1
|
Sharma P, Gautam S, Sharma A, Parsoya D, Deeba F, Pal N, Singh R, Sharma H, Bhomia N, Sharma RP, Potdar V, Malhotra B. Genomic surveillance of SARS-CoV-2 and emergence of XBB.1.16 variant in Rajasthan. Indian J Med Microbiol 2024; 50:100659. [PMID: 38945273 DOI: 10.1016/j.ijmmb.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Genomic surveillance of positive SARS-CoV-2 samples is important to monitor the genetic changes occurring in virus, this was enhanced after the WHO designation of XBB.1.16 as a variant under monitoring in March 2023. From 5th February till May 6, 2023 all positive SARS-CoV-2 samples were monitored for genetic changes. METHODS A total of 1757 samples having Ct value <25 (for E and ORF gene) from different districts of Rajasthan were processed for Next Generation Sequencing (NGS). The FASTA files obtained on sequencing were used for lineage determination using Nextclade and phylogenetic tree construction. RESULTS AND CONCLUSIONS Sequencing and lineage identification was done in 1624 samples. XBB.1.16 was the predominant lineage in 1413 (87.0%) cases while rest was other XBB (207, 12.74%) and other lineages (4, 0.2%). Of the 1413 XBB.1.16 cases, 57.47% were males and 42.53% were females. Majority (66.53%) belonged to 19-59 year age. 84.15% of XBB.1.16 cases were infected for the first time. Hospitalization was required in only 2.2% cases and death was reported in 5 (0.35%) patients. Most of the cases were symptomatic and the commonest symptoms were fever, cough and rhinorrhea. Co-morbidities were present in 414 (29.3%) cases. Enhanced genomic surveillance helped to rapidly identify the spread of XBB variant in Rajasthan. This in turn helped to take control measures to prevent spread of virus and estimate public health risks of the new variant relative to the previously circulating lineages. XBB variant was found to spread rapidly but produced milder disease.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Swati Gautam
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Abhaya Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Dinesh Parsoya
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Farah Deeba
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Nita Pal
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ruchi Singh
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Himanshu Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Neha Bhomia
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ravi P Sharma
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Varsha Potdar
- National Institute of Virology, Pune, Maharashtra, India.
| | - Bharti Malhotra
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| |
Collapse
|
2
|
Yang W, Wang Y, Han D, Tang W, Sun L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother 2024; 173:116423. [PMID: 38493593 DOI: 10.1016/j.biopha.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a global pandemic epidemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which poses a serious threat to human health worldwide and results in significant economic losses. With the continuous emergence of new virus strains, small molecule drugs remain the most effective treatment for COVID-19. The traditional drug development process usually requires several years; however, the development of computer-aided drug design (CADD) offers the opportunity to develop innovative drugs quickly and efficiently. The literature review describes the general process of CADD, the viral proteins that play essential roles in the life cycle of SARS-CoV-2 and can serve as therapeutic targets, and examples of drug screening of viral target proteins by applying CADD methods. Finally, the potential of CADD in COVID-19 therapy, the deficiency, and the possible future development direction are discussed.
Collapse
Affiliation(s)
- Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongfeng Han
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
Stewart J, Shawon J, Ali MA, Williams B, Shahinuzzaman ADA, Rupa SA, Al-Adhami T, Jia R, Bourque C, Faddis R, Stone K, Sufian MA, Islam R, McShan AC, Rahman KM, Halim MA. Antiviral peptides inhibiting the main protease of SARS-CoV-2 investigated by computational screening and in vitro protease assay. J Pept Sci 2024; 30:e3553. [PMID: 38031661 DOI: 10.1002/psc.3553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in viral replication and transcription and received great attention as a vital target for drug/peptide development. Therapeutic agents such as small-molecule drugs or peptides that interact with the Cys-His present in the catalytic site of Mpro are an efficient way to inhibit the protease. Although several emergency-approved vaccines showed good efficacy and drastically dropped the infection rate, evolving variants are still infecting and killing millions of people globally. While a small-molecule drug (Paxlovid) received emergency approval, small-molecule drugs have low target specificity and higher toxicity. Besides small-molecule drugs, peptide therapeutics are thus gaining increasing popularity as they are easy to synthesize and highly selective and have limited side effects. In this study, we investigated the therapeutic value of 67 peptides targeting Mpro using molecular docking. Subsequently, molecular dynamics (MD) simulations were implemented on eight protein-peptide complexes to obtain molecular-level information on the interaction between these peptides and the Mpro active site, which revealed that temporin L, indolicidin, and lymphocytic choriomeningitis virus (LCMV) GP1 are the best candidates in terms of stability, interaction, and structural compactness. These peptides were synthesized using the solid-phase peptide synthesis protocol, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), and authenticated by mass spectrometry (MS). The in vitro fluorometric Mpro activity assay was used to validate the computational results, where temporin L and indolicidin were observed to be very active against SARS-CoV-2 Mpro with IC50 values of 38.80 and 87.23 μM, respectively. A liquid chromatography-MS (LC-MS) assay was developed, and the IC50 value of temporin L was measured at 23.8 μM. The solution-state nuclear magnetic resonance (NMR) structure of temporin L was determined in the absence of sodium dodecyl sulfate (SDS) micelles and was compared to previous temporin structures. This combined investigation provides critical insights and assists us to further develop peptide inhibitors of SARS-CoV-2 Mpro through structural guided investigation.
Collapse
Affiliation(s)
- James Stewart
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Jakaria Shawon
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Ackas Ali
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Blaise Williams
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - A D A Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | | | - Taha Al-Adhami
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ruoqing Jia
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cole Bourque
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Ryan Faddis
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Kaylee Stone
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| | - Md Abu Sufian
- School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Rajib Islam
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Tejgaon, Dhaka, Bangladesh
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | - Andrew C McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Khondaker Miraz Rahman
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Science, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
4
|
Wei Z, Chen M, Lu X, Liu Y, Peng G, Yang J, Tang C, Yu P. A New Advanced Approach: Design and Screening of Affinity Peptide Ligands Using Computer Simulation Techniques. Curr Top Med Chem 2024; 24:667-685. [PMID: 38549525 DOI: 10.2174/0115680266281358240206112605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 05/31/2024]
Abstract
Peptides acquire target affinity based on the combination of residues in their sequences and the conformation formed by their flexible folding, an ability that makes them very attractive biomaterials in therapeutic, diagnostic, and assay fields. With the development of computer technology, computer-aided design and screening of affinity peptides has become a more efficient and faster method. This review summarizes successful cases of computer-aided design and screening of affinity peptide ligands in recent years and lists the computer programs and online servers used in the process. In particular, the characteristics of different design and screening methods are summarized and categorized to help researchers choose between different methods. In addition, experimentally validated sequences are listed, and their applications are described, providing directions for the future development and application of computational peptide screening and design.
Collapse
Affiliation(s)
- Zheng Wei
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Meilun Chen
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Xiaoling Lu
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Yijie Liu
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Guangnan Peng
- School of Life Science, Central South University, Changsha, Hunan, 410013, China
| | - Jie Yang
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Chunhua Tang
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| | - Peng Yu
- Xiangya School of Pharmacy, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
5
|
Sharker B, Islam MA, Hossain MAA, Ahmad I, Al Mamun A, Ghosh S, Rahman A, Hossain MS, Ashik MA, Hoque MR, Hossain MK, M Al Mamun, Haque MA, Patel H, Prodhan MY, Bhattacharya P, Haque MA. Characterization of lignin and hemicellulose degrading bacteria isolated from cow rumen and forest soil: Unveiling a novel enzymatic model for rice straw deconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166704. [PMID: 37657552 DOI: 10.1016/j.scitotenv.2023.166704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Application of greener pretreatment technology using robust ligninolytic bacteria for short duration to deconstruct rice straw and enhance bioethanol production is currently lacking. The objective of this study is to characterize three bacterial strains isolated from the milieux of cow rumen and forest soil and explore their capabilities of breaking down lignocellulose - an essential process in bioethanol production. Using biochemical and genomic analyses these strains were identified as Bacillus sp. HSTU-bmb18, Bacillus sp. HSTU-bmb19, and Citrobacter sp. HSTU-bmb20. Genomic analysis of the strains unveiled validated model hemicellulases, multicopper oxidases, and pectate lyases. These enzymes exhibited interactions with distinct lignocellulose substrates, further affirmed by their stability in molecular dynamic simulations. A comprehensive expression of ligninolytic pathways, including β-ketoadipate, phenyl acetate, and benzoate, was observed within the HSTU-bmb20 genome. The strains secreted approximately 75-82 U/mL of cellulase, xylase, pectinase, and lignin peroxidase. FT-IR analysis of the bacterial treated rice straw fibers revealed that the intensity of lignin-related peaks decreased, while cellulose-related peaks sharpened. The values of crystallinity index for the untreated control and the treated rice straw with either HSTU-bmb18, or HSTU-bmb19, or HSTU-bmb20 were recorded to be 34.48, 28.49, 29.36, 31.75, respectively, which are much higher than that of 13.53 noted for those treated with the bacterial consortium. The ratio of fermentable cellulose in rice straw increased by 1.25-, 1.79-, 1.93- and 2.17-fold following treatments with HSTU-bmb18, HSTU-bmb20, HSTU-bmb19, and a mixed consortium of these three strains, respectively. These aggregative results suggested a novel model for rice straw deconstruction utilizing hydrolytic enzymes of the consortium, revealing superior efficacy compared to individual strains, and advancing cost-effective, affordable, and sustainable green technology.
Collapse
Affiliation(s)
- Bishal Sharker
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj-2310, Kishoreganj, Bangladesh; COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Al Amin Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002, India
| | - Abdullah Al Mamun
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Sibdas Ghosh
- Department of Biological Sciences, College of Arts and Sciences, Carlow University, 3333 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Shohorab Hossain
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh; Department of Biochemistry and Molecular Biology, Trust University, Barishal, Bangladesh
| | - Md Ashikujjaman Ashik
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Bangladesh
| | - Md Rayhanul Hoque
- Department of Soil Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M Al Mamun
- Materials Science Division, Atomic Energy Centre Dhaka, Bangladesh Atomic Energy Commission, Dhaka 1000, Bangladesh
| | - Md Atiqul Haque
- Department of Microbiology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh; Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Md Yeasin Prodhan
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 10044 Stockholm, Sweden.
| | - Md Azizul Haque
- Department of Biochemistry and Molecular Biology, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
| |
Collapse
|
6
|
Islam MA. A review of SARS-CoV-2 variants and vaccines: Viral properties, mutations, vaccine efficacy, and safety. INFECTIOUS MEDICINE 2023; 2:247-261. [PMID: 38205179 PMCID: PMC10774670 DOI: 10.1016/j.imj.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 01/12/2024]
Abstract
The severe acute respiratory syndrome coronavirus disease 2 instigated by coronavirus disease of 2019 (COVID-19) has delivered an unfathomable obstruction that has touched all sectors worldwide. Despite new vaccine technologies and mass administration of booster doses, the virus persists, and unknown the ending of the pandemic for new variants and sub-variants. Moreover, whether leaning on home medications or using plant extracts is sufficient often to combat the virus has generated tremendous interest in the scientific fraternity. Different databases including PubMed, Scopus, Web of Science, and Google Scholar used to find published articles linked with related topics. Currently, COVID-19 third and fourth shots of vaccines are progressively administered worldwide, where some countries trail others by a significant margin. Many proteins related to viral activity have changed, possibly boosting the virus infectivity and making antibodies ineffective. This study will reminisce the viral genome, associated pathways for viral protein functions, variants, and their mutations. The current, comprehensive review will also provide information on vaccine technologies developed by several biotech companies and the efficacy of their doses, costs including boosters on a mass level. As no vaccine is working to protect fully against all the variants, the new proactive vaccine research needs to be conducted based on all variants, their sub-lineage, and mutations.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
- COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
7
|
Erol I, Kotil SE, Ortakci F, Durdagi S. Exploring the binding capacity of lactic acid bacteria derived bacteriocins against RBD of SARS-CoV-2 Omicron variant by molecular simulations. J Biomol Struct Dyn 2023; 41:10774-10784. [PMID: 36591650 DOI: 10.1080/07391102.2022.2158934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/10/2022] [Indexed: 01/03/2023]
Abstract
The changes in the SARS-CoV-2 genome have resulted in the emergence of new variants. Some of the variants have been classified as variants of concern (VOC). These strains have higher transmission rate and improved fitness. One of the prevalent were the Omicron variant. Unlike previous VOCs, the Omicron possesses fifteen mutations on the spike protein's receptor binding domain (RBD). The modifications of spike protein's key amino acid residues facilitate the virus' binding capability against ACE2, resulting in an increase in the infectiousness of Omicron variant. Consequently, investigating the prevention and treatment of the Omicron variant is crucial. In the present study, we aim to explore the binding capacity of twenty-two bacteriocins derived from Lactic Acid Bacteria (LAB) against the Omicron variant by using protein-peptidedocking and molecular dynamics (MD) simulations. The Omicron variant RBD was prepared by introducing fifteen mutations using PyMol. The protein-peptide complexes were obtained using HADDOCK v2.4 docking webserver. Top scoring complexes obtained from HADDOCK webserver were retrieved and submitted to the PRODIGY server for the prediction of binding energies. RBD-bacteriocin complexes were subjected to MD simulations. We discovered promising peptide-based therapeutic candidates for the inhibition of Omicron variant for example Salivaricin B, Pediocin PA 1, Plantaricin W, Lactococcin mmfii and Enterocin A. The lead bacteriocins, except Enterocin A, are biosynthesized by food-grade lactic acid bacteria. Our study puts forth a preliminary information regarding potential utilization of food-grade LAB-derived bacteriocins, particularly Salivaricin B and Pediocin PA 1, for Covid-19 treatment and prophylaxis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ismail Erol
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Seyfullah Enes Kotil
- Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Fatih Ortakci
- Bioengineering Department, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
- School of Pharmacy, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
8
|
Islam MA, Marzan AA, Arman MS, Shahi S, Sakif TI, Hossain M, Islam T, Hoque MN. Some common deleterious mutations are shared in SARS-CoV-2 genomes from deceased COVID-19 patients across continents. Sci Rep 2023; 13:18644. [PMID: 37903828 PMCID: PMC10616235 DOI: 10.1038/s41598-023-45517-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023] Open
Abstract
The identification of deleterious mutations in different variants of SARS-CoV-2 and their roles in the morbidity of COVID-19 patients has yet to be thoroughly investigated. To unravel the spectrum of mutations and their effects within SARS-CoV-2 genomes, we analyzed 5,724 complete genomes from deceased COVID-19 patients sourced from the GISAID database. This analysis was conducted using the Nextstrain platform, applying a generalized time-reversible model for evolutionary phylogeny. These genomes were compared to the reference strain (hCoV-19/Wuhan/WIV04/2019) using MAFFT v7.470. Our findings revealed that SARS-CoV-2 genomes from deceased individuals belonged to 21 Nextstrain clades, with clade 20I (Alpha variant) being the most predominant, followed by clade 20H (Beta variant) and clade 20J (Gamma variant). The majority of SARS-CoV-2 genomes from deceased patients (33.4%) were sequenced in North America, while the lowest percentage (0.98%) came from Africa. The 'G' clade was dominant in the SARS-CoV-2 genomes of Asian, African, and North American regions, while the 'GRY' clade prevailed in Europe. In our analysis, we identified 35,799 nucleotide (NT) mutations throughout the genome, with the highest frequency (11,402 occurrences) found in the spike protein. Notably, we observed 4150 point-specific amino acid (AA) mutations in SARS-CoV-2 genomes, with D614G (20%) and N501Y (14%) identified as the top two deleterious mutations in the spike protein on a global scale. Furthermore, we detected five common deleterious AA mutations, including G18V, W45S, I33T, P30L, and Q418H, which play a key role in defining each clade of SARS-CoV-2. Our novel findings hold potential value for genomic surveillance, enabling the monitoring of the evolving pattern of SARS-CoV-2 infection, its emerging variants, and their impact on the development of effective vaccination and control strategies.
Collapse
Affiliation(s)
- Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh.
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| | - Abdullah Al Marzan
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, 2310, Bangladesh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Md Sakil Arman
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Shatila Shahi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, 26506-6109, USA
| | - Maqsud Hossain
- University of Nottingham, Sutton Bonington Campus, LE12 5RD, Loughborough, NG7 2RD, Leicestershire, UK
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
9
|
Hasan MN, Islam MA, Sangkham S, Werkneh AA, Hossen F, Haque MA, Alam MM, Rahman MA, Mukharjee SK, Chowdhury TA, Sosa-Hernández JE, Jakariya M, Ahmed F, Bhattacharya P, Sarkodie SA. Insight into vaccination and meteorological factors on daily COVID-19 cases and mortality in Bangladesh. GROUNDWATER FOR SUSTAINABLE DEVELOPMENT 2023; 21:100932. [PMID: 36945723 PMCID: PMC9977696 DOI: 10.1016/j.gsd.2023.100932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The ongoing COVID-19 contagious disease caused by SARS-CoV-2 has disrupted global public health, businesses, and economies due to widespread infection, with 676.41 million confirmed cases and 6.77 million deaths in 231 countries as of February 07, 2023. To control the rapid spread of SARS-CoV-2, it is crucial to determine the potential determinants such as meteorological factors and their roles. This study examines how COVID-19 cases and deaths changed over time while assessing meteorological characteristics that could impact these disparities from the onset of the pandemic. We used data spanning two years across all eight administrative divisions, this is the first of its kind--showing a connection between meteorological conditions, vaccination, and COVID-19 incidences in Bangladesh. We further employed several techniques including Simple Exponential Smoothing (SES), Auto-Regressive Integrated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average with explanatory variables (ARIMAX), and Automatic forecasting time-series model (Prophet). We further analyzed the effects of COVID-19 vaccination on daily cases and deaths. Data on COVID-19 cases collected include eight administrative divisions of Bangladesh spanning March 8, 2020, to January 31, 2023, from available online servers. The meteorological data include rainfall (mm), relative humidity (%), average temperature (°C), surface pressure (kPa), dew point (°C), and maximum wind speed (m/s). The observed wind speed and surface pressure show a significant negative impact on COVID-19 cases (-0.89, 95% confidence interval (CI): 1.62 to -0.21) and (-1.31, 95%CI: 2.32 to -0.29), respectively. Similarly, the observed wind speed and surface pressure show a significant negative impact on COVID-19 deaths (-0.87, 95% CI: 1.54 to -0.21) and (-3.11, 95%CI: 4.44 to -1.25), respectively. The impact of meteorological factors is almost similar when vaccination information is included in the model. However, the impact of vaccination in both cases and deaths model is significantly negative (for cases: 1.19, 95%CI: 2.35 to -0.38 and for deaths: 1.55, 95%CI: 2.88 to -0.43). Accordingly, vaccination effectively reduces the number of new COVID-19 cases and fatalities in Bangladesh. Thus, these results could assist future researchers and policymakers in the assessment of pandemics, by making thorough efforts that account for COVID-19 vaccinations and meteorological conditions.
Collapse
Affiliation(s)
- Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Md Aminul Islam
- COVID-19 Diagnostic Lab,Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, 56000, Phayao, Thailand
| | - Adhena Ayaliew Werkneh
- Department of Environmental Health, School of Public Health, College of Health Sciences, Mekelle University, P. O. Box 1871, Mekelle, Ethiopia
| | - Foysal Hossen
- COVID-19 Diagnostic Lab,Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Mohammad Morshad Alam
- Health, Nutrition and Population Global Practice, The World Bank, Dhaka, 1207, Bangladesh
| | - Md Arifur Rahman
- COVID-19 Diagnostic Lab,Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sanjoy Kumar Mukharjee
- COVID-19 Diagnostic Lab,Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Tahmid Anam Chowdhury
- Department of Geography and Environment, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | | | - Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab,Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-100 44, Stockholm, Sweden
| | | |
Collapse
|
10
|
Islam MA, Kaifa FH, Chandran D, Bhattacharya M, Chakraborty C, Bhattacharya P, Dhama K. XBB.1.5: A new threatening SARS-CoV-2 Omicron subvariant. Front Microbiol 2023; 14:1154296. [PMID: 37143546 PMCID: PMC10152970 DOI: 10.3389/fmicb.2023.1154296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Kishoreganj, Bangladesh
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Hasan Kaifa
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, Odisha, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
11
|
Uddin MJ, Akhter H, Chowdhury U, Mawah J, Karim ST, Jomel M, Islam MS, Islam MR, Onin LAB, Ali MA, Efaz FM, Halim MA. Large scale peptide screening against main protease of SARS CoV-2. J Comput Chem 2023; 44:887-901. [PMID: 36478400 PMCID: PMC9877796 DOI: 10.1002/jcc.27050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has been a public health emergency, with deadly forms constantly emerging around the world, highlighting the dire need for highly effective antiviral therapeutics. Peptide therapeutics show significant potential for this viral disease due to their efficiency, safety, and specificity. Here, two thousand seven hundred eight antibacterial peptides were screened computationally targeting the Main protease (Mpro) of SARS CoV-2. Six top-ranked peptides according to their binding scores, binding pose were investigated by molecular dynamics to explore the interaction and binding behavior of peptide-Mpro complexes. The structural and energetic characteristics of Mpro-DRAMP01760 and Mpro-DRAMP01808 complexes fluctuated less during a 250 ns MD simulation. In addition, three peptides (DRAMP01760, DRAMP01808, and DRAMP01342) bind strongly to Mpro protein, according to the free energy landscape and principal component analysis. Peptide helicity and secondary structure analysis are in agreement with our findings. Interaction analysis of protein-peptide complexes demonstrated that Mpro's residue CYS145, HIS41, PRO168, GLU166, GLN189, ASN142, MET49, and THR26 play significant contributions in peptide-protein attachment. Binding free energy analysis (MM-PBSA) demonstrated the energy profile of interacting residues of Mpro in peptide-Mpro complexes. To summarize, the peptides DRAMP01808 and DRAMP01760 may be highly Mpro specific, resulting disruption in a viral replication and transcription. The results of this research are expected to assist future research toward the development of antiviral peptide-based therapeutics for Covid-19 treatment.
Collapse
Affiliation(s)
- Md. Jaish Uddin
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Hasina Akhter
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Urmi Chowdhury
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Jannatul Mawah
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Sanzida Tul Karim
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Mohammad Jomel
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Md. Sirajul Islam
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Mohammad Raqibul Islam
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Latifa Afrin Bhuiyan Onin
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Md. Ackas Ali
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
- Department of Chemistry and BiochemistryKennesaw State UniversityKennesawGeorgiaUSA
| | - Faiyaz Md. Efaz
- Division of Infectious Disease and Division of Computer‐Aided Drug DesignThe Red‐Green Research CentreDhakaBangladesh
| | - Mohammad A. Halim
- Department of Chemistry and BiochemistryKennesaw State UniversityKennesawGeorgiaUSA
| |
Collapse
|
12
|
Islam MA, Hasan MN, Tiwari A, Raju MAW, Jannat F, Sangkham S, Shammas MI, Sharma P, Bhattacharya P, Kumar M. Correlation of Dengue and Meteorological Factors in Bangladesh: A Public Health Concern. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5152. [PMID: 36982061 PMCID: PMC10049245 DOI: 10.3390/ijerph20065152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Dengue virus (DENV) is an enveloped, single-stranded RNA virus, a member of the Flaviviridae family (which causes Dengue fever), and an arthropod-transmitted human viral infection. Bangladesh is well known for having some of Asia's most vulnerable Dengue outbreaks, with climate change, its location, and it's dense population serving as the main contributors. For speculation about DENV outbreak characteristics, it is crucial to determine how meteorological factors correlate with the number of cases. This study used five time series models to observe the trend and forecast Dengue cases. Current data-based research has also applied four statistical models to test the relationship between Dengue-positive cases and meteorological parameters. Datasets were used from NASA for meteorological parameters, and daily DENV cases were obtained from the Directorate General of Health Service (DGHS) open-access websites. During the study period, the mean of DENV cases was 882.26 ± 3993.18, ranging between a minimum of 0 to a maximum of 52,636 daily confirmed cases. The Spearman's rank correlation coefficient between climatic variables and Dengue incidence indicated that no substantial relationship exists between daily Dengue cases and wind speed, temperature, and surface pressure (Spearman's rho; r = -0.007, p > 0.05; r = 0.085, p > 0.05; and r = -0.086, p > 0.05, respectively). Still, a significant relationship exists between daily Dengue cases and dew point, relative humidity, and rainfall (r = 0.158, p < 0.05; r = 0.175, p < 0.05; and r = 0.138, p < 0.05, respectively). Using the ARIMAX and GA models, the relationship for Dengue cases with wind speed is -666.50 [95% CI: -1711.86 to 378.86] and -953.05 [-2403.46 to 497.36], respectively. A similar negative relation between Dengue cases and wind speed was also determined in the GLM model (IRR = 0.98). Dew point and surface pressure also represented a negative correlation in both ARIMAX and GA models, respectively, but the GLM model showed a positive association. Additionally, temperature and relative humidity showed a positive correlation with Dengue cases (105.71 and 57.39, respectively, in the ARIMAX, 633.86, and 200.03 in the GA model). In contrast, both temperature and relative humidity showed negative relation with Dengue cases in the GLM model. In the Poisson regression model, windspeed has a substantial significant negative connection with Dengue cases in all seasons. Temperature and rainfall are significantly and positively associated with Dengue cases in all seasons. The association between meteorological factors and recent outbreak data is the first study where we are aware of the use of maximum time series models in Bangladesh. Taking comprehensive measures against DENV outbreaks in the future can be possible through these findings, which can help fellow researchers and policymakers.
Collapse
Affiliation(s)
- Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ananda Tiwari
- Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Md. Abdul Wahid Raju
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Fateha Jannat
- Department of Public Health, North East University, Sylhet 3100, Bangladesh
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Mahaad Issa Shammas
- Department of Civil and Environmental Engineering, College of Engineering, Dhofar University, P.O. Box 2509, Salalah PC 211, Oman
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir 803116, India
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 10044 Stockholm, Sweden
| | - Manish Kumar
- Sustainability Cluster, University of Petroleum and Energy Studies, Dehradun 248007, India
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico
| |
Collapse
|
13
|
Islam MA, Shahi S, Marzan AA, Amin MR, Hasan MN, Hoque MN, Ghosh A, Barua A, Khan A, Dhama K, Chakraborty C, Bhattacharya P, Wei DQ. Variant-specific deleterious mutations in the SARS-CoV-2 genome reveal immune responses and potentials for prophylactic vaccine development. Front Pharmacol 2023; 14:1090717. [PMID: 36825152 PMCID: PMC9941545 DOI: 10.3389/fphar.2023.1090717] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has had a disastrous effect worldwide during the previous three years due to widespread infections with SARS-CoV-2 and its emerging variations. More than 674 million confirmed cases and over 6.7 million deaths have been attributed to successive waves of SARS-CoV-2 infections as of 29th January 2023. Similar to other RNA viruses, SARS-CoV-2 is more susceptible to genetic evolution and spontaneous mutations over time, resulting in the continual emergence of variants with distinct characteristics. Spontaneous mutations of SARS-CoV-2 variants increase its transmissibility, virulence, and disease severity and diminish the efficacy of therapeutics and vaccines, resulting in vaccine-breakthrough infections and re-infection, leading to high mortality and morbidity rates. Materials and methods: In this study, we evaluated 10,531 whole genome sequences of all reported variants globally through a computational approach to assess the spread and emergence of the mutations in the SARS-CoV-2 genome. The available data sources of NextCladeCLI 2.3.0 (https://clades.nextstrain.org/) and NextStrain (https://nextstrain.org/) were searched for tracking SARS-CoV-2 mutations, analysed using the PROVEAN, Polyphen-2, and Predict SNP mutational analysis tools and validated by Machine Learning models. Result: Compared to the Wuhan-Hu-1 reference strain NC 045512.2, genome-wide annotations showed 16,954 mutations in the SARS-CoV-2 genome. We determined that the Omicron variant had 6,307 mutations (retrieved sequence:1947), including 67.8% unique mutations, more than any other variant evaluated in this study. The spike protein of the Omicron variant harboured 876 mutations, including 443 deleterious mutations. Among these deleterious mutations, 187 were common and 256 were unique non-synonymous mutations. In contrast, after analysing 1,884 sequences of the Delta variant, we discovered 4,468 mutations, of which 66% were unique, and not previously reported in other variants. Mutations affecting spike proteins are mostly found in RBD regions for Omicron, whereas most of the Delta variant mutations drawn to focus on amino acid regions ranging from 911 to 924 in the context of epitope prediction (B cell & T cell) and mutational stability impact analysis protruding that Omicron is more transmissible. Discussion: The pathogenesis of the Omicron variant could be prevented if the deleterious and persistent unique immunosuppressive mutations can be targeted for vaccination or small-molecule inhibitor designing. Thus, our findings will help researchers monitor and track the continuously evolving nature of SARS-CoV-2 strains, the associated genetic variants, and their implications for developing effective control and prophylaxis strategies.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Bangladesh,COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh,*Correspondence: Md. Aminul Islam, , ; Prosun Bhattacharya,
| | - Shatila Shahi
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mohammad Ruhul Amin
- COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - M. Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Faculty of Veterinary Medicine and Animal Science, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Abanti Barua
- COVID-19 Diagnostic lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, Henan, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | - Prosun Bhattacharya
- COVID-19 Research @KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden,*Correspondence: Md. Aminul Islam, , ; Prosun Bhattacharya,
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China,Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nayang, Henan, China,Peng Cheng Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Islam MA, Rahman MA, Jakariya M, Bahadur NM, Hossen F, Mukharjee SK, Hossain MS, Tasneem A, Haque MA, Sera F, Jahid IK, Ahmed T, Hasan MN, Islam MT, Hossain A, Amin R, Tiwari A, Didar-Ul-Alam M, Dhama K, Bhattacharya P, Ahmed F. A 30-day follow-up study on the prevalence of SARS-COV-2 genetic markers in wastewater from the residence of COVID-19 patient and comparison with clinical positivity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159350. [PMID: 36265620 PMCID: PMC9576909 DOI: 10.1016/j.scitotenv.2022.159350] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 05/07/2023]
Abstract
Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewater samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target nonstructural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship between COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.
Collapse
Affiliation(s)
- Md Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh; Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Md Arifur Rahman
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sanjoy Kumar Mukharjee
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Atkeeya Tasneem
- Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China; Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Francesco Sera
- Department of Statistics, Informatics, Applications, University of Florence, Florence, Italy; Department of Public Health, Environments and Society, London School of Hygiene & Tropical Medicine, London, UK
| | - Iqbal Kabir Jahid
- Department of Microbiology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | | | - Amzad Hossain
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ruhul Amin
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Finland; Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, Finland
| | - Md Didar-Ul-Alam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh 243122, India
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 10044 Stockholm, Sweden.
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| |
Collapse
|
15
|
Islam MA, Adeiza SS, Amin MR, Kaifa FH, Lorenzo JM, Bhattacharya P, Dhama K. A bibliometric study on Marburg virus research with prevention and control strategies. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2022.1068364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Marburg virus (MARV) is a pathogenic zoonotic RNA virus etiologic for Marburg virus disease (MVD), a severe hemorrhagic fever. This is a rare disease, with a high fatality rate, that spreads via infected blood or body fluids or indirectly via fomites (contaminated objects and substances such as clothed, beds, personal protective equipment, or medical equipments). A few vaccines to protect against MARV are undergoing clinical trials, but there is not yet an approved vaccine against this disease. Eventually, prevention and control guidelines should be adhered to rigorously to alleviate this infection. This bibliometric analysis aimed to harness narrative evaluation, emphasizing the significance of quantitative approaches and delineating the most thought-provoking concerns for researchers using VOSviewer software (Centre for Science and Technology Studies, Leiden University, the Netherlands). “Marburg Virus” OR “MARV” AND “Diseases” search criteria were used for the analysis of articles published between 1962 and 2022. Co-occurrence analysis was carried out, which characterized different thematic clusters. From this analysis, we found that 1688 published articles, and the number of publications increased across that period annually, with a growth rate of 8.78%. It is also conspicuous that the number of publications in the United States reached its acme during this period (i.e., 714 publications, accounting for 42.29% of the total), and the United States Army Medical Research Institute of Infectious Diseases published the most literature (i.e., 146 papers). Our study found that the three pre-eminent authors of Marburg virus papers were “FELDMANN, HEINZ“ of the National Institute of Allergy and Infectious Diseases, United States, “BECKER, STEPHAN” of the Philipps University of Marburg, Germany, and “GEISBERT, THOMAS W” of the University of Texas Medical Branch, United States. In this study we found that “JOURNAL OF VIROLOGY” has published the most pertinent literature, totaling 88 articles, followed by “The journal of Infectious Diseases”, which published 76 relevant papers, and “VIRUSES”, which published 52 corresponding papers. The most cited paper on the Marburg virus was published in Nature Medicine, with 522 total citations and 29 citations/year. Studies of the changing epidemiology and evolving nature of the virus and its ecological niche are required; breakthrough and implementation of the efficacious vaccine candidate(s), prophylaxis and therapeutic alternatives and supervision strategies, unveiling awareness-raising programs, and developing apposite and timely preparedness, prevention, and proactive control strategies are of utmost importance.
Collapse
|
16
|
Mahdi I, Yeasmin H, Hossain I, Badhan RM, Ali MA, Kaium MA, Islam R, Sufian MA, Halim MA. Potential antiviral peptides against the nucleoprotein of SARS-CoV-2. CHEMICAL PAPERS 2023; 77:813-823. [PMID: 36213321 PMCID: PMC9531640 DOI: 10.1007/s11696-022-02514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/21/2022] [Indexed: 11/28/2022]
Abstract
Nucleoprotein is a conserved structural protein of SARS-CoV-2, which is involved in several functions, including replication, packaging, and transcription. In this research, 21 antiviral peptides that are known to have inhibitory function against nucleoprotein in several other viruses, were screened computationally against the nucleoprotein of SARS-CoV-2. The complexes of five best performing peptides (AVP1142, AVP1145, AVP1148, AVP1150, AVP1155) with nucleoprotein were selected for subsequent screening via 5 ns molecular dynamics (MD) simulation. Two peptides, namely AVP1145 and AVP1155, came out as promising candidates and hence were selected for 200 ns MD simulation for further validation, incorporating a DMPC-based membrane environment. In the long MD simulation, both AVP1155 and AVP1145 utilized multiple residues-mainly aromatic, acidic, and nonpolar residues-as interacting points to remain in contact with the nucleoprotein and formed predominantly hydrogen bonds along with hydrophobic and electrostatic interactions. However, AVP1155 proved to be superior to AVP1145 when its complex with nucleoprotein was analyzed in terms of root-mean-square deviation, root-mean-square fluctuation, radius of gyration, solvent accessible surface area and free energy landscape. In a nutshell, the findings of this research may guide future studies in the development of selective peptide inhibitors of SARS-CoV-2 nucleoprotein. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02514-4.
Collapse
Affiliation(s)
- Iktedar Mahdi
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh ,Department of Chemistry, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Humyara Yeasmin
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh
| | - Imtiaz Hossain
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh
| | - Raina Masnoon Badhan
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh
| | - Md. Ackas Ali
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh ,Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144 USA
| | - Md. Abdul Kaium
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh
| | - Rajib Islam
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka, 1215 Bangladesh
| | - Md. Abu Sufian
- School of Pharmacy, Temple University, Philadelphia, PA 19140 USA
| | - Mohammad A. Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA 30144 USA
| |
Collapse
|
17
|
Khater I, Nassar A. Potential antiviral peptides targeting the SARS-CoV-2 spike protein. BMC Pharmacol Toxicol 2022; 23:91. [PMID: 36461109 PMCID: PMC9716172 DOI: 10.1186/s40360-022-00627-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The coronavirus disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection became an international pandemic and created a public health crisis. The binding of the viral Spike glycoprotein to the human cell receptor angiotensin-converting enzyme 2 (ACE2) initiates viral infection. The development of efficient treatments to combat coronavirus disease is considered essential. METHODS An in silico approach was employed to design amino acid peptide inhibitor against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. The designed inhibitor (SARS-CoV-2 PEP 49) consists of amino acids with the α1 helix and the β4 - β5 sheets of ACE2. The PEP-FOLD3 web tool was used to create the 3D structures of the peptide amino acids. Analyzing the interaction between ACE2 and the RBD of the Spike protein for three protein data bank entries (6M0J, 7C8D, and 7A95) indicated that the interacting amino acids were contained inside two regions of ACE2: the α1 helical protease domain (PD) and the β4 - β5 sheets. RESULTS Molecular docking analysis of the designed inhibitor demonstrated that SARS-CoV-2 PEP 49 attaches directly to the ACE2 binding site of the Spike protein with a binding affinity greater than the ACE2, implying that the SARS-CoV-2 PEP 49 model may be useful as a potential RBD binding blocker.
Collapse
Affiliation(s)
- Ibrahim Khater
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aaya Nassar
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Department of Clinical Research and Leadership, School of Medicine and Health Sciences, George Washington University, Washington DC, USA
| |
Collapse
|
18
|
Islam MA, Hasan MN, Ahammed T, Anjum A, Majumder A, Siddiqui MNEA, Mukharjee SK, Sultana KF, Sultana S, Jakariya M, Bhattacharya P, Sarkodie SA, Dhama K, Mumin J, Ahmed F. Association of household fuel with acute respiratory infection (ARI) under-five years children in Bangladesh. Front Public Health 2022; 10:985445. [PMID: 36530721 PMCID: PMC9752885 DOI: 10.3389/fpubh.2022.985445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
In developing countries, acute respiratory infections (ARIs) cause a significant number of deaths among children. According to Bangladesh Demographic and Health Survey (BDHS), about 25% of the deaths in children under-five years are caused by ARI in Bangladesh every year. Low-income families frequently rely on wood, coal, and animal excrement for cooking. However, it is unclear whether using alternative fuels offers a health benefit over solid fuels. To clear this doubt, we conducted a study to investigate the effects of fuel usage on ARI in children. In this study, we used the latest BDHS 2017-18 survey data collected by the Government of Bangladesh (GoB) and estimated the effects of fuel use on ARI by constructing multivariable logistic regression models. From the analysis, we found that the crude (the only type of fuel in the model) odds ratio (OR) for ARI is 1.69 [95% confidence interval (CI): 1.06-2.71]. This suggests that children in families using contaminated fuels are 69.3% more likely to experience an ARI episode than children in households using clean fuels. After adjusting for cooking fuel, type of roof material, child's age (months), and sex of the child-the effect of solid fuels is similar to the adjusted odds ratio (AOR) for ARI (OR: 1.69, 95% CI: 1.05-2.72). This implies that an ARI occurrence is 69.2% more likely when compared to the effect of clean fuel. This study found a statistically significant association between solid fuel consumption and the occurrence of ARI in children in households. The correlation between indoor air pollution and clinical parameters of ARI requires further investigation. Our findings will also help other researchers and policymakers to take comprehensive actions by considering fuel type as a risk factor as well as taking proper steps to solve this issue.
Collapse
Affiliation(s)
- Md. Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Tanvir Ahammed
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Aniqua Anjum
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Ananya Majumder
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - M. Noor-E-Alam Siddiqui
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Sanjoy Kumar Mukharjee
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Khandokar Fahmida Sultana
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sabrin Sultana
- Department of Banking and Insurance, University of Chittagong, Chittagong, Bangladesh
| | - Md. Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Jubayer Mumin
- Platform of Medical and Dental Society, Dhaka, Bangladesh
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
19
|
Islam MA, Sangkham S, Tiwari A, Vadiati M, Hasan MN, Noor STA, Mumin J, Bhattacharya P, Sherchan SP. Association between Global Monkeypox Cases and Meteorological Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15638. [PMID: 36497712 PMCID: PMC9740470 DOI: 10.3390/ijerph192315638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The emergence of an outbreak of Monkeypox disease (MPXD) is caused by a contagious zoonotic Monkeypox virus (MPXV) that has spread globally. Yet, there is no study investigating the effect of climatic changes on MPXV transmission. Thus, studies on the changing epidemiology, evolving nature of the virus, and ecological niche are highly paramount. Determination of the role of potential meteorological drivers including temperature, precipitation, relative humidity, dew point, wind speed, and surface pressure is beneficial to understand the MPXD outbreak. This study examines the changes in MPXV cases over time while assessing the meteorological characteristics that could impact these disparities from the onset of the global outbreak. To conduct this data-based research, several well-accepted statistical techniques including Simple Exponential Smoothing (SES), Auto-Regressive Integrated Moving Average (ARIMA), Automatic forecasting time-series model (Prophet), and Autoregressive Integrated Moving Average with Explanatory Variables (ARIMAX) were applied to delineate the correlation of the meteorological factors on global daily Monkeypox cases. Data on MPXV cases including affected countries spanning from 6 May 2022, to 9 November 2022, from global databases and meteorological data were used to evaluate the developed models. According to the ARIMAX model, the results showed that temperature, relative humidity, and surface pressure have a positive impact [(51.56, 95% confidence interval (CI): -274.55 to 377.68), (17.32, 95% CI: -83.71 to 118.35) and (23.42, 95% CI: -9.90 to 56.75), respectively] on MPXV cases. In addition, dew/frost point, precipitation, and wind speed show a significant negative impact on MPXD cases. The Prophet model showed a significant correlation with rising MPXD cases, although the trend predicts peak values while the overall trend increases. This underscores the importance of immediate and appropriate preventive measures (timely preparedness and proactive control strategies) with utmost priority against MPXD including awareness-raising programs, the discovery, and formulation of effective vaccine candidate(s), prophylaxis and therapeutic regimes, and management strategies.
Collapse
Affiliation(s)
- Md. Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj 2310, Bangladesh
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, Phayao 56000, Thailand
| | - Ananda Tiwari
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Health Security, Expert Microbiology Research Unit, Finnish Institute for Health and Welfare, 70701 Kuopio, Finland
| | - Meysam Vadiati
- Hubert H. Humphrey Fellowship Program, Global Affairs, University of California, Davis, 10 College Park, Davis, CA 95616, USA
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox’s Bazar 4700, Bangladesh
| | - Syed Toukir Ahmed Noor
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet 3114, Bangladesh
| | - Jubayer Mumin
- Platform of Medical and Dental Society, Dhaka 1214, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 10044 Stockholm, Sweden
| | - Samendra P. Sherchan
- Department of Biology, Morgan State University, Baltimore, MD 11428, USA
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
20
|
IUP-BERT: Identification of Umami Peptides Based on BERT Features. Foods 2022; 11:foods11223742. [PMID: 36429332 PMCID: PMC9689418 DOI: 10.3390/foods11223742] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Umami is an important widely-used taste component of food seasoning. Umami peptides are specific structural peptides endowing foods with a favorable umami taste. Laboratory approaches used to identify umami peptides are time-consuming and labor-intensive, which are not feasible for rapid screening. Here, we developed a novel peptide sequence-based umami peptide predictor, namely iUP-BERT, which was based on the deep learning pretrained neural network feature extraction method. After optimization, a single deep representation learning feature encoding method (BERT: bidirectional encoder representations from transformer) in conjugation with the synthetic minority over-sampling technique (SMOTE) and support vector machine (SVM) methods was adopted for model creation to generate predicted probabilistic scores of potential umami peptides. Further extensive empirical experiments on cross-validation and an independent test showed that iUP-BERT outperformed the existing methods with improvements, highlighting its effectiveness and robustness. Finally, an open-access iUP-BERT web server was built. To our knowledge, this is the first efficient sequence-based umami predictor created based on a single deep-learning pretrained neural network feature extraction method. By predicting umami peptides, iUP-BERT can help in further research to improve the palatability of dietary supplements in the future.
Collapse
|
21
|
Jakariya M, Ahmed F, Islam MA, Al Marzan A, Hasan MN, Hossain M, Ahmed T, Hossain A, Reza HM, Hossen F, Nahla T, Rahman MM, Bahadur NM, Islam MT, Didar-Ul-Alam M, Mow N, Jahan H, Barceló D, Bibby K, Bhattacharya P. Wastewater-based epidemiological surveillance to monitor the prevalence of SARS-CoV-2 in developing countries with onsite sanitation facilities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119679. [PMID: 35753547 PMCID: PMC9225114 DOI: 10.1016/j.envpol.2022.119679] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/23/2023]
Abstract
Wastewater-based epidemiology (WBE) has emerged as a valuable approach for forecasting disease outbreaks in developed countries with a centralized sewage infrastructure. On the other hand, due to the absence of well-defined and systematic sewage networks, WBE is challenging to implement in developing countries like Bangladesh where most people live in rural areas. Identification of appropriate locations for rural Hotspot Based Sampling (HBS) and urban Drain Based Sampling (DBS) are critical to enable WBE based monitoring system. We investigated the best sampling locations from both urban and rural areas in Bangladesh after evaluating the sanitation infrastructure for forecasting COVID-19 prevalence. A total of 168 wastewater samples were collected from 14 districts of Bangladesh during each of the two peak pandemic seasons. RT-qPCR commercial kits were used to target ORF1ab and N genes. The presence of SARS-CoV-2 genetic materials was found in 98% (165/168) and 95% (160/168) wastewater samples in the first and second round sampling, respectively. Although wastewater effluents from both the marketplace and isolation center drains were found with the highest amount of genetic materials according to the mixed model, quantifiable SARS-CoV-2 RNAs were also identified in the other four sampling sites. Hence, wastewater samples of the marketplace in rural areas and isolation centers in urban areas can be considered the appropriate sampling sites to detect contagion hotspots. This is the first complete study to detect SARS-CoV-2 genetic components in wastewater samples collected from rural and urban areas for monitoring the COVID-19 pandemic. The results based on the study revealed a correlation between viral copy numbers in wastewater samples and SARS-CoV-2 positive cases reported by the Directorate General of Health Services (DGHS) as part of the national surveillance program for COVID-19 prevention. The findings of this study will help in setting strategies and guidelines for the selection of appropriate sampling sites, which will facilitate in development of comprehensive wastewater-based epidemiological systems for surveillance of rural and urban areas of low-income countries with inadequate sewage infrastructure.
Collapse
Affiliation(s)
- Md Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Firoz Ahmed
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Aminul Islam
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Advanced Molecular Laboratory, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Maqsud Hossain
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Ahmed Hossain
- Department of Public Health, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Laboratory, Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Turasa Nahla
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Mohammad Moshiur Rahman
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Tahmidul Islam
- WaterAid Bangladesh, Dhaka, 1213, Bangladesh; COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden
| | - Md Didar-Ul-Alam
- Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Nowrin Mow
- WaterAid Bangladesh, Dhaka, 1213, Bangladesh
| | - Hasin Jahan
- WaterAid Bangladesh, Dhaka, 1213, Bangladesh
| | - Damiá Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish National Research Council (CSIC), C. Jordi Giron 18-26, 08034, Barcelona, Spain
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE-10044, Stockholm, Sweden.
| |
Collapse
|
22
|
Islam A, Hossen F, Rahman A, Sultana KF, Hasan MN, Haque A, Sosa-Hernández JE, Oyervides-Muñoz MA, Parra-Saldívar R, Ahmed T, Islam T, Dhama K, Sangkham S, Bahadur NM, Reza HM, Jakariya, Al Marzan A, Bhattacharya P, Sonne C, Ahmed F. An opinion on Wastewater-Based Epidemiological Monitoring (WBEM) with Clinical Diagnostic Test (CDT) for detecting high-prevalence areas of community COVID-19 Infections. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 31:100396. [PMID: 36320818 PMCID: PMC9612100 DOI: 10.1016/j.coesh.2022.100396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/17/2024]
Abstract
Wastewater-Based Epidemiological Monitoring (WBEM) is an efficient surveillance tool during the COVID-19 pandemic as it meets all requirements of a complete monitoring system including early warning, tracking the current trend, prevalence of the disease, detection of genetic diversity as well asthe up-surging SARS-CoV-2 new variants with mutations from the wastewater samples. Subsequently, Clinical Diagnostic Test is widely acknowledged as the global gold standard method for disease monitoring, despite several drawbacks such as high diagnosis cost, reporting bias, and the difficulty of tracking asymptomatic patients (silent spreaders of the COVID-19 infection who manifest nosymptoms of the disease). In this current reviewand opinion-based study, we first propose a combined approach) for detecting COVID-19 infection in communities using wastewater and clinical sample testing, which may be feasible and effective as an emerging public health tool for the long-term nationwide surveillance system. The viral concentrations in wastewater samples can be used as indicatorsto monitor ongoing SARS-CoV-2 trends, predict asymptomatic carriers, and detect COVID-19 hotspot areas, while clinical sampleshelp in detecting mostlysymptomaticindividuals for isolating positive cases in communities and validate WBEM protocol for mass vaccination including booster doses for COVID-19.
Collapse
Affiliation(s)
- Aminul Islam
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, Kishoreganj, Bangladesh
| | - Foysal Hossen
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Arifur Rahman
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Khandokar Fahmida Sultana
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| | - Mohammad Nayeem Hasan
- Department of Statistics, Shahjalal University of Science & Technology, Sylhet, Bangladesh
- Joint Rohingya Response Program, Food for the Hungry, Cox's Bazar, Bangladesh
| | - Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur-5200, Bangladesh
| | | | | | | | - Tanvir Ahmed
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000, Bangladesh
| | | | - Kuldeep Dhama
- Indian Veterinary Research Institute, Izzatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Sarawut Sangkham
- Department of Environmental Health, School of Public Health, University of Phayao, Muang District, 56000, Phayao, Thailand
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and TechnologyUniversity, Noakhali-3814, Bangladesh
| | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jakariya
- Department of Environmental Science and Management, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Abdullah Al Marzan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Prosun Bhattacharya
- COVID-19 Research@KTH, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Teknikringen 10B, SE 114 28 Stockholm, Sweden
| | - Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, PO Box 358, 4000 Roskilde, Denmark
| | - Firoz Ahmed
- COVID-19 Diagnostic Lab, Department of Microbiology, Noakhali Science and Technology University, Noakhali-3814, Bangladesh
| |
Collapse
|
23
|
More-Adate P, Lokhande KB, Swamy KV, Nagar S, Baheti A. GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Comput Biol Med 2022; 147:105679. [PMID: 35667152 PMCID: PMC9158327 DOI: 10.1016/j.compbiomed.2022.105679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 was originally identified in Wuhan city of China in December 2019 and it spread rapidly throughout the globe, causing a threat to human life. Since targeted therapies are deficient, scientists all over the world have an opportunity to develop novel drug therapies to combat COVID-19. After the declaration of a global medical emergency, it was established that the Food and Drug Administration (FDA) could permit the use of emergency testing, treatments, and vaccines to decrease suffering, and loss of life, and restore the nation's health and security. The FDA has approved the use of remdesivir and its analogs as an antiviral medication, to treat COVID-19. The primary protease of SARS-CoV-2, which has the potential to regulate coronavirus proliferation, has been a viable target for the discovery of medicines against SARS-CoV-2. The present research deals with the in silico technique to screen phytocompounds from a traditional medicinal plant, Bauhinia variegata for potential inhibitors of the SARS-CoV-2 main protease. Dried leaves of the plant B. variegata were used to prepare aqueous and methanol extract and the constituents were analyzed using the GC-MS technique. A total of 57 compounds were retrieved from the aqueous and methanol extract analysis. Among these, three lead compounds (2,5 dimethyl 1-H Pyrrole, 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide, and Benzonitrile m phenethyl) were shown to have the highest binding affinity (−5.719 to −5.580 kcal/mol) towards SARS-CoV-2 Mpro. The post MD simulation results also revealed the favorable confirmation and stability of the selected lead compounds with Mpro as per trajectory analysis. The Prime MM/GBSA binding free energy supports this finding, the top lead compound 2,3 diphenyl cyclopropyl methyl phenyl sulphoxide showed high binding free energy (−64.377 ± 5.24 kcal/mol) towards Mpro which reflects the binding stability of the molecule with Mpro. The binding free energy of the complexes was strongly influenced by His, Gln, and Glu residues. All of the molecules chosen are found to have strong pharmacokinetic characteristics and show drug-likeness properties. The lead compounds present acute toxicity (LD50) values ranging from 670 mg/kg to 2500 mg/kg; with toxicity classifications of 4 and 5 classes. Thus, these compounds could behave as probable lead candidates for treatment against SARS-CoV-2. However further in vitro and in vivo studies are required for the development of medication against SARS-CoV-2.
Collapse
|
24
|
Silwal AP, Thennakoon SKS, Arya SP, Postema RM, Jahan R, Phuoc CMT, Tan X. DNA aptamers inhibit SARS-CoV-2 spike-protein binding to hACE2 by an RBD- independent or dependent approach. Theranostics 2022; 12:5522-5536. [PMID: 35910791 PMCID: PMC9330529 DOI: 10.7150/thno.74428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Objective: Nobody knows when the COVID-19 pandemic will end or when and where the next coronavirus will outbreak. Therefore, it is still necessary to develop SARS-CoV-2 inhibitors for different variants or even the new coronavirus. Since SARS-CoV-2 uses its surface spike-protein to recognize hACE2, mediating its entry into cells, ligands that can specifically recognize the spike-protein have the potential to prevent infection. Methods: We have recently discovered DNA aptamers against the S2-domain of the WT spike-protein by exploiting the selection process called SELEX. After optimization, among all candidates, the aptamer S2A2C1 has the shortest sequence and the best binding affinity toward the S2-protein. More importantly, the S2A2C1 aptamer does not bind to the RBD of the spike-protein, but it efficiently blocks the spike-protein/hACE2 interaction, suggesting an RBD-independent inhibition approach. To further improve its performance, we conjugated the S2A2C1 aptamer with a reported anti-RBD aptamer, S1B6C3, using various linkers and constructed hetero-bivalent fusion aptamers. Binding affinities of mono and fusion aptamers against the spike-proteins were measured. The inhibition efficacies of mono and fusion aptamers to prevent the hACE2/spike-protein interaction were determined using ELISA. Results: Anti-spike-protein aptamers, including S2A2C1 and S1B6C3-A5-S2A2C1, maintained high binding affinity toward the WT, Delta, and Omicron spike-proteins and high inhibition efficacies to prevent them from binding to hACE2, rendering them well-suited as diagnostic and therapeutic molecular tools to target SARS-CoV-2 and its variants. Conclusions: Overall, we discovered the anti-S2 aptamer, S2A2C1, which inhibits the hACE2/spike-protein interaction via an RBD-independent approach. The anti-S2 and anti-RBD aptamers were conjugated to obtain the fusion aptamer, S1B6C3-A5-S2A2C1, which recognizes the spike-protein by an RBD-dependent approach. Our strategies, which discovered aptamer inhibitors targeting the highly conserved S2-protein, as well as the design of fusion aptamers, can be used to target new coronaviruses as they emerge.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaohong Tan
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
| |
Collapse
|
25
|
Zhou W, Xu C, Luo M, Wang P, Xu Z, Xue G, Jin X, Huang Y, Li Y, Nie H, Jiang Q, Anashkina AA. MutCov: A pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2. Comput Biol Med 2022; 145:105509. [PMID: 35421792 PMCID: PMC8993498 DOI: 10.1016/j.compbiomed.2022.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 (COVID-19), is a major threat to public health worldwide. Previous studies have shown that the spike protein of SARS-CoV-2 determines viral infectivity and major antigenicity. However, the spike protein has been undergoing various mutations, which bring a great challenge to the prevention and treatment of COVID-19. Here we present the MutCov, a pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2 by calculating the binding free energy between spike protein and angiotensin-converting enzyme 2 (ACE2) or neutralizing monoclonal antibody (mAb). The predicted infectivity and antigenicity were highly consistent with biologically experimental results, and demonstrated that the MutCov achieved good prediction performance. In conclusion, the MutCov is of high importance for systematically evaluating the effect of novel mutations and improving the prevention and treatment of COVID-19. The source code and installation instruction of MutCov are freely available at http://jianglab.org.cn/MutCov.
Collapse
Affiliation(s)
- Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150000, China.
| | - Anastasia A Anashkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
26
|
Elshemey WM, Elfiky AA, Ibrahim IM, Elgohary AM. Interference of Chaga mushroom terpenoids with the attachment of SARS-CoV-2; in silico perspective. Comput Biol Med 2022; 145:105478. [PMID: 35421790 PMCID: PMC8988443 DOI: 10.1016/j.compbiomed.2022.105478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Finding a potent inhibitor to the pandemic SARS-CoV-2 is indispensable nowadays. Currently, in-silico methods work as expeditious investigators to screen drugs for possible repurposing or design new ones. Targeting one of the possible SARS-CoV-2 attachment and entry receptors, Glucose-regulated protein 78 (GRP78), is an approach of major interest. Recently, GRP78 was reported as a recognized representative in recognition of the latest variants of SARS-CoV-2. In this work, molecular docking and molecular dynamics simulations were performed on the host cell receptor GRP78. With its many terpenoid compounds, Chaga mushroom was tested as a potential therapeutic against the SARS-CoV-2 receptor, GRP78. Results revealed low binding energies (high affinities) toward the GRP78 substrate-binding domain β (SBDβ) of Chaga mushroom terpenoids. Even the highly specific cyclic peptide Pep42, which selectively targeted GRP78 over cancer cells in vivo, showed lower binding affinity against GRP78 SBDβ compared to the binding affinities of terpenoids. These are auspicious results that need to be tested experimentally. Intriguingly, terpenoids work as a double sword as they can be used to interfere with VUI 202,012/01, 501.V2, and B.1.1.248 variants of SARS-CoV-2 spike recognition.
Collapse
Affiliation(s)
- Wael M Elshemey
- Physics Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| | - Alaa M Elgohary
- Biophysics Department, Faculty of Sciences, Cairo University, Giza, Egypt
| |
Collapse
|
27
|
Cegłowska M, Szubert K, Grygier B, Lenart M, Plewka J, Milewska A, Lis K, Szczepański A, Chykunova Y, Barreto-Duran E, Pyrć K, Kosakowska A, Mazur-Marzec H. Pseudanabaena galeata CCNP1313—Biological Activity and Peptides Production. Toxins (Basel) 2022; 14:toxins14050330. [PMID: 35622577 PMCID: PMC9146944 DOI: 10.3390/toxins14050330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
Even cyanobacteria from ecosystems of low biodiversity, such as the Baltic Sea, can constitute a rich source of bioactive metabolites. Potent toxins, enzyme inhibitors, and anticancer and antifungal agents were detected in both bloom-forming species and less commonly occurring cyanobacteria. In previous work on the Baltic Pseudanabaena galeata CCNP1313, the induction of apoptosis in the breast cancer cell line MCF-7 was documented. Here, the activity of the strain was further explored using human dermal fibroblasts, African green monkey kidney, cancer cell lines (T47D, HCT-8, and A549ACE2/TMPRSS2) and viruses (SARS-CoV-2, HCoV-OC43, and WNV). In the tests, extracts, chromatographic fractions, and the main components of the P. galeata CCNP1313 fractions were used. The LC-MS/MS analyses of the tested samples led to the detection of forty-five peptides. For fourteen of the new peptides, putative structures were proposed based on MS/MS spectra. Although the complex samples (i.e., extracts and chromatographic fractions) showed potent cytotoxic and antiviral activities, the effects of the isolated compounds were minor. The study confirmed the significance of P. galeata CCNP1313 as a source of metabolites with potent activity. It also illustrated the difficulties in assigning the observed biological effects to specific metabolites, especially when they are produced in minute amounts.
Collapse
Affiliation(s)
- Marta Cegłowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
- Correspondence: (M.C.); (H.M.-M.)
| | - Karolina Szubert
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| | - Beata Grygier
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Kinga Lis
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, PL-31155 Cracow, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Yuliya Chykunova
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, PL-30387 Cracow, Poland; (B.G.); (M.L.); (J.P.); (A.M.); (K.L.); (A.S.); (Y.C.); (E.B.-D.); (K.P.)
| | - Alicja Kosakowska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81712 Sopot, Poland;
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Institute of Oceanography, University of Gdańsk, M. J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
- Correspondence: (M.C.); (H.M.-M.)
| |
Collapse
|
28
|
Biswas S, Mahmud S, Mita MA, Afrose S, Hasan MR, Sultana Shimu MS, Saleh MA, Mostafa-Hedeab G, Alqarni M, Obaidullah AJ, Batiha GES. Molecular Docking and Dynamics Studies to Explore Effective Inhibitory Peptides Against the Spike Receptor Binding Domain of SARS-CoV-2. Front Mol Biosci 2022; 8:791642. [PMID: 35187069 PMCID: PMC8851422 DOI: 10.3389/fmolb.2021.791642] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/24/2021] [Indexed: 01/15/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic due to the high transmission and mortality rate of this virus. The world health and economic sectors have been severely affected by this deadly virus, exacerbated by the lack of sufficient efficient vaccines. The design of effective drug candidates and their rapid development is necessary to combat this virus. In this study, we selected 23 antimicrobial peptides from the literature and predicted their structure using PEP-FOLD 3.5. In addition, we docked them to the SARS-CoV-2 spike protein receptor-binding domain (RBD) to study their capability to inhibit the RBD, which plays a significant role in virus binding, fusion and entry into the host cell. We used several docking programs including HDOCK, HPEPDOCK, ClusPro, and HawkDock to calculate the binding energy of the protein-peptide complexes. We identified four peptides with high binding free energy and docking scores. The docking results were further verified by molecular dynamics (MD) simulations to characterize the protein-peptide complexes in terms of their root-mean-square fluctuation (RMSF), root-mean-square deviation (RMSD), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen bond formation. Allergenicity and toxicity predictions suggested that the peptides we identified were non-allergenic and non-toxic. This study suggests that these four antimicrobial peptides could inhibit the RBD of SARS-CoV-2. Future in vitro and in vivo studies are necessary to confirm this.
Collapse
Affiliation(s)
- Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit-medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad J. Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
29
|
Sultana MUC, Uddin MG, Hossain MB, Ali MA, Sonia ZF, Kamal S, Halim MA. Molecular dynamics investigation of ivermectin bound to importin alpha/beta heterodimer. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.2015066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mossammad U. C. Sultana
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Md. Giash Uddin
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
- Department of Pharmacy, University of Chittagong, Chittagong, Bangladesh
| | - Md. Billal Hossain
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Md Ackas Ali
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Zannatul Ferdous Sonia
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Suprio Kamal
- Division of Infectious Diseases and Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, Dhaka, Bangladesh
| | - Mohammad A. Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|