developmental expression of the mitogenome. The mitogenome of G. rigescens was 393,595 bp in length and comprised four circular chromosomes ranging in size from 6646 bp to 362,358 bp. The GC content was 43.73%. The mitogenome featured 30 distinct protein-coding genes, 26 tRNA genes, and 3 rRNA genes. The mitogenome of G. rigescens also revealed 70 SSRs, which were mostly tetra-nucleotides. In addition, 48 homologous fragments were found between the mitogenome and the chloroplast genome, with the longest measuring 23,330 bp. The documentation of the mitochondrial genome of G. rigescens is instrumental in advancing the understanding of its physiological development. Decoding the G. rigescens mitogenome will offer valuable genetic material for phylogenetic research on Gentianaceae and enhance the use of species germplasm resources.
Collapse
Affiliation(s)
- Zongyi Xie
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yingmin Zhang
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Lixin Wu
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guodong Li
- College of Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
15
|
Tu XD, Xin YX, Fu HH, Zhou CY, Liu QL, Tang XH, Zou LH, Liu ZJ, Chen SP, Lin WJ, Li MH. The complete mitochondrial genome of Castanopsis carlesii and Castanea henryi reveals the rearrangement and size differences of mitochondrial DNA molecules. BMC PLANT BIOLOGY 2024; 24:988. [PMID: 39428457 PMCID: PMC11492686 DOI: 10.1186/s12870-024-05618-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND Castanopsis carlesii is a dominant tree species in subtropical evergreen broad-leaved forests and holds significant ecological value. It serves as an excellent timber tree species and raw material for cultivating edible fungi. Henry Chinquapin (Castanea henryi) wood is known for its hardness and resistance to water and moisture, making it an exceptional timber species. Additionally, its fruit has a sweet and fruity taste, making it a valuable food source. However, the mitogenomes of these species have not been previously reported. To gain a better understanding of them, this study successfully assembled high-quality mitogenomes of C. carlesii and Ca. henryi for the first time. RESULTS Our research reveals that the mitochondrial DNA (mtDNA) of C. carlesii exhibits a unique multi-branched conformation, while Ca. henryi primarily exists in the form of two independent molecules that can be further divided into three independent molecules through one pair of long repetitive sequences. The size of the mitogenomes of C. carlesii and Ca. henryi are 592,702 bp and 379,929 bp respectively, which are currently the largest and smallest Fagaceae mitogenomes recorded thus far. The primary factor influencing mitogenome size is dispersed repeats. Comparison with published mitogenomes from closely related species highlights differences in size, gene loss patterns, codon usage preferences, repetitive sequences, as well as mitochondrial plastid DNA segments (MTPTs). CONCLUSIONS Our study enhances the understanding of mitogenome structure and evolution in Fagaceae, laying a crucial foundation for future research on cell respiration, disease resistance, and other traits in this family.
Collapse
Affiliation(s)
- Xiong-De Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ya-Xuan Xin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hou-Hua Fu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cheng-Yuan Zhou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing-Long Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xing-Hao Tang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin'an, Hangzhou, 311300, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shi-Pin Chen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen-Jun Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Ming-He Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
16
|
Qiao H, Chen Y, Wang R, Zhang W, Zhang Z, Yu F, Yang H, Liu G, Zhang J. Assembly and comparative analysis of the first complete mitochondrial genome of Salix psammophila, a good windbreak and sand fixation shrub. FRONTIERS IN PLANT SCIENCE 2024; 15:1411289. [PMID: 39416477 PMCID: PMC11479937 DOI: 10.3389/fpls.2024.1411289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Salix psammophila, commonly known as the sandlive willow, is a vital shrub species within the Salicaceae family, particularly significant for its ecological role in regions susceptible to desertification and sandy soils. In this study, we assembled the complete S. psammophila mitochondrial genome using Pacbio HiFi third-generation sequencing data. The genome was found to be a typical single circular structure, with a total length of 715,555 bp and a GC content of 44.89%. We annotated 33 unique protein-coding genes (PCGs), which included 24 core mitochondrial genes and 9 variable genes, as well as 18 tRNA genes (5 of which were multicopy genes) and 3 rRNA genes. Comparative analysis of the PCGs from the mitochondrial genomes of S. psammophila, Populus deltoides, Populus simonii, Salix wilsonii, and Salix suchowensis revealed that these genes are relatively conserved within the Salicaceae family, with variability primarily occurring in the ribosomal protein genes. The absence of the rps14, which encodes a ribosomal protein, may have played a role in the evolution of stress tolerance in Salicaceae plants. Additionally, we identified 232 SSRs, 19 tandem repeat sequences, and 236 dispersed repeat sequences in the S. psammophila mitochondrial genome, with palindromic and forward repeats being the most abundant. The longest palindromic repeat measured 260 bp, while the longest forward repeat was 86,068 bp. Furthermore, 324 potential RNA editing sites were discovered, all involving C-to-U edits, with the nad4 having the highest number of edits. These findings provide valuable insights into the phylogenetic and genetic research of Salicaceae plants.
Collapse
Affiliation(s)
- Hongxia Qiao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Yajuan Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Ruiping Wang
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Wei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Fengqiang Yu
- Ordos Forestry and Grassland Development Center, Ordos, China
| | - Haifeng Yang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, China
| | - Guiming Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| | - Jiewei Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing, China
| |
Collapse
|
17
|
Liu B, Long Q, Lv W, Shi Y, Li P, Liu L. Characterization of the complete mitogenome of Tiarella polyphylla, commonly known as Asian foamflower: insights into the multi-chromosomes structure and DNA transfers. BMC Genomics 2024; 25:883. [PMID: 39300339 DOI: 10.1186/s12864-024-10790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Tiarella polyphylla D. Don has been traditionally used to cure asthma and skin eruptions. However, the sequence and the structure of the mitogenome of T. polyphylla remained elusive, limiting the genomic and evolution analysis based on the mitogenome. RESULTS Using a combination of Illumina and Nanopore sequencing reads, we de novo assembled the complete mitogenome of T. polyphylla. In addition to unveiling the major configuration of the T. polyphylla mitogenome was three circular chromosomes with lengths of 430,435 bp, 126,943 bp, and 55,269 bp, we revealed five (R01-R05) and one (R06) repetitive sequence could mediate the intra- and inter-chromosomal recombination, respectively. Furthermore, we identified 208 short and 25 long tandem segments, seven cp-derived mtDNAs, 106 segments of mtDNAs transferred to the nuclear genome, and 653 predicted RNA editing sites. Based on the sequence of the mitogenomes, we obtained the resolved phylogeny of the seven Saxifragales species. CONCLUSIONS These results presented the mitogenome features and expanded its potential applications in phylogenetics, species identification, and cytoplasmic male sterility (CMS) in the future.
Collapse
Affiliation(s)
- Bo Liu
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang, 453003, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Qian Long
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Weiwei Lv
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475000, China
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475000, China
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, 450000, China
- Xinyang Academy of Ecological Research, Xinyang, 464000, China
| | - Pan Li
- Systematic & Evolutionary Botany and Biodiversity Group, MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Luxian Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475000, China.
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, 450000, China.
- Xinyang Academy of Ecological Research, Xinyang, 464000, China.
| |
Collapse
|
18
|
Shi Y, Chen Z, Jiang J, Wu W, Yu W, Zhang S, Zeng W. The assembly and comparative analysis of the first complete mitogenome of Lindera aggregata. FRONTIERS IN PLANT SCIENCE 2024; 15:1439245. [PMID: 39290737 PMCID: PMC11405213 DOI: 10.3389/fpls.2024.1439245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024]
Abstract
Lindera aggregata, a member belongs to the genus Lindera of Lauraceae family. Its roots and leaves have been used as traditional Chinese medicine or functional food for thousands of years. However, its mitochondrial genome has not been explored. Our aim is to sequence and assemble the mitogenome of L. aggregata to elucidate the genetic mechanism and evolutionary pathway. The results had shown that the mitogenome was extremely complex and had a unique multi-branched conformation with total size of 912,473 bp. Comprehensive analysis of protein coding genes of 7 related species showed that there were 40 common genes in their mitogenome. Interestingly, positive selection had become an important factor in the evolution of ccmB, ccmFC, rps10, rps11 and rps7 genes. Furthermore, our data highlighted the repeated trend of homologous fragment migrations between chloroplast and mitochondrial organelles, and 38 homologous fragments were identified. Phylogenetic analysis identified a tree that was basically consistent with the phylogeny of Laurales species described in the APG IV system. To sum up, this study will be helpful to the study of population genetics and evolution of Lindera species.
Collapse
Affiliation(s)
- Yujie Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China
| | - Zhen Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China
| | - Jingyong Jiang
- Institute of Horticulture, Taizhou Academy of Agricultural Sciences, Linhai, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang Agricultural and Forestry (A&F) University, Hangzhou, China
| | - Weifu Yu
- Zhejiang Hongshiliang Group Tiantai Mountain Wu-Yao Co., Ltd., RedRock Group, Taizhou, China
| | - Shumeng Zhang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China
| | - Wei Zeng
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, College of Life Sciences, Taizhou University, Taizhou, China
| |
Collapse
|
19
|
Liu GH, Zuo YW, Shan Y, Yu J, Li JX, Chen Y, Gong XY, Liao XM. Structural analysis of the mitochondrial genome of Santalum album reveals a complex branched configuration. Genomics 2024; 116:110935. [PMID: 39243912 DOI: 10.1016/j.ygeno.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.
Collapse
Affiliation(s)
- Guang-Hua Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, 418008 Huaihua, Hunan, China.; College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - You-Wei Zuo
- Center for Biodiversity Conservation and Utilization, Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Beibei, Chongqing, China.
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Jia-Xi Li
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Ying Chen
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xin-Yi Gong
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xiao-Min Liao
- Hunan University of Medicine General Hospital, 418008 Huaihua, Hunan, China..
| |
Collapse
|
20
|
Chu L, Du Q, Zuo S, Liu G, Wang H, Liu G, Zhao L, Xu G. Assembly and comparative analysis of the complete mitochondrial genome of Vaccinium carlesii Dunn. Genomics 2024; 116:110897. [PMID: 39032617 DOI: 10.1016/j.ygeno.2024.110897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Vaccinium L. is an important fruit tree with nutritional, medicinal, and ornamental values. However, the mitochondrial (mt) genome of Vaccinium L. remains largely unexplored. Vaccinium carlesii Dunn is an endemic wild resource in China, which is crucial for blueberry breeding. The V. carlesii mt genomes were sequenced using Illumina and Nanopore, which total length was 636,904 bp with 37 protein coding genes, 20 tRNA genes, and three rRNA genes. We found four pairs of long repeat fragments homologous recombination mediated the generation of substructures in the V. carlesii mt genome. We predicted 383 RNA editing sites, all converting cytosine (C) to uracil (U). According to the phylogenetic analysis, V. carlesii and V. macrocarpon of the Ericaceae exhibited the closest genetic relationship. This study provides a theoretical basis for understanding the evolution of higher plants, species classification and identification, and will also be useful for further utilization of Vaccinium germplasm resources.
Collapse
Affiliation(s)
- Liwei Chu
- College of Life and Health, Dalian University, Dalian 116622, China; Key Laboratory of Saccharide and Lipid Metabolism Research in Liaoning Province, Dalian University, Dalian 116622, China
| | - Qianhui Du
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Siyu Zuo
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guiting Liu
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Hexin Wang
- College of Life and Health, Dalian University, Dalian 116622, China
| | - Guoling Liu
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Lina Zhao
- Dalian Senmao Modern Agriculture Co., Ltd., Dalian 116622, China
| | - Guohui Xu
- College of Life and Health, Dalian University, Dalian 116622, China.
| |
Collapse
|
21
|
Xie P, Wu J, Lu M, Tian T, Wang D, Luo Z, Yang D, Li L, Yang X, Liu D, Cheng H, Tan J, Yang H, Zhu D. Assembly and comparative analysis of the complete mitochondrial genome of Fritillaria ussuriensis Maxim. (Liliales: Liliaceae), an endangered medicinal plant. BMC Genomics 2024; 25:773. [PMID: 39118028 PMCID: PMC11312713 DOI: 10.1186/s12864-024-10680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Fritillaria ussuriensis is an endangered medicinal plant known for its notable therapeutic properties. Unfortunately, its population has drastically declined due to the destruction of forest habitats. Thus, effectively protecting F. ussuriensis from extinction poses a significant challenge. A profound understanding of its genetic foundation is crucial. To date, research on the complete mitochondrial genome of F. ussuriensis has not yet been reported. RESULTS The complete mitochondrial genome of F. ussuriensis was sequenced and assembled by integrating PacBio and Illumina sequencing technologies, revealing 13 circular chromosomes totaling 737,569 bp with an average GC content of 45.41%. A total of 55 genes were annotated in this mitogenome, including 2 rRNA genes, 12 tRNA genes, and 41 PCGs. The mitochondrial genome of F. ussuriensis contained 192 SSRs and 4,027 dispersed repeats. In the PCGs of F. ussuriensis mitogenome, 90.00% of the RSCU values exceeding 1 exhibited a preference for A-ended or U-ended codons. In addition, 505 RNA editing sites were predicted across these PCGs. Selective pressure analysis suggested negative selection on most PCGs to preserve mitochondrial functionality, as the notable exception of the gene nad3 showed positive selection. Comparison between the mitochondrial and chloroplast genomes of F. ussuriensis revealed 20 homologous fragments totaling 8,954 bp. Nucleotide diversity analysis revealed the variation among genes, and gene atp9 was the most notable. Despite the conservation of GC content, mitogenome sizes varied significantly among six closely related species, and colinear analysis confirmed the lack of conservation in their genomic structures. Phylogenetic analysis indicated a close relationship between F. ussuriensis and Lilium tsingtauense. CONCLUSIONS In this study, we sequenced and annotated the mitogenome of F. ussuriensis and compared it with the mitogenomes of other closely related species. In addition to genomic features and evolutionary position, this study also provides valuable genomic resources to further understand and utilize this medicinal plant.
Collapse
Affiliation(s)
- Ping Xie
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jingru Wu
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Mengyue Lu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Tongxin Tian
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Dongmei Wang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Zhiwen Luo
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Donghong Yang
- Affiliated Stomatological Hospital, Jiamusi University, Jiamusi, 154002, Heilongjiang, China
| | - Lili Li
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Xuewen Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Decai Liu
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Haitao Cheng
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Jiaxin Tan
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - Hongsheng Yang
- College of Biology and Agriculture, Jiamusi University, Jiamusi, 154007, Heilongjiang, China.
| | - Dequan Zhu
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
22
|
Jiang Z, Chen Y, Zhang X, Meng F, Chen J, Cheng X. Assembly and evolutionary analysis of the complete mitochondrial genome of Trichosanthes kirilowii, a traditional Chinese medicinal plant. PeerJ 2024; 12:e17747. [PMID: 39035164 PMCID: PMC11260417 DOI: 10.7717/peerj.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Trichosanthes kirilowii (T. kirilowii) is a valuable plant used for both medicinal and edible purposes. It belongs to the Cucurbitaceae family. However, its phylogenetic position and relatives have been difficult to accurately determine due to the lack of mitochondrial genomic information. This limitation has been an obstacle to the potential applications of T. kirilowii in various fields. To address this issue, Illumina and Nanopore HiFi sequencing were used to assemble the mitogenome of T. kirilowii into two circular molecules with sizes of 245,700 bp and 107,049 bp, forming a unique multi-branched structure. The mitogenome contains 61 genes, including 38 protein-coding genes (PCGs), 20 tRNAs, and three rRNAs. Within the 38 PCGs of the T. kirilowii mitochondrial genome, 518 potential RNA editing sites were identified. The study also revealed the presence of 15 homologous fragments that span both the chloroplast and mitochondrial genomes. The phylogenetic analysis strongly supports that T. kirilowii belongs to the Cucurbitaceae family and is closely related to Luffa. Collinearity analysis of five Cucurbitaceae mitogenomes shows a high degree of structural variability. Interestingly, four genes, namely atp1, ccmFC, ccmFN, and matR, played significant roles in the evolution of T. kirilowii through selection pressure analysis. The comparative analysis of the T. kirilowii mitogenome not only sheds light on its functional and structural features but also provides essential information for genetic studies of the genus of Cucurbitaceae.
Collapse
Affiliation(s)
- Zhuanzhuan Jiang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Yuhan Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xingyu Zhang
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Fansong Meng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Jinli Chen
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| | - Xu Cheng
- Anqing Normal University, Anqing, Anhui, China
- Provincial Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui, China
| |
Collapse
|
23
|
Hao Z, Zhang Z, Jiang J, Pan L, Zhang J, Cui X, Li Y, Li J, Luo L. Complete mitochondrial genome of Melia azedarach L., reveals two conformations generated by the repeat sequence mediated recombination. BMC PLANT BIOLOGY 2024; 24:645. [PMID: 38972991 PMCID: PMC11229266 DOI: 10.1186/s12870-024-05319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Melia azedarach is a species of enormous value of pharmaceutical industries. Although the chloroplast genome of M. azedarach has been explored, the information of mitochondrial genome (Mt genome) remains surprisingly limited. In this study, we used a hybrid assembly strategy of BGI short-reads and Nanopore long-reads to assemble the Mt genome of M. azedarach. The Mt genome of M. azedarach is characterized by two circular chromosomes with 350,142 bp and 290,387 bp in length, respectively, which encodes 35 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes. A pair of direct repeats (R1 and R2) were associated with genome recombination, resulting in two conformations based on the Sanger sequencing and Oxford Nanopore sequencing. Comparative analysis identified 19 homologous fragments between Mt and chloroplast genome, with the longest fragment of 12,142 bp. The phylogenetic analysis based on PCGs were consist with the latest classification of the Angiosperm Phylogeny Group. Notably, a total of 356 potential RNA editing sites were predicted based on 35 PCGs, and the editing events lead to the formation of the stop codon in the rps10 gene and the start codons in the nad4L and atp9 genes, which were verified by PCR amplification and Sanger sequencing. Taken together, the exploration of M. azedarach gap-free Mt genome provides a new insight into the evolution research and complex mitogenome architecture.
Collapse
Affiliation(s)
- Zhigang Hao
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
- Hainan Seed Industry Laboratory, Sanya, Hainan, 572025, China
| | - Zhiping Zhang
- Department of Pesticide Science, College of Plant Protection, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Juan Jiang
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
| | - Lei Pan
- CAIQ Center for Biosafety in Sanya, Sanya, Hainan, 572000, China
| | - Jinan Zhang
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Xiufen Cui
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China
| | - Yingbin Li
- Department of Pesticide Science, College of Plant Protection, State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jianqiang Li
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China.
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| | - Laixin Luo
- Sanya Institute of China Agricultural University, Sanya, Hainan, 572025, China.
- Department of Plant Pathology, Beijing Key Laboratory of Seed Disease Testing and Control, MOA Key Lab of Pest Monitoring and Green Management, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Doré G, Barloy D, Barloy-Hubler F. De Novo Hybrid Assembly Unveils Multi-Chromosomal Mitochondrial Genomes in Ludwigia Species, Highlighting Genomic Recombination, Gene Transfer, and RNA Editing Events. Int J Mol Sci 2024; 25:7283. [PMID: 39000388 PMCID: PMC11242644 DOI: 10.3390/ijms25137283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules.
Collapse
Affiliation(s)
- Guillaume Doré
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | - Dominique Barloy
- DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, INRAE, IFREMER, 35042 Rennes, France
| | | |
Collapse
|
25
|
Han F, Bi C, Zhao Y, Gao M, Wang Y, Chen Y. Unraveling the complex evolutionary features of the Cinnamomum camphora mitochondrial genome. PLANT CELL REPORTS 2024; 43:183. [PMID: 38922445 DOI: 10.1007/s00299-024-03256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Cinnamomum camphora for the first time, revealing frequent rearrangement events in the non-coding regions of Magnoliids mitochondrial genomes. As one of the representative species in the Lauraceae family of Magnoliids, Cinnamomum camphora holds significant economic and ecological value. In this study, the mitochondrial genome (mitogenome) of C. camphora was complete assembled and annotated using PacBio HiFi sequencing. The C. camphora mitogenome is characterized by a branch structure, spans 900,894 bp, and contains 43 protein-coding genes (PCGs), 24 tRNAs, and 3 rRNAs. Most of these PCGs are under purifying selection, with only two (ccmFc and rps7) exhibiting signs of positive selection. The C. camphora mitogenome contains numerous repetitive sequences and intracellular gene transfers, with a total of 36 mitochondrial plastid DNAs, amounting to a combined length of 23,816 bp. Comparative analysis revealed that the non-coding regions of Magnoliids mitogenomes have undergone frequent rearrangements during evolution, but the coding sequences remain highly conserved (more than 98% similarity for protein-coding sequences). Furthermore, a maximum-likelihood phylogenetic tree was reconstructed based on 25 PCGs from 23 plant mitogenomes. The analysis supports the closest relationship between C. camphora and C. chekiangense, consistent with the APG IV classification system. This study elucidates the unique evolutionary features of the C. camphora mitogenome, which will provide valuable insights into the study of genetics and evolution of the family Lauraceae.
Collapse
Affiliation(s)
- Fuchuan Han
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Changwei Bi
- State Key Laboratory of Tree Genetics and Breeding, Co-innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Tree Genetics and Biotechnology of Educational Department of China, Key Laboratory of Tree Genetics and Silvicultural Sciences of Jiangsu Province, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yunxiao Zhao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Ming Gao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Yangdong Wang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China
| | - Yicun Chen
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, No. 73, Daqiao Road, Fuyang, Hangzhou, 311400, Zhejiang, People's Republic of China.
| |
Collapse
|
26
|
Xie Y, Liu W, Guo L, Zhang X. Mitochondrial genome complexity in Stemona sessilifolia: nanopore sequencing reveals chloroplast gene transfer and DNA rearrangements. Front Genet 2024; 15:1395805. [PMID: 38903753 PMCID: PMC11188483 DOI: 10.3389/fgene.2024.1395805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria are semi-autonomous organelles in eukaryotic cells with their own genome. Plant mitogenomes differ from animal mitogenomes in size, structure, and repetitive DNA sequences. Despite larger sizes, plant mitogenomes do not have significantly more genes. They exhibit diverse structures due to variations in size, repetitive DNA, recombination frequencies, low gene densities, and reduced nucleotide substitution rates. In this study, we analyzed the mitochondrial genome of Stemona sessilifolia using Nanopore and Illumina sequencing. De-novo assembly and annotation were conducted using Unicycler, Geseq, tRNAscan-SE and BLASTN, followed by codon usage, repeat sequence, RNA-editing, synteny, and phylogenetic analyses. S. sessilifolia's mitogenome consisted of one linear contig and six circular contigs totaling 724,751 bp. It had 39 protein-coding genes, 27 tRNA genes, and 3 rRNA genes. Transfer of chloroplast sequences accounted for 13.14% of the mitogenome. Various analyses provided insights into genetic characteristics, evolutionary dynamics, and phylogenetic placement. Further investigations can explore transferred genes' functions and RNA-editing's role in mitochondrial gene expression in S. sessilifolia.
Collapse
Affiliation(s)
- Yuning Xie
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Wenqiong Liu
- Public Health Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liwen Guo
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Xuemei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China
- College of Life Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
27
|
Yu X, Ma Z, Liu S, Duan Z. Analysis of the Rhodomyrtus tomentosa mitochondrial genome: Insights into repeat-mediated recombination and intra-cellular DNA transfer. Gene 2024; 909:148288. [PMID: 38367854 DOI: 10.1016/j.gene.2024.148288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Plant mitochondrial genomes participate in encoding proteins crucial to the major producers of ATP in the cell and replication and heredity of their own DNA. The sequences and structure of the plant mitochondrial genomes profoundly impact these fundamental processes, and studies of plant mitochondrial genomes are needed. We reported the complete sequences of the Rhodomyrtus tomentosa mitochondrial genome here, totaling 400,482 bp. Nanopore ONT reads and PCR amplification provided evidence for recombination mediated by the eight repeat pairs for the R. tomentosa mitochondrial genome. Thirty-eight genes were identified in the R. tomentosa mitochondrial genome. Comparative analyses of the mitochondrial genome and plastome and PCR amplification suggest that five fragments of mitochondrial plastid DNA were unfunctional sequences resulting from intracellular gene transfer. Phylogenetic analysis based on each and all of the 27 mitochondrial protein-coding genes of nine Myrtales species revealed that R. tomentosa always clustered with other species of Myrtaceae. This study uncovered the enormous complexity of the R. tomentosa mitochondrial genome, the active repeat-mediated recombinations, the presence of mitochondrial plastid DNAs, and the topological incongruence of Myrtales among the single-gene trees.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhengbing Ma
- Forestry Technology Extension Station of Huiyang, Huizhou 516211, Guangdong, China.
| | - Shu Liu
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| | - Zhonggang Duan
- School of Life Science, Huizhou University, Huizhou 516007, Guangdong, China.
| |
Collapse
|
28
|
Guo L, Lao G, He L, Xiao D, Zhan J, Wang A. De Novo Assembly and Comparative Analysis of Mitochondrial Genomes of Two Pueraria montana Varieties. Int J Mol Sci 2024; 25:5656. [PMID: 38891844 PMCID: PMC11171644 DOI: 10.3390/ijms25115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Pueraria montana is a species with important medicinal value and a complex genetic background. In this study, we sequenced and assembled the mitochondrial (mt) genomes of two varieties of P. montana. The mt genome lengths of P. montana var. thomsonii and P. montana var. montana were 457,390 bp and 456,731 bp, respectively. Both P. montana mitogenomes showed a multi-branched structure consisting of two circular molecules, with 56 genes annotated, comprising 33 protein-coding genes, 18 tRNA genes (trnC-GCA and trnM-CAU are multi-copy genes), and 3 rRNA genes. Then, 207 pairs of long repeats and 96 simple sequence repeats (SSRs) were detected in the mt genomes of P. montana, and 484 potential RNA-editing sites were found across the 33 mitochondrial protein-coding genes of each variety. Additionally, a syntenic sequence analysis showed a high collinearity between the two mt genomes. This work is the first to analyze the mt genomes of P. montana. It can provide information that can be used to analyze the structure of mt genomes of higher plants and provide a foundation for future comparative genomic studies and evolutionary biology research in related species.
Collapse
Affiliation(s)
- Lijun Guo
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
| | - Guoren Lao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
| | - Longfei He
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning 530004, China;
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| | - Aiqin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China; (L.G.); (G.L.); (D.X.); (J.Z.)
- Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning 530004, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning 530004, China
| |
Collapse
|
29
|
Shan Y, Li J, Duan X, Zhang X, Yu J. Elucidating the multichromosomal structure within the Brasenia schreberi mitochondrial genome through assembly and analysis. BMC Genomics 2024; 25:422. [PMID: 38684976 PMCID: PMC11059650 DOI: 10.1186/s12864-024-10331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Brasenia schreberi, a plant species traditionally utilized in Chinese medicine and cuisine, represents an early evolutionary stage among flowering plants (angiosperms). While the plastid genome of this species has been published, its mitochondrial genome (mitogenome) has not been extensively explored, with a notable absence of thorough comparative analyses of its organellar genomes. In our study, we had assembled the entire mitogenome of B. schreberi utilizing the sequencing data derived from both Illumina platform and Oxford Nanopore. The B. schreberi mitogenome mostly exists as six circular DNA molecules, with the largest being 628,257 base pairs (bp) and the smallest 110,220 bp, amounting to 1.49 megabases (Mb). Then we annotated the mitogenome of B. schreberi. The mitogenome encompasses a total of 71 genes: 40 of these are coding proteins genes (PCGs), 28 are genes for transfer RNA (tRNA), and the remaining 3 are genes for ribosomal RNA (rRNA). In the analysis of codon usage, we noted a unique codon preference specific to each amino acid. The most commonly used codons exhibited an average RSCU of 1.36, indicating a noticeable bias in codon selection. In the repeat sequence analysis, a total of 553 simple sequence repeats (SSRs) were identified, 1,822 dispersed repeats (comprising 1,015 forward and 807 palindromic repeats), and 608 long terminal repeats (LTRs). Additionally, in the analysis of homologous sequences between organelle genomes, we detected 38 homologous sequences derived from the plastid genome, each exceeding 500 bp, within the B. schreberi mitochondrial genome. Notably, ten tRNA genes (trnC-GCA, trnM-CAU, trnI-CAU, trnQ-UUG, trnN-GUU, trnT-GGU, trnW-CCA, trnA-UGC, trnI-GAU, and trnV-GAC) appear to have been completely transferred from the chloroplast to the mitogenome. Utilizing the Deepred-mt to predict the RNA editing sites in the mitogenome, we have identified 675 high-quality RNA editing sites in the 40 mitochondrial PCGs. In the final stage of our study, we performed an analysis of colinearity and inferred the phylogenetic relationship of B. schreberi with other angiosperms, utilizing the mitochondrial PCGs as a basis. The results showed that the non-coding regions of the B. schreberi mitogenome are characterized by an abundance of repetitive sequences and exogenous sequences, and B. schreberi is more closely related with Euryale ferox.
Collapse
Affiliation(s)
- Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xinmei Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Chen S, Safiul Azam FM, Akter ML, Ao L, Zou Y, Qian Y. The first complete chloroplast genome of Thalictrum fargesii: insights into phylogeny and species identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1356912. [PMID: 38745930 PMCID: PMC11092384 DOI: 10.3389/fpls.2024.1356912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024]
Abstract
Introduction Thalictrum fargesii is a medicinal plant belonging to the genus Thalictrum of the Ranunculaceae family and has been used in herbal medicine in the Himalayan regions of China and India. This species is taxonomically challenging because of its morphological similarities to other species within the genus. Thus, herbal drugs from this species are frequently adulterated, substituted, or mixed with other species, thereby endangering consumer safety. Methods The present study aimed to sequence and assemble the entire chloroplast (cp) genome of T. fargesii using the Illumina HiSeq 2500 platform to better understand the genomic architecture, gene composition, and phylogenetic relationships within the Thalictrum. Results and discussion The cp genome was 155,929 bp long and contained large single-copy (85,395 bp) and small single-copy (17,576 bp) regions that were segregated by a pair of inverted repeat regions (26,479 bp) to form a quadripartite structure. The cp genome contains 133 genes, including 88 protein-coding genes (PCGs), 37 tRNA genes, and 8 rRNA genes. Additionally, this genome contains 64 codons that encode 20 amino acids, the most preferred of which are alanine and leucine. We identified 68 SSRs, 27 long repeats, and 242 high-confidence C-to-U RNA-editing sites in the cp genome. Moreover, we discovered seven divergent hotspot regions in the cp genome of T. fargesii, among which ndhD-psaC and rpl16-rps3 may be useful for developing molecular markers for identifying ethnodrug species and their contaminants. A comparative study with eight other species in the genus revealed that pafI and rps19 had highly variable sites in the cp genome of T. fargesii. Additionally, two special features, (i) the shortest length of the ycf1 gene at the IRA-SSC boundary and (ii) the distance between the rps19 fragment and trnH at the IRA-LSC junction, distinguish the cp genome of T. fargesii from those of other species within the genus. Furthermore, phylogenetic analysis revealed that T. fargesii was closely related to T. tenue and T. petaloidium. Conclusion Considering all these lines of evidence, our findings offer crucial molecular and evolutionary information that could play a significant role in further species identification, evolution, and phylogenetic studies on T. fargesii.
Collapse
Affiliation(s)
- Shixi Chen
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Fardous Mohammad Safiul Azam
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Mst. Lovely Akter
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Li Ao
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Yuanchao Zou
- College of Life Science, Neijiang Normal University, Neijiang, Sichuan, China
- Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Key Laboratory of Sichuan Province, Neijiang Normal University, Sichuan, China
| | - Ye Qian
- Branch of The First Affiliated Hospital of Xinjiang Medical University, Changji, Xinjiang, China
| |
Collapse
|
31
|
Xu C, Li J, Song LY, Guo ZJ, Song SW, Zhang LD, Zheng HL. PlantC2U: deep learning of cross-species sequence landscapes predicts plastid C-to-U RNA editing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2266-2279. [PMID: 38190348 DOI: 10.1093/jxb/erae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/07/2024] [Indexed: 01/10/2024]
Abstract
In plants, C-to-U RNA editing mainly occurs in plastid and mitochondrial transcripts, which contributes to a complex transcriptional regulatory network. More evidence reveals that RNA editing plays critical roles in plant growth and development. However, accurate detection of RNA editing sites using transcriptome sequencing data alone is still challenging. In the present study, we develop PlantC2U, which is a convolutional neural network, to predict plastid C-to-U RNA editing based on the genomic sequence. PlantC2U achieves >95% sensitivity and 99% specificity, which outperforms the PREPACT tool, random forests, and support vector machines. PlantC2U not only further checks RNA editing sites from transcriptome data to reduce possible false positives, but also assesses the effect of different mutations on C-to-U RNA editing based on the flanking sequences. Moreover, we found the patterns of tissue-specific RNA editing in the mangrove plant Kandelia obovata, and observed reduced C-to-U RNA editing rates in the cold stress response of K. obovata, suggesting their potential regulatory roles in plant stress adaptation. In addition, we present RNAeditDB, available online at https://jasonxu.shinyapps.io/RNAeditDB/. Together, PlantC2U and RNAeditDB will help researchers explore the RNA editing events in plants and thus will be of broad utility for the plant research community.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shi-Wei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lu-Dan Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
32
|
Niu Y, Gao C, Liu J. Mitochondrial genome variation and intergenomic sequence transfers in Hevea species. FRONTIERS IN PLANT SCIENCE 2024; 15:1234643. [PMID: 38660449 PMCID: PMC11039855 DOI: 10.3389/fpls.2024.1234643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Among the Hevea species, rubber tree (Hevea brasiliensis) is the most important source of natural rubber. In previous studies, we sequenced the complete nuclear and chloroplast genomes of Hevea species, providing an invaluable resource for studying their phylogeny, disease resistance, and breeding. However, given that plant mitochondrial genomes are more complex and more difficult to assemble than that of the other organelles, little is known about their mitochondrial genome, which limits the comprehensive understanding of Hevea genomic evolution. In this study, we sequenced and assembled the mitochondrial genomes of four Hevea species. The four mitochondrial genomes had consistent GC contents, codon usages and AT skews. However, there were significant differences in the genome lengths and sequence repeats. Specifically, the circular mitochondrial genomes of the four Hevea species ranged from 935,732 to 1,402,206 bp, with 34-35 unique protein-coding genes, 35-38 tRNA genes, and 6-13 rRNA genes. In addition, there were 17,294-46,552 bp intergenomic transfer fragments between the chloroplast and mitochondrial genomes, consisting of eight intact genes (psaA, rrn16S, tRNA-Val, rrn5S, rrn4.5S, tRNA-Arg, tRNA-Asp, and tRNA-Asn), intergenic spacer regions and partial gene sequences. The evolutionary position of Hevea species, crucial for understanding its adaptive strategies and relation to other species, was verified by phylogenetic analysis based on the protein-coding genes in the mitochondrial genomes of 21 Malpighiales species. The findings from this study not only provide valuable insights into the structure and evolution of the Hevea mitochondrial genome but also lay the foundation for further molecular, evolutionary studies, and genomic breeding studies on rubber tree and other Hevea species, thereby potentially informing conservation and utilization strategies.
Collapse
Affiliation(s)
- Yingfeng Niu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| | - Chengwen Gao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jin Liu
- Yunnan Institute of Tropical Crops, National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Key Laboratory of Sustainable Utilization Research on Rubber Tree, Xishuangbanna, China
| |
Collapse
|
33
|
Chen L, Dong X, Huang H, Xu H, Rono PC, Cai X, Hu G. Assembly and comparative analysis of the initial complete mitochondrial genome of Primulina hunanensis (Gesneriaceae): a cave-dwelling endangered plant. BMC Genomics 2024; 25:322. [PMID: 38561677 PMCID: PMC10983754 DOI: 10.1186/s12864-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Primulina hunanensis, a troglobitic plant within the Primulina genus of Gesneriaceae family, exhibits robust resilience to arid conditions and holds great horticultural potential as an ornamental plant. The work of chloroplast genome (cpDNA) has been recently accomplished, however, the mitochondrial genome (mtDNA) that is crucial for plant evolution has not been reported. RESULTS In this study, we sequenced and assembled the P. hunanensis complete mtDNA, and elucidated its evolutionary and phylogenetic relationships. The assembled mtDNA spans 575,242 bp with 43.54% GC content, encompassing 60 genes, including 37 protein-coding genes (PCGs), 20 tRNA genes, and 3 rRNA genes. Notably, high number of repetitive sequences in the mtDNA and substantial sequence translocation from chloroplasts to mitochondria were observed. To determine the evolutionary and taxonomic positioning of P. hunanensis, a phylogenetic tree was constructed using mitochondrial PCGs from P. hunanensis and 32 other taxa. Furthermore, an exploration of PCGs relative synonymous codon usage, identification of RNA editing events, and an investigation of collinearity with closely related species were conducted. CONCLUSIONS This study reports the initial assembly and annotation of P. hunanensis mtDNA, contributing to the limited mtDNA repository for Gesneriaceae plants and advancing our understanding of their evolution for improved utilization and conservation.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hang Huang
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haixia Xu
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Peninah Cheptoo Rono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiuzhen Cai
- Department of Botany, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
| | - Guangwan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
34
|
Liu J, Feng Y, Chen C, Yan J, Bai X, Li H, Lin C, Xiang Y, Tian W, Qi Z, Yu J, Yan X. Genomic insights into the clonal reproductive Opuntia cochenillifera: mitochondrial and chloroplast genomes of the cochineal cactus for enhanced understanding of structural dynamics and evolutionary implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1347945. [PMID: 38516667 PMCID: PMC10954886 DOI: 10.3389/fpls.2024.1347945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Background The cochineal cactus (Opuntia cochenillifera), notable for its substantial agricultural and industrial applications, predominantly undergoes clonal reproduction, which presents significant challenges in breeding and germplasm innovation. Recent developments in mitochondrial genome engineering offer promising avenues for introducing heritable mutations, potentially facilitating selective sexual reproduction through the creation of cytoplasmic male sterile genotypes. However, the lack of comprehensive mitochondrial genome information for Opuntia species hinders these efforts. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of the O. cochenillifera using DNBSEQ and Nanopore platforms. The mitochondrial genome was then assembled using a hybrid assembly strategy using Unicycler software. We found that the mitochondrial genome of O. cochenillifera has a length of 1,156,235 bp, a GC content of 43.06%, and contains 54 unique protein-coding genes and 346 simple repeats. Comparative genomic analysis revealed 48 homologous fragments shared between mitochondrial and chloroplast genomes, with a total length of 47,935 bp. Additionally, the comparison of mitochondrial genomes from four Cactaceae species highlighted their dynamic nature and frequent mitogenomic reorganizations. Conclusion Our study provides a new perspective on the evolution of the organelle genome and its potential application in genetic breeding. These findings offer valuable insights into the mitochondrial genetics of Cactaceae, potentially facilitating future research and breeding programs aimed at enhancing the genetic diversity and adaptability of O. cochenillifera by leveraging its unique mitochondrial genome characteristics.
Collapse
Affiliation(s)
- Jing Liu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuqing Feng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Chen
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Jing Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xinyu Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huiru Li
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Chen Lin
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yinan Xiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wen Tian
- Animal Plant and Food Inspection Center of Nanjing Customs District, Nanjing, China
| | - Zhechen Qi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yu
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Xiaoling Yan
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
35
|
Cadorna CAE, Pahayo DG, Rey JD. The first mitochondrial genome of Calophyllum soulattri Burm.f. Sci Rep 2024; 14:5112. [PMID: 38429360 PMCID: PMC10907642 DOI: 10.1038/s41598-024-55016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
Calophyllum soulattri Burm.f. is traditionally used to treat skin infections and reduce rheumatic pain, yet genetic and genomic studies are still limited. Here, we present the first complete mitochondrial genome of C. soulattri. It is 378,262 bp long with 43.97% GC content, containing 55 genes (30 protein-coding, 5 rRNA, and 20 tRNA). Repeat analysis of the mitochondrial genome revealed 194 SSRs, mostly mononucleotides, and 266 pairs of dispersed repeats ( ≥ 30 bp) that were predominantly palindromic. There were 23 homologous fragments found between the mitochondrial and plastome genomes. We also predicted 345 C-to-U RNA editing sites from 30 protein-coding genes (PCGs) of the C. soulatrii mitochondrial genome. These RNA editing events created the start codon of nad1 and the stop codon of ccmFc. Most PCGs of the C. soulattri mitochondrial genome underwent negative selection, but atp4 and ccmB experienced positive selection. Phylogenetic analyses showed C. soulattri is a sister taxon of Garcinia mangostana. This study has shed light on C. soulattri's evolution and Malpighiales' phylogeny. As the first complete mitochondrial genome in Calophyllaceae, it can be used as a reference genome for other medicinal plant species within the family for future genetic studies.
Collapse
Affiliation(s)
- Charles Anthon E Cadorna
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Dexter G Pahayo
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines
| | - Jessica D Rey
- Plant Molecular Phylogenetics Laboratory, Institute of Biology, College of Science, University of the Philippines, Diliman, 1101, Quezon City, Philippines.
| |
Collapse
|
36
|
Guo S, Li Z, Li C, Liu Y, Liang X, Qin Y. Assembly and characterization of the complete mitochondrial genome of Ventilago leiocarpa. PLANT CELL REPORTS 2024; 43:77. [PMID: 38386216 DOI: 10.1007/s00299-023-03126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE We reported the mitochondrial genome of Ventilago leiocarpa for the first time. Two and one sites lead to the generation of stop and stat codon through editing were verified. Ventilago leiocarpa, a member of the Rhamnaceae family, is frequently utilized in traditional medicine due to the medicinal properties of its roots. In this study, we successfully assembled the mitogenome of V. leiocarpa using both BGI short reads and Nanopore long reads. This mitogenome has a total length of 331,839 bp. The annotated results showed 36 unique protein-coding, 16 tRNA and 3 rRNA genes in this mitogenome. Furthermore, we confirmed the presence of a branched structure through the utilization of long reads mapping, PCR amplification, and Sanger sequencing. Specifically, the ctg1 can form a single circular molecule or combine with ctg4 to form a linear molecule. Likewise, ctg2 can form a single circular molecule or can be connected to ctg4 to form a linear molecule. Subsequently, through a comparative analysis of the mitogenome and cpgenome sequences, we identified ten mitochondrial plastid sequences (MTPTs), including two complete protein-coding genes and five complete tRNA genes. The existence of MTPTs was verified by long reads. Colinear analysis showed that the mitogenomes of Rosales were highly divergent in structure. Finally, we identified 545 RNA editing sites involving 36 protein-coding genes by Deepred-mt. To validate our findings, we conducted PCR amplification and Sanger sequencing, which confirmed the generation of stop codons in atp9-223 and rps10-391, as well as the generation of a start codon in nad4L-2. This project reported the complex structure and RNA editing event of the V. Leiocarpa mitogenome, which will provide valuable information for the study of mitochondrial gene expression.
Collapse
Affiliation(s)
- Song Guo
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Zeyang Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Chunlian Li
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China
| | - Yu Liu
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530010, People's Republic of China
| | - Xianglan Liang
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China
| | - Yiming Qin
- College of Food and Biochemical Engineering, Guangxi Science and Technology Normal University, Guangxi Laibin, 546199, People's Republic of China.
- Key Laboratory for Zhuang and Yao Pharmaceutical Quality Biology, Guangxi Science and Technology Normal University, Laibin, 546199, People's Republic of China.
| |
Collapse
|
37
|
Tang P, Ni Y, Li J, Lu Q, Liu C, Guo J. The Complete Mitochondrial Genome of Paeonia lactiflora Pall. (Saxifragales: Paeoniaceae): Evidence of Gene Transfer from Chloroplast to Mitochondrial Genome. Genes (Basel) 2024; 15:239. [PMID: 38397228 PMCID: PMC10888214 DOI: 10.3390/genes15020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Paeonia lactiflora (P. lactiflora), a perennial plant renowned for its medicinal roots, provides a unique case for studying the phylogenetic relationships of species based on organelle genomes, as well as the transference of DNA across organelle genomes. In order to investigate this matter, we sequenced and characterized the mitochondrial genome (mitogenome) of P. lactiflora. Similar to the chloroplast genome (cpgenome), the mitogenome of P. lactiflora extends across 181,688 base pairs (bp). Its unique quadripartite structure results from a pair of extensive inverted repeats, each measuring 25,680 bp in length. The annotated mitogenome includes 27 protein-coding genes, 37 tRNAs, 8 rRNAs, and two pseudogenes (rpl5, rpl16). Phylogenetic analysis was performed to identify phylogenetic trees consistent with Paeonia species phylogeny in the APG Ⅳ system. Moreover, a total of 12 MTPT events were identified and 32 RNA editing sites were detected during mitogenome analysis of P. lactiflora. Our research successfully compiled and annotated the mitogenome of P. lactiflora. The study provides valuable insights regarding the taxonomic classification and molecular evolution within the Paeoniaceae family.
Collapse
Affiliation(s)
- Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Yang Ni
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jingling Li
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Qianqi Lu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100093, China; (Y.N.); (J.L.); (Q.L.)
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
38
|
Li C, Liu H, Qin M, Tan YJ, Ou XL, Chen XY, Wei Y, Zhang ZJ, Lei M. RNA editing events and expression profiles of mitochondrial protein-coding genes in the endemic and endangered medicinal plant, Corydalis saxicola. FRONTIERS IN PLANT SCIENCE 2024; 15:1332460. [PMID: 38379941 PMCID: PMC10876856 DOI: 10.3389/fpls.2024.1332460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Corydalis saxicola, an endangered medicinal plant endemic to karst habitats, is widely used in Traditional Chinese Medicine to treat hepatitis, abdominal pain, bleeding hemorrhoids and other conditions. However, to date, the mitochondrial (mt) genome of C. saxicola has not been reported, which limits our understanding of the genetic and biological mechanisms of C. saxicola. Here, the mt genome of C. saxicola was assembled by combining the Nanopore and Illumina reads. The mt genome of C. saxicola is represented by a circular chromosome which is 587,939 bp in length, with an overall GC content of 46.50%. 40 unique protein-coding genes (PCGs), 22 tRNA genes and three rRNA genes were identified. Codon usage of the PCGs was investigated and 167 simple sequence repeats were identified. Twelve homologous fragments were identified between the mt and ct genomes of C. saxicola, accounting for 1.04% of the entire mt genome. Phylogenetic examination of the mt genomes of C. saxicola and 30 other taxa provided an understanding of their evolutionary relationships. We also predicted 779 RNA editing sites in 40 C. saxicola mt PCGs and successfully validated 506 (65%) of these using PCR amplification and Sanger sequencing. In addition, we transcriptionally profiled 24 core mt PCGs in C. saxicola roots treated with different concentrations of CaCl2, as well as in other organs. These investigations will be useful for effective utilization and molecular breeding, and will also provide a reference for further studies of the genus Corydalis.
Collapse
Affiliation(s)
- Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Han Liu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yao-jing Tan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xia-lian Ou
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiao-ying Chen
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhan-jiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
39
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
40
|
Tang J, Luo Z, Zhang J, Chen L, Li L. Multi-Chromosomal mitochondrial genome of medicinal plant Acorus tatarinowii (Acoraceae): Firstly reported from Acorales Order. Gene 2024; 892:147847. [PMID: 37774807 DOI: 10.1016/j.gene.2023.147847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Acorus tatarinowii Schott (A. tatarinowii), a well-known traditional Chinese medicinal plant renowned for its high medicinal value, but its mitochondrial genome (mitogenome) is still unexplored. In this study, we meticulously assembled the complete mitochondrial genome of A. tatarinowii using a combination of Illumina short reads and Oxford Nanopore long reads. Our findings revealed that A. tatarinowii possesses a complex chromosomal structural mitogenome, comprising two linear chromosomes and seven circular chromosomes. This mitogenome spans 1.81 Mb in length with a GC content of 38.29 %. Notably, it contained 24 unique mitochondrial core genes, seven unique variable genes, 17 tRNA genes, and three rRNA genes. Analyses of codon usage, most protein-coding genes (PCGs) exhibited a common codon usage preference, with RSCU values greater than 1, and the codon with the highest RSCU value was UAA(End, 1.90). We conducted a thorough analysis of repeat sequences, the distribution of repetitive sequences in nine mitochondrial chromosomes showed distinct patterns. Moreover, we identified 82 and 12 homologous fragments by comparing the sequences of chloroplast and nuclear genomes to the A. tatarinowii mitogenome, respectively. Lastly, We predicted a total of 234 potential RNA editing sites in 28 unique PCGs and discovered that the nad4 gene has been edited the most often, at 26 times. Our results contribute to the enrichment of mitochondrial genome resources for Acoraceae, and the mitogenome also can be used as a reference for other species.
Collapse
Affiliation(s)
- Jianfeng Tang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Zongkai Luo
- Eco-Environmental Monitoring Station of Pu'er City, Yunnan Provincial Department of Ecology and Environment, Pu'er 665000, Yunnan, China
| | - Jing Zhang
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Liwen Chen
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecological and Environment, Wuhan 430010, Hubei, China
| | - Li Li
- Qiandongnan Ecological Environment Monitoring Center, Kaili 557314, Guizhou, China.
| |
Collapse
|
41
|
Liu J, Hu JY, Li DZ. Remarkable mitochondrial genome heterogeneity in Meniocus linifolius (Brassicaceae). PLANT CELL REPORTS 2024; 43:36. [PMID: 38200362 DOI: 10.1007/s00299-023-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/06/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE Detailed analyses of 16 genomes identified a remarkable acceleration of mutation rate, hence mitochondrial sequence and structural heterogeneity, in Meniocus linifolius (Brassicaceae). The powerhouse, mitochondria, in plants feature high levels of structural variation, while the encoded genes are normally conserved. However, the substitution rates and spectra of mitochondria DNA within the Brassicaceae, a family with substantial scientific and economic importance, have not been adequately deciphered. Here, by analyzing three newly assembled and 13 known mitochondrial genomes (mitogenomes), we report the highly variable genome structure and mutation rates in Brassicaceae. The genome sizes and GC contents are 196,604 bp and 46.83%, 288,122 bp and 44.79%, and 287,054 bp and 44.93%, for Meniocus linifolius (Mli), Crucihimalaya lasiocarpa (Cla), and Lepidium sativum (Lsa), respectively. In total, 29, 33, and 34 protein-coding genes (PCGs) and 14, 18, and 18 tRNAs are annotated for Mli, Cla, and Lsa, respectively, while all mitogenomes contain one complete circular molecule with three rRNAs and abundant RNA editing sites. The Mli mitogenome features four conformations likely mediated by the two pairs of long repeats, while at the same time seems to have an unusual evolutionary history due to higher GC content, loss of more genes and sequences, but having more repeats and plastid DNA insertions. Corroborating with these, an ambiguous phylogenetic position with long branch length and elevated synonymous substitution rate in nearly all PCGs are observed for Mli. Taken together, our results reveal a high level of mitogenome heterogeneity at the family level and provide valuable resources for further understanding the evolutionary pattern of organelle genomes in Brassicaceae.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity, Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
42
|
Yang H, Ni Y, Zhang X, Li J, Chen H, Liu C. The mitochondrial genomes of Panax notoginseng reveal recombination mediated by repeats associated with DNA replication. Int J Biol Macromol 2023; 252:126359. [PMID: 37619687 DOI: 10.1016/j.ijbiomac.2023.126359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023]
Abstract
Panax notoginseng is one of the most valuable medicinal species. However, its mitochondrial genome has not been reported yet. We aimed to determine the mitogenome sequence of P. notoginseng. We de novo assembled the mitogenome with Illumina short reads and Nanopore long reads. The mitochondrial genome of P. notoginseng has a multipartite structure consisting of interconversion between a "master circle" and numerous "subgenomic circles" through recombinations mediated by 64 pairs of repetitive sequences. Among the multipartite structure, seven subgenomic circles were best supported. Six of the seven subgenomic circles shared an 852 bp conserved fragment. The complete mitogenome of P. notoginseng was 662,479 bp long including 34 mitochondrial protein-coding genes (PCGs), three rRNA, and 19 tRNA genes. We identified 166 microsatellite repeats and 26 long-tandem repeats. Phylogenetic analysis resolved a tree that was mostly congruent with the phylogeny of Apiales species described in the APG IV system and the tree built with the chloroplast genome sequences. A total of 12 mitochondrial plastid DNA fragments were identified. Lastly, we predicted 591C-to-U RNA editing sites in the coding regions of mitochondrial PCGs. The mitochondrial genome will lay the foundation for understanding the evolution of Panax species.
Collapse
Affiliation(s)
- Heyu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Xinyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
43
|
Wang Y, Pan Z, Mou M, Xia W, Zhang H, Zhang H, Liu J, Zheng L, Luo Y, Zheng H, Yu X, Lian X, Zeng Z, Li Z, Zhang B, Zheng M, Li H, Hou T, Zhu F. A task-specific encoding algorithm for RNAs and RNA-associated interactions based on convolutional autoencoder. Nucleic Acids Res 2023; 51:e110. [PMID: 37889083 PMCID: PMC10682500 DOI: 10.1093/nar/gkad929] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanqi Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglin Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Zhang F, Kang H, Gao L. Complete Mitochondrial Genome Assembly of an Upland Wild Rice Species, Oryza granulata and Comparative Mitochondrial Genomic Analyses of the Genus Oryza. Life (Basel) 2023; 13:2114. [PMID: 38004254 PMCID: PMC10672236 DOI: 10.3390/life13112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Wild upland rice species, including Oryza granulata, possess unique characteristics that distinguish them from other Oryza species. For instance, O. granulata characteristically has a GG genome and is accordingly classified as a basal lineage of the genus Oryza. Here, we deployed a versatile hybrid approach by integrating Illumina and PacBio sequencing data to generate a high-quality mitochondrial genome (mitogenome) assembly for O. granulata. The mitogenome of O. granulata was 509,311 base pairs (bp) with sixty-seven genes comprising two circular chromosomes, five ribosomal RNA (rRNA) coding genes, twenty-five transfer RNA (tRNA) coding genes, and thirty-seven genes coding for proteins. We identified a total of 378 simple sequence repeats (SSRs). The genome also contained 643 pairs of dispersed repeats comprising 340 palindromic and 303 forward. In the O. granulata mitogenome, the length of 57 homologous fragments in the chloroplast genome occupied 5.96% of the mitogenome length. Collinearity analysis of three Oryza mitogenomes revealed high structural variability and frequent rearrangements. Phylogenetic analysis showed that, compared to other related genera, O. granulata had the closest genetic relationship with mitogenomes reported for all members of Oryza, and occupies a position at the base of the Oryza phylogeny. Comparative analysis of complete mitochondrial genome assemblies for Oryza species revealed high levels of mitogenomic diversity, providing a foundation for future conservation and utilization of wild rice biodiversity.
Collapse
Affiliation(s)
- Fen Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Haiqi Kang
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| | - Lizhi Gao
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Tropical Biodiversity and Genomics Research Center, Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Hainan University, Haikou 570228, China;
| |
Collapse
|
45
|
Zhu H, Shan Y, Li J, Zhang X, Yu J, Wang H. Assembly and comparative analysis of the complete mitochondrial genome of Viburnum chinshanense. BMC PLANT BIOLOGY 2023; 23:487. [PMID: 37821817 PMCID: PMC10566092 DOI: 10.1186/s12870-023-04493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Viburnum chinshanense is an endemic species found exclusively in the North-Central and South-Central regions of China. This species is a lush garden ornamental tree and is extensively utilized for vegetation restoration in rocky desertification areas. RESULTS In this study, we obtained 13.96 Gb of Oxford Nanopore data for the whole genome, and subsequently, by combining Illumina short-reads, we successfully assembled the complete mitochondrial genome (mitogenome) of the V. chinshanense using a hybrid assembly strategy. The assembled genome can be described as a circular genome. The total length of the V. chinshanense mitogenome measures 643,971 bp, with a GC content of 46.18%. Our annotation efforts have revealed a total of 39 protein-coding genes (PCGs), 28 tRNA genes, and 3 rRNA genes within the V. chinshanense mitogenome. The analysis of repeated elements has identified 212 SSRs, 19 long tandem repeat elements, and 325 pairs of dispersed repeats in the V. chinshanense mitogenome. Additionally, we have investigated mitochondrial plastid DNAs (MTPTs) and identified 21 MTPTs within the mitogenome and plastidial genome. These MTPTs collectively span a length of 9,902 bp, accounting for 1.54% of the mitogenome. Moreover, employing Deepred-mt, we have confidently predicted 623 C to U RNA editing sites across the 39 protein-coding genes. Furthermore, extensive genomic rearrangements have been observed between V. chinshanense and the mitogenomes of related species. Interestingly, we have also identified a bacterial-derived tRNA gene (trnC-GCA) in the V. chinshanense mitogenome. Lastly, we have inferred the phylogenetic relationships of V. chinshanense with other angiosperms based on mitochondrial PCGs. CONCLUSIONS This study marks the first report of a mitogenome from the Viburnum genus, offering a valuable genomic resource for exploring the evolution of mitogenomes within the Dipsacales order.
Collapse
Affiliation(s)
- Haoxiang Zhu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
| | - Haiyang Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, 400715, China.
| |
Collapse
|
46
|
Ni Y, Zhang X, Li J, Lu Q, Chen H, Ma B, Liu C. Genetic diversity of Coffea arabica L. mitochondrial genomes caused by repeat- mediated recombination and RNA editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1261012. [PMID: 37885664 PMCID: PMC10598636 DOI: 10.3389/fpls.2023.1261012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023]
Abstract
Background Coffea arabica L. is one of the most important crops widely cultivated in 70 countries across Asia, Africa, and Latin America. Mitochondria are essential organelles that play critical roles in cellular respiration, metabolism, and differentiation. C. arabica's nuclear and chloroplast genomes have been reported. However, its mitochondrial genome remained unreported. Here, we intended to sequence and characterize its mitochondrial genome to maximize the potential of its genomes for evolutionary studies, molecular breeding, and molecular marker developments. Results We sequenced the total DNA of C. arabica using Illumina and Nanopore platforms. We then assembled the mitochondrial genome with a hybrid strategy using Unicycler software. We found that the mitochondrial genome comprised two circular chromosomes with lengths of 867,678 bp and 153,529 bp, encoding 40 protein-coding genes, 26 tRNA genes, and three rRNA genes. We also detected 270 Simple Sequence Repeats and 34 tandem repeats in the mitochondrial genome. We found 515 high-scoring sequence pairs (HSPs) for a self-to-self similarity comparison using BLASTn. Three HSPs were found to mediate recombination by the mapping of long reads. Furthermore, we predicted 472 using deep-mt with the convolutional neural network model. Then we randomly validated 90 RNA editing events by PCR amplification and Sanger sequencing, with the majority being non-synonymous substitutions and only three being synonymous substitutions. These findings provide valuable insights into the genetic characteristics of the C. arabica mitochondrial genome, which can be helpful for future study on coffee breeding and mitochondrial genome evolution. Conclusion Our study sheds new light on the evolution of C. arabica organelle genomes and their potential use in genetic breeding, providing valuable data for developing molecular markers that can improve crop productivity and quality. Furthermore, the discovery of RNA editing events in the mitochondrial genome of C. arabica offers insights into the regulation of gene expression in this species, contributing to a better understanding of coffee genetics and evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chang Liu
- Center for Bioinformatics, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
47
|
Shan Y, Li J, Zhang X, Yu J. The complete mitochondrial genome of Amorphophallus albus and development of molecular markers for five Amorphophallus species based on mitochondrial DNA. FRONTIERS IN PLANT SCIENCE 2023; 14:1180417. [PMID: 37416891 PMCID: PMC10322194 DOI: 10.3389/fpls.2023.1180417] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Introduction Amorphophallus albus is an herbaceous, cormous, perennial plant used as a food source and traditional medicine in Asia. Methods In this study, we assembled and annotated the complete mitochondrial genome (mitogenome) of A. albus. Then we analyzed the repeated elements and mitochondrial plastid sequences (MTPTs), predicted RNA editing sites in mitochondrial protein-coding genes (PCGs). Lastly, we inferred the phylogenetic relationships of A. albus and other angiosperms based on mitochondrial PCGs, and designed two molecular markers based on mitochondrial DNA. Results and discussion The complete mitogenome of A. albus consists of 19 circular chromosomes. And the total length of A. albus mitogenome is 537,044 bp, with the longest chromosome measuring 56,458 bp and the shortest measuring 12,040 bp. We identified and annotated a total of 36 protein-coding genes (PCGs), 21 tRNA genes, and 3 rRNA genes in the mitogenome. Additionally, we analyzed mitochondrial plastid DNAs (MTPTs) and identified 20 MTPTs between the two organelle genomes, with a combined length of 22,421 bp, accounting for 12.76% of the plastome. Besides, we predicted a total of 676 C to U RNA editing sites on 36 protein-coding genes of high confidence using Deepred-mt. Furthermore, extensive genomic rearrangement was observed between A. albus and the related mitogenomes. We conducted phylogenetic analyses based on mitochondrial PCGs to determine the evolutionary relationships between A. albus and other angiosperms. Finally, we developed and validated two molecular markers, Ai156 and Ai976, based on two intron regions (nad2i156 and nad4i976) respectively. The discrimination success rate was 100 % in validation experiments for five widely grown konjac species. Our results reveal the multi-chromosome mitogenome of A. albus, and the developed markers will facilitate molecular identification of this genus.
Collapse
|
48
|
Zhang X, Shan Y, Li J, Qin Q, Yu J, Deng H. Assembly of the Complete Mitochondrial Genome of Pereskia aculeata Revealed That Two Pairs of Repetitive Elements Mediated the Recombination of the Genome. Int J Mol Sci 2023; 24:ijms24098366. [PMID: 37176072 PMCID: PMC10179450 DOI: 10.3390/ijms24098366] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Pereskia aculeata is a potential new crop species that has both food and medicinal (antinociceptive activity) properties. However, comprehensive genomic research on P. aculeata is still lacking, particularly concerning its organelle genome. In this study, P. aculeata was studied to sequence the mitochondrial genome (mitogenome) and to ascertain the assembly, informational content, and developmental expression of the mitogenome. The findings revealed that the mitogenome of P. aculeata is circular and measures 515,187 bp in length with a GC content of 44.05%. It contains 52 unique genes, including 33 protein-coding genes, 19 tRNA genes, and three rRNA genes. Additionally, the mitogenome analysis identified 165 SSRs, primarily consisting of tetra-nucleotides, and 421 pairs of dispersed repeats with lengths greater than or equal to 30, which were mainly forward repeats. Based on long reads and PCR experiments, we confirmed that two pairs of long-fragment repetitive elements were highly involved with the mitogenome recombination process. Furthermore, there were 38 homologous fragments detected between the mitogenome and chloroplast genome, and the longest fragment was 3962 bp. This is the first report on the mitogenome in the family Cactaceae. The decoding of the mitogenome of P. aculeata will provide important genetic materials for phylogenetic studies of Cactaceae and promote the utilization of species germplasm resources.
Collapse
Affiliation(s)
- Xue Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jingling Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Qiulin Qin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Hongping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
49
|
Qin S, Fan Y, Hu S, Wang Y, Wang Z, Cao Y, Liu Q, Tan S, Dai Z, Zhou W. iPReditor-CMG: Improving a predictive RNA editor for crop mitochondrial genomes using genomic sequence features and an optimal support vector machine. PHYTOCHEMISTRY 2022; 200:113222. [PMID: 35561852 DOI: 10.1016/j.phytochem.2022.113222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
In crops, RNA editing is one of the most important post-transcriptional processes in which specific cytidines (C) in virtually all mitochondrial protein-coding genes are converted to uridines (U). Despite extensive recent research in RNA editing, exploring all of the C-to-U editing events efficiently on the genomic scale remains challengeable. Developing accurate prediction methods for the detection of RNA editing sites would dramatically reduce experimental determination. Therefore, we propose a novel method, iPReditor-CMG (improved predictive RNA editor for crop mitochondrial genomes), to predict crop mitochondrial editing sites using genome sequence and an optimised support vector machine (SVM). We first selected three mitochondrial genomes with known RNA editing sites from Arabidopsis thaliana, Brassica napus and Oryza sativa, released by NCBI, as the training and test sets. The genes and their transcripts from self-sequenced tobacco mitochondrial ATPase were selected as the validation set. The iPReditor-CMG first coded the genome sequences as numerical vectors and then performed an efficient feature selection on the high-dimensional feature space, where the SVM was employed in feature selection and following modelling. The average independent prediction accuracy of intraspecific editing sites across three species was 0.85, and up to 0.91 in A. thaliana, which outperformed the reference models. For the interspecific independent prediction, the prediction accuracy between dicotyledons was 0.78 and the accuracy between dicotyledons and monocotyledons was 0.56, which implies that there might be similarity in the C-to-U editing mechanism in close relatives. Finally, the best model was identified with an independent test accuracy of 0.91 and an AUC of 0.88, which suggested that five unreported feature sequences, i.e. TGACA, ACAAC, GTAGA, CCGTT and TAACA, are closely associated with the editing phenomenon. Multiple tests supported that the iPReditor-CMG could be effectively applied to predict editing sites in crop mitochondria, which may further contribute to understanding the mechanisms of site editing and post-transcriptional events in crop mitochondria.
Collapse
Affiliation(s)
- Sidong Qin
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Yanjun Fan
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China; Shanxi Province Jincheng City Landscaping Service Center, Shanxi, 048000, China
| | - Shengnan Hu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Yongqiang Wang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Ziqi Wang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Yixiang Cao
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Qiyuan Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Siqiao Tan
- College of Information and Intelligence, Hunan Agricultural University, Changsha, 410128, China
| | - Zhijun Dai
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Zhou
- Hunan Provincial Engineering and Technology Research Center for Agricultural Big Data Analysis and Decision-Making, Hunan Agricultural University, Changsha, 410128, China; Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
50
|
Androsiuk P, Paukszto Ł, Jastrzębski JP, Milarska SE, Okorski A, Pszczółkowska A. Molecular Diversity and Phylogeny Reconstruction of Genus Colobanthus (Caryophyllaceae) Based on Mitochondrial Gene Sequences. Genes (Basel) 2022; 13:genes13061060. [PMID: 35741822 PMCID: PMC9222297 DOI: 10.3390/genes13061060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial genomes have become an interesting object of evolutionary and systematic study both for animals and plants, including angiosperms. Although the framework of the angiosperm phylogeny was built on the information derived from chloroplast and nuclear genes, mitochondrial sequences also revealed their usefulness in solving the phylogenetic issues at different levels of plant systematics. Here, we report for the first time the complete sequences of 26 protein-coding genes of eight Colobanthus species (Caryophyllaceae). Of these, 23 of them represented core mitochondrial genes, which are directly associated with the primary function of that organelle, and the remaining three genes represented a facultative set of mitochondrial genes. Comparative analysis of the identified genes revealed a generally high degree of sequence conservation. The Ka/Ks ratio was <1 for most of the genes, which indicated purifying selection. Only for rps12 was Ka/Ks > 1 in all studied species, suggesting positive selection. We identified 146−165 potential RNA editing sites in genes of the studied species, which is lower than in most angiosperms. The reconstructed phylogeny based on mitochondrial genes was consistent with the taxonomic position of the studied species, showing the separate character of the family Caryophyllaceae and close relationships between all studied Colobanthus species, with C. lycopodioides sharing less similarity.
Collapse
Affiliation(s)
- Piotr Androsiuk
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (S.E.M.)
- Correspondence: ; Tel.: +48-89-523-44-29
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland;
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (S.E.M.)
| | - Sylwia Eryka Milarska
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 1A, 10-719 Olsztyn, Poland; (J.P.J.); (S.E.M.)
| | - Adam Okorski
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.O.); (A.P.)
| | - Agnieszka Pszczółkowska
- Department of Entomology, Phytopathology and Molecular Diagnostics, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, ul. Prawocheńskiego 17, 10-720 Olsztyn, Poland; (A.O.); (A.P.)
| |
Collapse
|