1
|
Hsieh CC, Hsieh CW, Uddin M, Hsu LP, Hu HH, Syed-Abdul S. Using machine learning models for predicting monthly iPTH levels in hemodialysis patients. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 260:108541. [PMID: 39637702 DOI: 10.1016/j.cmpb.2024.108541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/10/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study was to use machine learning (ML) models to predict monthly iPTH levels in patients undergoing hemodialysis. METHODS We conducted a retrospective study on patients undergoing regular hemodialysis. Patients' blood examinations data was collected from Taiwan Society of Nephrology - Kidney Dialysis, Transplantation (TSN-KiDiT) registration system, and patients' medications data was collected from Pingtung Christian Hospital (PTCH), Taiwan. We used five different ML models to classify patients into three distinct categories based on their iPTH levels: iPTH < 150, iPTH ≥ 150 & iPTH < 600, and iPTH ≥ 600(pg/ml). RESULTS We ultimately included 1,351 patients in our study and processed the data in four different ways. These methods varied based on the duration of the data (either using data from just one month or continuously over three months) and the number of features used (either all 52 features or only 20 most important features identified by SHapley Additive exPlanations (SHAP) analysis). The XGBoost model, using data from a continuous three-month period and all available features, yielded the best Weighted AUROC (0.922). CONCLUSIONS ML is highly effective in predicting iPTH levels in hemodialysis patients, notably accurate for those with iPTH over 600 pg/ml. This method enables early identification of high-risk patients, reducing reliance on retrospective blood test assessments. Future research should focus on advancing explainable AI methods to foster clinicians' trust, and developing adaptable ML frameworks that could seamlessly integrate with existing healthcare systems.
Collapse
Affiliation(s)
- Chih-Chieh Hsieh
- Anhsin Health Care, Pingtung, Taiwan; Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Chin-Wen Hsieh
- Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Mohy Uddin
- Research Quality Management Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Li-Ping Hsu
- Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Hao-Huan Hu
- Division of Nephrology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Shabbir Syed-Abdul
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Zhang R, Sun Y, Chen Y. Enhancing targeted tumor treatment: A novel fuzzy logic framework for precision drug delivery strategy selection. Comput Biol Med 2024; 180:109008. [PMID: 39146841 DOI: 10.1016/j.compbiomed.2024.109008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVE This study aims to address the challenge of selecting optimal drug delivery strategies for tumor patients by introducing a novel theoretical framework. METHODS We propose a fuzzy logic-based framework for quantitatively assessing Health States (HS) in tumor patients. This framework integrates quantified HS assessments with causality strength analyses, offering a comprehensive understanding of various drug delivery schemes' effectiveness from pharmacokinetic and pharmacodynamic perspectives. RESULTS The efficacy of our approach is demonstrated through a series of real-world patient case studies, highlighting its potential to enhance the evaluation and selection of targeted drug delivery strategies. CONCLUSION Our work contributes to the field by showcasing practical applications of fuzzy logic in targeted drug delivery systems (TDDs) and establishing a new benchmark for precision in drug delivery strategy selection. SIGNIFICANCE This study has significant implications for developing personalized medical treatments, potentially revolutionizing the field with a more nuanced and scientifically rigorous method for evaluating and selecting drug delivery protocols. CONTRIBUTIONS Development of a fuzzy logic framework for precise quantification of health states in tumor patients. Innovative integration of a causal system for comprehensively evaluating targeted drug delivery strategies.
Collapse
Affiliation(s)
- Ruizi Zhang
- The Clinnical Hopital of Chengdu Brain Science Institue, MOE Key Lab for Neuroinfomation, University of Electronic Science and Technology of China (UESTC), China.
| | - Yue Sun
- School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Yifan Chen
- The Clinnical Hopital of Chengdu Brain Science Institue, MOE Key Lab for Neuroinfomation, University of Electronic Science and Technology of China (UESTC), China.
| |
Collapse
|
3
|
Li C, Zhou Z, Hou L, Hu K, Wu Z, Xie Y, Ouyang J, Cai X. A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics. Comput Biol Med 2024; 178:108638. [PMID: 38897152 DOI: 10.1016/j.compbiomed.2024.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. For patients with advanced NSCLC that do not have oncogene addiction, the preferred treatment approach is a combination of immunotherapy and chemotherapy. However, the progression-free survival (PFS) typically ranges only from about 6 to 8 months, accompanied by certain adverse events. In order to carry out individualized treatment more effectively, it is urgent to accurately screen patients with PFS for more than 12 months under this treatment regimen. Therefore, this study undertook a retrospective collection of pulmonary CT images from 60 patients diagnosed with NSCLC treated at the First Affiliated Hospital of Wenzhou Medical University. It developed a machine learning model, designated as bSGSRIME-SVM, which integrates the rime optimization algorithm with self-adaptive Gaussian kernel probability search (SGSRIME) and support vector machine (SVM) classifier. Specifically, the model initiates its process by employing the SGSRIME algorithm to identify pivotal image features. Subsequently, it utilizes an SVM classifier to assess these features, aiming to enhance the model's predictive accuracy. Initially, the superior optimization capability and robustness of SGSRIME in IEEE CEC 2017 benchmark functions were validated. Subsequently, employing color moments and gray-level co-occurrence matrix methods, image features were extracted from images of 60 NSCLC patients undergoing immunotherapy combined with chemotherapy. The developed model was then utilized for analysis. The results indicate a significant advantage of the model in predicting the efficacy of immunotherapy combined with chemotherapy for NSCLC, with an accuracy of 92.381% and a specificity of 96.667%. This lays the foundation for more accurate PFS predictions and personalized treatment plans.
Collapse
Affiliation(s)
- Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Zhifeng Zhou
- Wenzhou University Library, Wenzhou, 325035, China.
| | - Lingxian Hou
- Rehabilitation Department, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, 325000, China.
| | - Keli Hu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China; Information Technology R&D Innovation Center of Peking University, Shaoxing, 312000, China.
| | - Zongda Wu
- Department of Computer Science and Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Yupeng Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jinsheng Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
4
|
Lin J, Zhu F, Dong X, Li R, Liu J, Xia J. Enhancing gastric cancer early detection: A multi-verse optimized feature selection model with crossover-information feedback. Comput Biol Med 2024; 175:108535. [PMID: 38714049 DOI: 10.1016/j.compbiomed.2024.108535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 05/09/2024]
Abstract
Gastric cancer (GC), an acknowledged malignant neoplasm, threatens life and digestive system functionality if not detected and addressed promptly in its nascent stages. The indispensability of early detection for GC to augment treatment efficacy and survival prospects forms the crux of this investigation. Our study introduces an innovative wrapper-based feature selection methodology, referred to as bCIFMVO-FKNN-FS, which integrates a crossover-information feedback multi-verse optimizer (CIFMVO) with the fuzzy k-nearest neighbors (FKNN) classifier. The primary goal of this initiative is to develop an advanced screening model designed to accelerate the identification of patients with early-stage GC. Initially, the capability of CIFMVO is validated through its application to the IEEE CEC benchmark functions, during which its optimization efficiency is measured against eleven cutting-edge algorithms across various dimensionalities-10, 30, 50, and 100. Subsequent application of the bCIFMVO-FKNN-FS model to the clinical data of 1632 individuals from Wenzhou Central Hospital-diagnosed with either early-stage GC or chronic gastritis-demonstrates the model's formidable predictive accuracy (83.395%) and sensitivity (87.538%). Concurrently, this investigation delineates age, gender, serum gastrin-17, serum pepsinogen I, and the serum pepsinogen I to serum pepsinogen II ratio as parameters significantly associated with early-stage GC. These insights not only validate the efficacy of our proposed model in the early screening of GC but also contribute substantively to the corpus of knowledge facilitating early diagnosis.
Collapse
Affiliation(s)
- Jiejun Lin
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Fangchao Zhu
- Department of Gastroenterology, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Xiaoyu Dong
- Department of Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Rizeng Li
- Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Jisheng Liu
- Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| | - Jianfu Xia
- Department of General Surgery, The Dingli Clinical College of Wenzhou Medical University (Wenzhou Central Hospital), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
5
|
Zhuang X, Yi Z, Wang Y, Chen Y, Yu S. Artificial multi-verse optimisation for predicting the effect of ideological and political theory course. Heliyon 2024; 10:e29830. [PMID: 38707436 PMCID: PMC11066315 DOI: 10.1016/j.heliyon.2024.e29830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024] Open
Abstract
Enhancing teaching sufficiency is crucial because low teaching efficiency has always been a widespread issue in ideological and political theory course. Evaluating data on the course is obtained from a freshmen class of 2022 using questionnaires. The data is organised and condensed for mining and analysis. Subsequently, an intelligent artificial multi-verse optimizer (AMVO) method s developed to predict the effect of ideological and political theory course. The proposed AMVO approach was tested against various cutting-edge algorithms to demonstrate its effectiveness and stability on the benchmark functions. The experimental results indicated that AMVO ranked first among the 23 test functions. Furthermore, the binary AMVO enhanced k-nearest neighbour classifier had excellent performance in the art ideological and political theory course in terms of error rate, accuracy, specificity and sensitivity. This model can predict the overall evaluation attitude of freshmen towards the course based on the dataset. In addition, we can further analyse the potential correlations between factors that enhance the intellectual and political content of the course. This model can further refine the evaluation of ideological and political courses by teachers and students in our school, thereby achieving the fundamental goal of moral cultivation.
Collapse
Affiliation(s)
| | - Zhaodi Yi
- College of Marxism, Wenzhou University, Wenzhou, 325035, China
| | - Yuqing Wang
- College of law, Wenzhou University, Wenzhou, 325035, China
| | - Yi Chen
- Department of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, 325035, China
| | - Sudan Yu
- Department of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325035, China
| |
Collapse
|
6
|
Chen X, Zhao D, Ji H, Chen Y, Li Y, Zuo Z. Predictive modeling for early detection of biliary atresia in infants with cholestasis: Insights from a machine learning study. Comput Biol Med 2024; 174:108439. [PMID: 38643596 DOI: 10.1016/j.compbiomed.2024.108439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/26/2024] [Accepted: 04/07/2024] [Indexed: 04/23/2024]
Abstract
Cholestasis, characterized by the obstruction of bile flow, poses a significant concern in neonates and infants. It can result in jaundice, inadequate weight gain, and liver dysfunction. However, distinguishing between biliary atresia (BA) and non-biliary atresia in these young patients presenting with cholestasis poses a formidable challenge, given the similarity in their clinical manifestations. To this end, our study endeavors to construct a screening model aimed at prognosticating outcomes in cases of BA. Within this study, we introduce a wrapper feature selection model denoted as bWFMVO-SVM-FS, which amalgamates the water flow-based multi-verse optimizer (WFMVO) and support vector machine (SVM) technology. Initially, WFMVO is benchmarked against eleven state-of-the-art algorithms, with its efficiency in searching for optimized feature subsets within the model validated on IEEE CEC 2017 and IEEE CEC 2022 benchmark functions. Subsequently, the developed bWFMVO-SVM-FS model is employed to analyze a cohort of 870 consecutively registered cases of neonates and infants with cholestasis (diagnosed as either BA or non-BA) from Xinhua Hospital and Shanghai Children's Hospital, both affiliated with Shanghai Jiao Tong University. The results underscore the remarkable predictive capacity of the model, achieving an accuracy of 92.639 % and specificity of 88.865 %. Gamma-glutamyl transferase, triangular cord sign, weight, abnormal gallbladder, and stool color emerge as highly correlated with early symptoms in BA infants. Furthermore, leveraging these five significant features enhances the interpretability of the machine learning model's performance outcomes for medical professionals, thereby facilitating more effective clinical decision-making.
Collapse
Affiliation(s)
- Xuting Chen
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dongying Zhao
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Haochen Ji
- The Seventh Research Division, Beihang University (BUAA), Beijing, China
| | - Yihuan Chen
- Department of Neonatology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yahui Li
- Department of Neonatology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zongyu Zuo
- The Seventh Research Division, Beihang University (BUAA), Beijing, China.
| |
Collapse
|
7
|
Zhang L, Yu R, Chen K, Zhang Y, Li Q, Chen Y. Enhancing deep vein thrombosis prediction in patients with coronavirus disease 2019 using improved machine learning model. Comput Biol Med 2024; 173:108294. [PMID: 38537565 DOI: 10.1016/j.compbiomed.2024.108294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Deep vein thrombosis (DVT) is a significant complication in coronavirus disease 2019 patients, arising from coagulation issues in the deep venous system. Among 424 scheduled patients, 202 developed DVT (47.64%). DVT increases hospitalization risk, and complications, and impacts prognosis. Accurate prognostication and timely intervention are crucial to prevent DVT progression and improve patient outcomes. METHODS This study introduces an effective DVT prediction model, named bSES-AC-RUN-FKNN, which integrates fuzzy k-nearest neighbor (FKNN) with enhanced Runge-Kutta optimizer (RUN). Recognizing the insufficient effectiveness of RUN in local search capability and its convergence accuracy, spherical evolutionary search (SES) and differential evolution-inspired knowledge adaptive crossover (AC) are incorporated, termed SES-AC-RUN, to enhance its optimization capability. RESULTS Based on the benchmark set by CEC 2017 and comparative analyses with several peers, it is evident that SES-AC-RUN significantly enhances search performance compared to traditional RUN, even standing comparably against leading championship algorithms. The proposed bSES-AC-RUN-FKNN model was applied to predict a dataset comprising 424 cases of DVT patients, totaling 7208 records. Remarkably, the model demonstrates outstanding accuracy, reaching 91.02%, alongside commendable sensitivity at 91.07%. CONCLUSIONS The bSES-AC-RUN-FKNN emerges as a robust and efficient predictive tool, significantly enhancing the accuracy of DVT prediction. This model can be used to manage the risk of thrombosis in the care of COVID-19 patients. Nursing staff can combine the model's predictions with clinical judgment to formulate comprehensive treatment approaches.
Collapse
Affiliation(s)
- Lufang Zhang
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Renyue Yu
- Cardiac Care Unit, Sir RUN RUN Shaw Hospital, Hangzhou, 310000, China.
| | - Keya Chen
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Ying Zhang
- Wenzhou Medical University School of Nursing, 325000, Wenzhou, 325000, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China.
| | - Qiang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China.
| | - Yu Chen
- Nursing Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
8
|
Zhang M, Yan K, Chen Y, Yu R. Anticipating interpersonal sensitivity: A predictive model for early intervention in psychological disorders in college students. Comput Biol Med 2024; 172:108134. [PMID: 38492456 DOI: 10.1016/j.compbiomed.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 02/12/2024] [Indexed: 03/18/2024]
Abstract
Psychological disorders, notably social anxiety and depression, exert detrimental effects on university students, impeding academic achievement and overall development. Timely identification of interpersonal sensitivity becomes imperative to implement targeted support and interventions. This study selected 958 freshmen from higher education institutions in Zhejiang province as the research sample. Utilizing the runge-kutta search and elite levy spreading enhanced moth-flame optimization (MFO) in conjunction with the kernel extreme learning machine (KELM), we propose an efficient intelligent prediction model, namely bREMFO-KELM, for predicting the interpersonal sensitivity of college students. IEEE CEC 2017 benchmark functions and the interpersonal sensitivity dataset were employed as the basis for detailed comparisons with peer-reviewed studies and well-known machine learning models. The experimental results demonstrate the outstanding performance of the bREMFO-KELM model in predicting the sensitivity of interpersonal relationships in college students, achieving an impressive accuracy rate of 97.186%. In-depth analysis reveals that the prediction of interpersonal sensitivity in college students is closely associated with multiple features, including easily hurt in relationships, shy and uneasy with the opposite sex, feeling inferior to others, discomfort when observed or discussed, and blame and criticize others. These features are not only crucial for the accuracy of the prediction model but also provide valuable information for a deeper understanding of the sensitivity of college students' interpersonal relationships. In conclusion, the bREMFO-KELM model excels not only in performance but also possesses a high degree of interpretability, providing robust support for predicting the sensitivity of interpersonal relationships in college students.
Collapse
Affiliation(s)
- Min Zhang
- Department of Student Affairs, Wenzhou University, Wenzhou, 325035, China.
| | - Kailei Yan
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Yufeng Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Ruying Yu
- Mental Health Education Center, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
9
|
Xing J, Li C, Wu P, Cai X, Ouyang J. Optimized fuzzy K-nearest neighbor approach for accurate lung cancer prediction based on radial endobronchial ultrasonography. Comput Biol Med 2024; 171:108038. [PMID: 38442552 DOI: 10.1016/j.compbiomed.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/02/2024] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
Radial endobronchial ultrasonography (R-EBUS) has been a surge in the development of new ultrasonography for the diagnosis of pulmonary diseases beyond the central airway. However, it faces challenges in accurately pinpointing the location of abnormal lesions. Therefore, this study proposes an improved machine learning model aimed at distinguishing between malignant lung disease (MLD) from benign lung disease (BLD) through R-EBUS features. An enhanced manta ray foraging optimization based on elite perturbation search and cyclic mutation strategy (ECMRFO) is introduced at first. Experimental validation on 29 test functions from CEC 2017 demonstrates that ECMRFO exhibits superior optimization capabilities and robustness compared to other competing algorithms. Subsequently, it was combined with fuzzy k-nearest neighbor for the classification prediction of BLD and MLD. Experimental results indicate that the proposed modal achieves a remarkable prediction accuracy of up to 99.38%. Additionally, parameters such as R-EBUS1 Circle-dense sign, R-EBUS2 Hemi-dense sign, R-EBUS5 Onionskin sign and CCT5 mediastinum lymph node are identified as having significant clinical diagnostic value.
Collapse
Affiliation(s)
- Jie Xing
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Chengye Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Xueding Cai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jinsheng Ouyang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
10
|
Li Y, Zhao D, Ma C, Escorcia-Gutierrez J, Aljehane NO, Ye X. CDRIME-MTIS: An enhanced rime optimization-driven multi-threshold segmentation for COVID-19 X-ray images. Comput Biol Med 2024; 169:107838. [PMID: 38171259 DOI: 10.1016/j.compbiomed.2023.107838] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
To improve the detection of COVID-19, this paper researches and proposes an effective swarm intelligence algorithm-driven multi-threshold image segmentation (MTIS) method. First, this paper proposes a novel RIME structure integrating the Co-adaptive hunting and dispersed foraging strategies, called CDRIME. Specifically, the Co-adaptive hunting strategy works in coordination with the basic search rules of RIME at the individual level, which not only facilitates the algorithm to explore the global optimal solution but also enriches the population diversity to a certain extent. The dispersed foraging strategy further enriches the population diversity to help the algorithm break the limitation of local search and thus obtain better convergence. Then, on this basis, a new multi-threshold image segmentation method is proposed by combining the 2D non-local histogram with 2D Kapur entropy, called CDRIME-MTIS. Finally, the results of experiments based on IEEE CEC2017, IEEE CEC2019, and IEEE CEC2022 demonstrate that CDRIME has superior performance than some other basic, advanced, and state-of-the-art algorithms in terms of global search, convergence performance, and escape from local optimality. Meanwhile, the segmentation experiments on COVID-19 X-ray images demonstrate that CDRIME is more advantageous than RIME and other peers in terms of segmentation effect and adaptability to different threshold levels. In conclusion, the proposed CDRIME significantly enhances the global optimization performance and image segmentation of RIME and has great potential to improve COVID-19 diagnosis.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, 130032, China.
| | - Chao Ma
- School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, 518172, China.
| | - José Escorcia-Gutierrez
- Department of Computational Science and Electronics, Universidad de la Costa, CUC, Barranquilla, 080002, Colombia.
| | - Nojood O Aljehane
- Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
| | - Xia Ye
- School of the 1st Clinical Medical Sciences (School of Information and Engineering), Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Yun D, Yang HL, Kim SG, Kim K, Kim DK, Oh KH, Joo KW, Kim YS, Han SS. Real-time dual prediction of intradialytic hypotension and hypertension using an explainable deep learning model. Sci Rep 2023; 13:18054. [PMID: 37872390 PMCID: PMC10593747 DOI: 10.1038/s41598-023-45282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
Both intradialytic hypotension (IDH) and hypertension (IDHTN) are associated with poor outcomes in hemodialysis patients, but a model predicting dual outcomes in real-time has never been developed. Herein, we developed an explainable deep learning model with a sequence-to-sequence-based attention network to predict both of these events simultaneously. We retrieved 302,774 hemodialysis sessions from the electronic health records of 11,110 patients, and these sessions were split into training (70%), validation (10%), and test (20%) datasets through patient randomization. The outcomes were defined when nadir systolic blood pressure (BP) < 90 mmHg (termed IDH-1), a decrease in systolic BP ≥ 20 mmHg and/or a decrease in mean arterial pressure ≥ 10 mmHg (termed IDH-2), or an increase in systolic BP ≥ 10 mmHg (i.e., IDHTN) occurred within 1 h. We developed a temporal fusion transformer (TFT)-based model and compared its performance in the test dataset, including receiver operating characteristic curve (AUROC) and area under the precision-recall curves (AUPRC), with those of other machine learning models, such as recurrent neural network, light gradient boosting machine, random forest, and logistic regression. Among all models, the TFT-based model achieved the highest AUROCs of 0.953 (0.952-0.954), 0.892 (0.891-0.893), and 0.889 (0.888-0.890) in predicting IDH-1, IDH-2, and IDHTN, respectively. The AUPRCs in the TFT-based model for these outcomes were higher than the other models. The factors that contributed the most to the prediction were age and previous session, which were time-invariant variables, as well as systolic BP and elapsed time, which were time-varying variables. The present TFT-based model predicts both IDH and IDHTN in real time and offers explainable variable importance.
Collapse
Affiliation(s)
- Donghwan Yun
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Lim Yang
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Seong Geun Kim
- Department of Internal Medicine, Inje University College of Medicine, Busan, Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Dong Ki Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Kwon Wook Joo
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
12
|
Yu H, Zhao Z, Heidari AA, Ma L, Hamdi M, Mansour RF, Chen H. An accelerated sine mapping whale optimizer for feature selection. iScience 2023; 26:107896. [PMID: 37860760 PMCID: PMC10582515 DOI: 10.1016/j.isci.2023.107896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/10/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023] Open
Abstract
An improved whale optimization algorithm (SWEWOA) is presented for global optimization issues. Firstly, the sine mapping initialization strategy (SS) is used to generate the population. Secondly, the escape energy (EE) is introduced to balance the exploration and exploitation of WOA. Finally, the wormhole search (WS) strengthens the capacity for exploitation. The hybrid design effectively reinforces the optimization capability of SWEWOA. To prove the effectiveness of the design, SWEWOA is performed in two test sets, CEC 2017 and 2022, respectively. The advantage of SWEWOA is demonstrated in 26 superior comparison algorithms. Then a new feature selection method called BSWEWOA-KELM is developed based on the binary SWEWOA and kernel extreme learning machine (KELM). To verify its performance, 8 high-performance algorithms are selected and experimentally studied in 16 public datasets of different difficulty. The test results demonstrate that SWEWOA performs excellently in selecting the most valuable features for classification problems.
Collapse
Affiliation(s)
- Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zisong Zhao
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Ali Asghar Heidari
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Li Ma
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China
| | - Monia Hamdi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Romany F. Mansour
- Department of Mathematics, Faculty of Science, New Valley University, El-Kharga 72511, Egypt
| | - Huiling Chen
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
13
|
Yu X, Qin W, Lin X, Shan Z, Huang L, Shao Q, Wang L, Chen M. Synergizing the enhanced RIME with fuzzy K-nearest neighbor for diagnose of pulmonary hypertension. Comput Biol Med 2023; 165:107408. [PMID: 37672924 DOI: 10.1016/j.compbiomed.2023.107408] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/08/2023]
Abstract
Pulmonary hypertension (PH) is an uncommon yet severe condition characterized by sustained elevation of blood pressure in the pulmonary arteries. The delaying treatment can result in disease progression, right ventricular failure, increased risk of complications, and even death. Early recognition and timely treatment are crucial in halting PH progression, improving cardiac function, and reducing complications. Within this study, we present a highly promising hybrid model, known as bERIME_FKNN, which constitutes a feature selection approach integrating the enhanced rime algorithm (ERIME) and fuzzy K-nearest neighbor (FKNN) technique. The ERIME introduces the triangular game search strategy, which augments the algorithm's capacity for global exploration by judiciously electing distinct search agents across the exploratory domain. This approach fosters both competitive rivalry and collaborative synergy among these agents. Moreover, an random follower search strategy is incorporated to bestow a novel trajectory upon the principal search agent, thereby enriching the spectrum of search directions. Initially, ERIME is meticulously compared to 11 state-of-the-art algorithms using the IEEE CEC2017 benchmark functions across diverse dimensionalities such as 10, 30, 50, and 100, ultimately validating its exceptional optimization capability within the model. Subsequently, employing the color moment and grayscale co-occurrence matrix methodologies, a total of 118 features are extracted from 63 PH patients' and 60 healthy individuals' images, alongside an analysis of 14,514 recordings obtained from these patients utilizing the developed bERIME_FKNN model. The outcomes manifest that the bERIME_FKNN model exhibits a conspicuous prowess in the realm of PH classification, attaining an accuracy and specificity exceeding 99%. This implies that the model serves as a valuable computer-aided tool, delivering an advanced warning system for diagnosis and prognosis evaluation of PH.
Collapse
Affiliation(s)
- Xiaoming Yu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Wenxiang Qin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Xiao Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhuohan Shan
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Liyao Huang
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Qike Shao
- Key Laboratory of Intelligent Informatics for Safety & Emergency of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Liangxing Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Mayun Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
14
|
Li Y, Fu Y, Liu Y, Zhao D, Liu L, Bourouis S, Algarni AD, Zhong C, Wu P. An optimized machine learning method for predicting wogonin therapy for the treatment of pulmonary hypertension. Comput Biol Med 2023; 164:107293. [PMID: 37591162 DOI: 10.1016/j.compbiomed.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/28/2023] [Indexed: 08/19/2023]
Abstract
Human health is at risk from pulmonary hypertension (PH), characterized by decreased pulmonary vascular resistance and constriction of the pulmonary vessels, resulting in right heart failure and dysfunction. Thus, preventing PH and monitoring its progression before treating it is vital. Wogonin, derived from the leaves of Scutellaria baicalensis Georgi, exhibits remarkable pharmacological activity. In this study, we examined the effectiveness of wogonin in mitigating the progression of PH in mice using right heart catheterization and hematoxylin-eosin (HE) staining. As an alternative to minimize the possibility of harming small animals, we present a scientifically effective feature selection method (BSCDWOA-KELM) that will allow us to develop a novel simpler noninvasive prediction method for wogonin in treating PH. In this method, we use the proposed enhanced whale optimizer (SCDWOA) in conjunction with the kernel extreme learning machine (KELM). Initially, we let SCDWOA perform global optimization experiments on the IEEE CEC2014 benchmark function set to verify its core advantages. Lastly, 12 public and PH datasets are examined for feature selection experiments using BSCDWOA-KELM. As shown in the experimental results for global optimization, the proposed SCDWOA has better convergence performance. Meanwhile, the proposed binary SCDWOA (BSCDWOA) significantly improves the ability of KELM to classify data. By utilizing the BSCDWOA-KELM, key indicators such as the Red blood cell (RBC), the Haemoglobin (HGB), the Lymphocyte percentage (LYM%), the Hematocrit (HCT), and the Red blood cell distribution width-size distribution (RDW-SD) can be efficiently screened in the Pulmonary hypertension dataset, and one of its most essential points is its accuracy of greater than 0.98. Consequently, the BSCDWOA-KELM introduced in this study can be used to predict wogonin therapy for treating pulmonary hypertension in a simple and noninvasive manner.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin 130032, China.
| | - Yujie Fu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Yining Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin 130032, China.
| | - Lei Liu
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Sami Bourouis
- Department of Information Technology, College of Computers and Information Technology, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia.
| | - Abeer D Algarni
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Chuyue Zhong
- The First Clinical College, Wenzhou Medical University, Wenzhou 325000, China.
| | - Peiliang Wu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
15
|
He X, Ye H, Zhao R, Lu M, Chen Q, Bao L, Lv T, Li Q, Wu F. Advanced machine learning model for predicting Crohn's disease with enhanced ant colony optimization. Comput Biol Med 2023; 163:107216. [PMID: 37399742 DOI: 10.1016/j.compbiomed.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Changes in human lifestyles have led to a dramatic increase in the incidence of Crohn's disease worldwide. Predicting the activity and remission of Crohn's disease has become an urgent research problem. In addition, the influence of each attribute in the test sample on the prediction results and the interpretability of the model still deserves further investigation. Therefore, in this paper, we proposed a wrapper feature selection classification model based on a combination of the improved ant colony optimization algorithm and the kernel extreme learning machine, called bIACOR-KELM-FS. IACOR introduces an evasive strategy and astrophysics strategy to balance the exploration and exploitation phases of the algorithm and enhance its optimization capabilities. The optimization capability of the proposed IACOR was validated on the IEEE CEC2017 benchmark test function. And the prediction was performed on Crohn's disease dataset. The results of the quantitative analysis showed that the prediction accuracy of bIACOR-KELM-FS for predicting the activity and remission of Crohn's disease reached 98.98%. The analysis of important attributes improved the interpretability of the model and provided a reference for the diagnosis of Crohn's disease. Therefore, the proposed model is considered a promising adjunctive diagnostic method for Crohn's disease.
Collapse
Affiliation(s)
- Xixi He
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Huajun Ye
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Mengmeng Lu
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Qiwen Chen
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Lishimeng Bao
- The Second Clinical College, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Tianmin Lv
- Department of Nursing Wenzhou Heping International Hospital, Wenzhou, Zhejiang, 325000, China.
| | - Qiang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Fang Wu
- Department of Gastroenterology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
16
|
Xu B, Heidari AA, Cai Z, Chen H. Dimensional decision covariance colony predation algorithm: global optimization and high−dimensional feature selection. Artif Intell Rev 2023. [DOI: 10.1007/s10462-023-10412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
17
|
Hao S, Huang C, Heidari AA, Xu Z, Chen H, Althobaiti MM, Mansour RF, Chen X. Performance optimization of water cycle algorithm for multilevel lupus nephritis image segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Li Y, Zhao D, Xu Z, Heidari AA, Chen H, Jiang X, Liu Z, Wang M, Zhou Q, Xu S. bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease. Front Neuroinform 2023; 16:1063048. [PMID: 36726405 PMCID: PMC9884708 DOI: 10.3389/fninf.2022.1063048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/05/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Atopic dermatitis (AD) is an allergic disease with extreme itching that bothers patients. However, diagnosing AD depends on clinicians' subjective judgment, which may be missed or misdiagnosed sometimes. Methods This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. In SRWPSO, the Sobol sequence is introduced into particle swarm optimization (PSO) to make the particle distribution of the initial population more uniform, thus improving the population's diversity and traversal. At the same time, this study also adds a random replacement strategy and adaptive weight strategy to the population updating process of PSO to overcome the shortcomings of poor convergence accuracy and easily fall into the local optimum of PSO. In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO. Results To prove that the study has scientific significance, this paper first successfully demonstrates the core advantages of SRWPSO in well-known algorithms through benchmark function validation experiments. Secondly, this article demonstrates that the bSRWPSO-FKNN has practical medical significance and effectiveness through nine public and medical datasets. Discussion The 10 times 10-fold cross-validation experiments demonstrate that bSRWPSO-FKNN can pick up the key features of AD, including the content of lymphocytes (LY), Cat dander, Milk, Dermatophagoides Pteronyssinus/Farinae, Ragweed, Cod, and Total IgE. Therefore, the established bSRWPSO-FKNN method practically aids in the diagnosis of AD.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, Jilin, China,*Correspondence: Dong Zhao,
| | - Zhangze Xu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China,Huiling Chen,
| | - Xinyu Jiang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhifang Liu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Mengmeng Wang
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Qiongyan Zhou
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- Department of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China,Suling Xu,
| |
Collapse
|
19
|
Li Y, Zhao D, Liu G, Liu Y, Bano Y, Ibrohimov A, Chen H, Wu C, Chen X. Intradialytic hypotension prediction using covariance matrix-driven whale optimizer with orthogonal structure-assisted extreme learning machine. Front Neuroinform 2022; 16:956423. [PMID: 36387587 PMCID: PMC9659657 DOI: 10.3389/fninf.2022.956423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/28/2022] [Indexed: 09/19/2023] Open
Abstract
Intradialytic hypotension (IDH) is an adverse event occurred during hemodialysis (HD) sessions with high morbidity and mortality. The key to preventing IDH is predicting its pre-dialysis and administering a proper ultrafiltration prescription. For this purpose, this paper builds a prediction model (bCOWOA-KELM) to predict IDH using indices of blood routine tests. In the study, the orthogonal learning mechanism is applied to the first half of the WOA to improve the search speed and accuracy. The covariance matrix is applied to the second half of the WOA to enhance the ability to get out of local optimum and convergence accuracy. Combining the above two improvement methods, this paper proposes a novel improvement variant (COWOA) for the first time. More, the core of bCOWOA-KELM is that the binary COWOA is utilized to improve the performance of the KELM. In order to verify the comprehensive performance of the study, the paper sets four types of comparison experiments for COWOA based on 30 benchmark functions and a series of prediction experiments for bCOWOA-KELM based on six public datasets and the HD dataset. Finally, the results of the experiments are analyzed separately in this paper. The results of the comparison experiments prove fully that the COWOA is superior to other famous methods. More importantly, the bCOWOA performs better than its peers in feature selection and its accuracy is 92.41%. In addition, bCOWOA improves the accuracy by 0.32% over the second-ranked bSCA and by 3.63% over the worst-ranked bGWO. Therefore, the proposed model can be used for IDH prediction with future applications.
Collapse
Affiliation(s)
- Yupeng Li
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Dong Zhao
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Guangjie Liu
- College of Computer Science and Technology, Changchun Normal University, Changchun, China
| | - Yi Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yasmeen Bano
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Alisherjon Ibrohimov
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Chengwen Wu
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, China
| | - Xumin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou University, Wenzhou, China
| |
Collapse
|
20
|
Ji L, Mao R, Wu J, Ge C, Xiao F, Xu X, Xie L, Gu X. Deep Convolutional Neural Network for Nasopharyngeal Carcinoma Discrimination on MRI by Comparison of Hierarchical and Simple Layered Convolutional Neural Networks. Diagnostics (Basel) 2022; 12:2478. [PMID: 36292167 PMCID: PMC9601165 DOI: 10.3390/diagnostics12102478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 12/24/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is one of the most common head and neck cancers. Early diagnosis plays a critical role in the treatment of NPC. To aid diagnosis, deep learning methods can provide interpretable clues for identifying NPC from magnetic resonance images (MRI). To identify the optimal models, we compared the discrimination performance of hierarchical and simple layered convolutional neural networks (CNN). Retrospectively, we collected the MRI images of patients and manually built the tailored NPC image dataset. We examined the performance of the representative CNN models including shallow CNN, ResNet50, ResNet101, and EfficientNet-B7. By fine-tuning, shallow CNN, ResNet50, ResNet101, and EfficientNet-B7 achieved the precision of 72.2%, 94.4%, 92.6%, and 88.4%, displaying the superiority of deep hierarchical neural networks. Among the examined models, ResNet50 with pre-trained weights demonstrated the best classification performance over other types of CNN with accuracy, precision, and an F1-score of 0.93, 0.94, and 0.93, respectively. The fine-tuned ResNet50 achieved the highest prediction performance and can be used as a potential tool for aiding the diagnosis of NPC tumors.
Collapse
Affiliation(s)
- Li Ji
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Rongzhi Mao
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jian Wu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Cheng Ge
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Feng Xiao
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xiaofeng Gu
- Department of Otorhinolaryngology, The Second People’s Hospital of Changzhou Affiliated to Nanjing Medical University, Changzhou 213003, China
| |
Collapse
|
21
|
Shi B, Chen J, Chen H, Lin W, Yang J, Chen Y, Wu C, Huang Z. Prediction of recurrent spontaneous abortion using evolutionary machine learning with joint self-adaptive sime mould algorithm. Comput Biol Med 2022; 148:105885. [DOI: 10.1016/j.compbiomed.2022.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/03/2022] [Accepted: 07/16/2022] [Indexed: 11/03/2022]
|
22
|
Boosted machine learning model for predicting intradialytic hypotension using serum biomarkers of nutrition. Comput Biol Med 2022; 147:105752. [DOI: 10.1016/j.compbiomed.2022.105752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/22/2022]
|