1
|
Arunkumar A, Ju XH. Computational method on highly efficient D-π-A-π-D-based different molecular acceptors for organic solar cells applications and non-linear optical behaviour. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124391. [PMID: 38704998 DOI: 10.1016/j.saa.2024.124391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Eight molecular structures (BT-A1 to BT-A8) with high-performance non-fullerene acceptor (NFA) were selected for organic solar cells (OSCs) and non-linear optical (NLO) applications. Their electronic, photovoltaic (PV) and optoelectronic properties were tuned by adding powerful electron-withdrawing groups to the acceptor (A) of the D-π-A-π-D structure. Using time-dependent density functional theory (TD-DFT) techniques, based on the laws of quantum chemical calculations, the absorption spectra, stability of the highest and lowest-energy molecular orbitals (HOMO/LUMOs), electron density, intramolecular charge transfer (ICT), transition density matrix (TDM), were examined. The binding energy (Eb) and density of states (DOS) were probed to realize the optoelectronic analysis of the structures BT-A1 to BT-A8. Noncovalent interactions (NCIs) based on a reduced density gradient (RDG) were used to describe the nature and strength of D-A interactions in the molecules BT-A1 to BT-A8. The new refined molecules BT-A1 to BT-A8 exhibited strong absorbance bands between 408-721 nm and high electron transfer contribution (ETC) ranges between 87-96 %, along with the smallest excitation energies (Ex) between 1.71-3.55 eV in the solvent dichloromethane. Dipolar moment strengths ranging from 0.38 to 4.72 Debye in both the excited and ground states have determined with good solubility properties of BT-A1 to BT-A8 in polar solvent. Highly effective charge mobilities and prevention of charge recombination have been demonstrated by the electron (0.18-0.41 eV) and hole RE values (0.13-0.89 eV) for the new compounds. Power conversion efficiencies (PCE) of BT-A1 to BT-A8 were nearly the same because of better outcomes compared to the molecules in the BT. Compared to poly[4.8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b: 4,5-b']dithiophene-2,6- diyl-alt-(4-2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)] (PTB7-Th), the open circuit voltages (Voc) of compounds BT-A1 to BT-A8 were ranged from 1.52 to 2.13 eV. The polarizability (α) and hyperpolarizability (β) of the molecules BT-A1 to BT-A8 were used to determine the non-linear optical (NLO) properties. The results showed that BT-A2, BT-A6 and BT-A7 have good NLO activity. This computational analysis demonstrates the superiority of the molecules with NFA. Hence the compounds are advised for the use in production of high-performance OSCs and NLO activity.
Collapse
Affiliation(s)
- Ammasi Arunkumar
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Xue-Hai Ju
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
2
|
Hussain M, Adnan M, Irshad Z, Hussain R, Darwish HW. Systematic Engineering of Near-Infrared Small Molecules Based on 4H-Cyclopenta[1,2-b:5,4-b']dithiophene Acceptors for Organic Solar Cells. ACS OMEGA 2024; 9:28791-28805. [PMID: 38973890 PMCID: PMC11223142 DOI: 10.1021/acsomega.4c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
Nonfullerene acceptors (NFAs) have emerged as tremendous materials, efficiently advancing bulk-heterojunction organic solar cells (OSCs) technology. Unlike their fullerene counterparts, NFAs offer the unique advantage of finely tunable electronic energy levels and optical characteristics, which correspond to substantial enhancement in power conversion efficiency of OSCs. Herein, we have introduced a new series of near-infrared NFAs (AY1-AY8) to advance this technology further. Our research deeply investigates the structure-property relationship and thoroughly explores the optical, optoelectronics, photophysical, and photovoltaic characteristics of a synthetic reference molecule (R) and the modeled AY1-AY8 NFAs series. We performed advanced quantum chemical simulations using density functional theory (DFT) and time-dependent DFT methods. Additionally, we also estimated key geometric characteristics such as frontier molecular orbitals, hole-electron overlap, density of states, molecular electrostatic potential, molecular excitation and binding energies, transition density matrix, and reorganizational energy of electrons and holes and compared them with those of a synthetic reference molecule (R). Our findings show that all designed materials (AY1-AY8) exhibit red-shift absorption, improved electronic charge mobility, and low binding and excitation energies compared to R. Notably, these designed materials (AY1-AY8) display significantly narrower electronic energy gaps (E g 1.89-1.71 eV), indicating enhanced charge shifting from the highest occupied molecular orbital to lowest unoccupied molecular orbital and broadening of the absorption spectrum. Moreover, we also revealed a comprehensive study of the donor/acceptor complex of PTB7-Th/AY8 to understand charge shifting between donor and acceptor molecules. Therefore, we strongly recommend this designed (AY1-AY8) series to the experimentalists for the future development of highly efficient OSC devices.
Collapse
Affiliation(s)
- Muzammil Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Muhammad Adnan
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Zobia Irshad
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Hany W. Darwish
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Khalid M, Fatima N, Arshad M, Adeel M, Braga AAC, Ahamad T. Unveiling the influence of end-capped acceptors modification on photovoltaic properties of non-fullerene fused ring compounds: a DFT/TD-DFT study. RSC Adv 2024; 14:20441-20453. [PMID: 38946775 PMCID: PMC11208900 DOI: 10.1039/d4ra03170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
Herein, unique A-D-A configuration-based molecules (NBD1-NBD7) were designed from the reference compound (NBR) by utilizing the end-capped acceptor modification approach. Various electron-withdrawing units -F, -Cl, -CN, -NO2, -CF3, -HSO3, and -COOCH3, were incorporated into terminals of reference compound to designed NBD1-NBD7, respectively. A theoretical investigation employing the density functional theory (DFT) and time-dependent DFT (TD-DFT) was performed at B3LYP/6-311G(d,p) level. To reveal diverse opto-electronic and photovoltaic properties, the frontier molecular orbitals (FMOs), absorption maxima (λ max), density of states (DOS), exciton binding energy (E b), open-circuit voltage (V oc) and transition density matrix (TDM) analyses were executed at the same functional. Moreover, the global reactivity parameters (GRPs) were calculated using the HOMO-LUMO energy gaps from the FMOs. Significant results were obtained for the designed molecules (NBD1-NBD7) as compared to NBR. They showed lesser energy band gaps (2.024-2.157 eV) as compared to the NBR reference (2.147 eV). The tailored molecules also demonstrated bathochromic shifts in the chloroform (671.087-717.164 nm) and gas phases (623.251-653.404 nm) as compared to NBR compound (674.189 and 626.178 nm, respectively). From the photovoltaic perspectives, they showed promising results (2.024-2.157 V). Furthermore, the existence of intramolecular charge transfer (ICT) in the designed compounds was depicted via their DOS and TDM graphical plots. Among all the investigated molecules, NBD4 was disclosed as the excellent candidate for solar cell applications owing to its favorable properties such as the least band gap (2.024 eV), red-shifted λ max in the chloroform (717.164 nm) and gas (653.404 nm) phases as well as the minimal E b (0.126 eV). This is due to the presence of highly electronegative -NO2 unit at the terminal of electron withdrawing acceptor moiety, which leads to increased conjugation and enhanced the intramolecular charge transfer (ICT) rate. The obtained insights suggested that the designed molecules could be considered as promising materials for potential applications in the realm of OSCs.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Noor Fatima
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Arshad
- Industry Solutions, Northern Alberta Institute of Technology Edmonton Alberta Canada
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University D. I. Khan Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Siddique MBA, Su J, Meng Y, Cheng SB. Electron transfer-mediated synergistic nonlinear optical response in the Ag n@C 18 (n = 4-6) complexes: A DFT study on the electronic structures and optical characteristics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124069. [PMID: 38422934 DOI: 10.1016/j.saa.2024.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Seeking highly efficient and stable non-linear optical (NLO) materials is crucial yet challenging, given their promising applications in laser diodes and photovoltaics. In this study, we employ the excess electron and charge transfer strategies to theoretically design three novel complexes, namely Agn@C18 (n = 4-6), by adsorbing silver clusters onto the cyclo[18]carbon ring (C18). Our aim is to investigate the NLO characteristics of these complexes using density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results reveal that the adsorption of Ag clusters onto C18 leads to a decrease in excitation energy and an increase in dipole moment and oscillator strengths, thereby significantly enhancing the hyperpolarizability of the complexes. Strikingly, among all these complexes, Ag6@C18 exhibits the highest first hyperpolarizability value of approximately 109496.2620 au calculated at the B3LYP/cc-PVDZ-pp level of theory, which is about 1.3 × 106 times higher than that of pure C18. This finding validates the effectiveness of the proposed strategies in enhancing the NLO response of the species. Moreover, the calculated UV-Vis absorption spectrum demonstrates that the Agn@C18 complexes with excess electrons exhibit absorption at longer wavelengths (ranging from 385 to 731 nm) compared to C18. In addition, the stability, chemical bonding, and charge transfer characteristics of the Agn@C18 (n = 4-6) complexes were also discussed. These findings highlight the potential of these complexes for the development of highly efficient NLO devices.
Collapse
Affiliation(s)
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Yanan Meng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
5
|
Ali B, Siddique SA, Ahmed Siddique MB, Ullah S, Ali MA, Rauf A, Kamran MA, Arshad M. Insight on the structural, electronic and optical properties of Zn, Ga-doped/dual-doped graphitic carbon nitride for visible-light applications. J Mol Graph Model 2023; 125:108603. [PMID: 37633020 DOI: 10.1016/j.jmgm.2023.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 08/28/2023]
Abstract
The density functional theory (DFT) was applied for the first time to study the doping and co-doping of Ga and Zn metals on graphitic carbon nitride (g-C3N4). The doping of these metal impurities into g-C3N4 leads to a significant decrease in the bandgap energy. Moreover, the co-doping leads to even lower bandgap energy than either individual Zn or Ga-doped g-C3N4. The theoretical electronic and optical properties including the density of state (DOS), energy levels of the frontier orbital, excited state lifetime, and molecular electrostatic potential of the doped and co-doped g-C3N4 support their application in UV-visible light-based technologies. The quantum mechanical parameters (energy band gap, binding energy, exciton energy, softness, hardness) and dipole moment exhibit higher values (ranging from 1.36 to 4.94 D) compared to the bare g-C3N4 (0.29 D), indicating better solubility in the water solvent. The time-dependent DFT (TD-DFT) calculations showed absorption maxima in between the UV-Vis region (309-878 nm). Additionally, charge transfer characteristics, transition density matrix (TDM), excited state lifetime and light harvesting efficiency (LHE) were investigated. Overall, these theoretical studies suggest that doped and co-doped g-C3N4 are excellent candidates for electronic semiconductor devices, light-emitting diodes (LEDs), solar cells, and photodetectors.
Collapse
Affiliation(s)
- Babar Ali
- Department of Physics, University of Okara, Okara, Pakistan
| | - Sabir Ali Siddique
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Sami Ullah
- Department of Physics, University of Okara, Okara, Pakistan
| | - Muhammad Arif Ali
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
6
|
Shafiq A, Adnan M, Hussain R, Irshad Z, Farooq U, Muhammad S. Molecular Engineering of Anthracene Core-Based Hole-Transporting Materials for Organic and Perovskite Photovoltaics. ACS OMEGA 2023; 8:35937-35955. [PMID: 37810664 PMCID: PMC10551914 DOI: 10.1021/acsomega.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
Anthracene core-based hole-transporting material containing TIPs (triisopropylsilylacetylene) has been spotlighted as potential donors for perovskite solar cells (SCs) due to their appropriate energy levels, efficient hole transport capacity, high stability, and high power conversion efficiency. Herein, we have efficiently designed seven new highly conjugated A-B-D-C-D molecules (AS1-AS7) containing an anthracene core. We used end-capped modifications of donor units with acceptor units on one side and then theoretically characterized them for their appropriate use for SC applications. Modern quantum chemistry techniques have theoretically described the R (reference molecule) and developed (AS1-AS7) molecules. Moreover, the proposed (AS1-AS7) molecules are explored with density functional theory (DFT) and time-dependent density functional theory (TD-DFT) employing B3LYP/6-31G(d,p), and numerous parameters like photovoltaic, optical and electronic characteristics, frontier molecular orbital, excitation, binding and reorganization (λe and λh) energies, open circuit voltage, light harvesting efficiency, transition density matrix, fill factor, and the density of states have been studied. End-capped modification causes a smaller band gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), higher UV-vis absorption maxima, tuned energy levels, lower binding and reorganizational (λe and λh) energies, and larger Voc values in proposed (AS1-AS7) molecules than R. AS5 has a remarkable absorption maximum of 495.94 nm and a narrow optimal energy gap (Eg) of 1.46 eV. Furthermore, a complex study of AS5:PC61BM has revealed extraordinary charge shifting at the HOMO (AS5)-LUMO (PC61BM) interface. Our results suggested that newly developed anthracene core-based compounds (AS1-AS7) would be effective candidates with excellent photovoltaic and optoelectronic properties and could be employed in future organic and perovskite SC applications.
Collapse
Affiliation(s)
- Aaida Shafiq
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Muhammad Adnan
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zobia Irshad
- Graduate
School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Umar Farooq
- School
of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
7
|
Jin R, Zhang X, Xin J, Xiao W. Molecular design of D-π-A-π-D small molecule donor materials with narrow energy gap for organic solar cells applications. J Mol Model 2023; 29:273. [PMID: 37542668 DOI: 10.1007/s00894-023-05680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
CONTEXT Developing novel materials present a great challenge to improve the photovoltaic performance of organic solar cells (OSCs). In this paper, we designed a series of the donor-π bridge-acceptor-π bridge-donor (D-π-A-π-D) structure molecules. These molecules consist of diketopyrrolopyrrole (DPP) moiety as core, 9-hexyl-carbazole moiety as terminal groups, and different planar electron-rich aromatic groups as π-bridges. The density functional theory (DFT) and time-dependent DFT (TD-DFT) computations showed that the frontier molecular orbital (FMO) energy levels, energy gaps, electron-driving forces (ΔEL-L), open-circuit voltage (Voc), fill factor (FF), reorganization energy (λ), exciton binding energy (Eb), and absorption spectra of the designed molecules can be effectively adjusted by the introduction of different π-bridges. The designed molecules have narrow energy gap and strong absorption spectra, which are beneficial for improving the photoelectric conversion efficiency of organic solar cells. In addition, the designed molecules possess large ΔEL-L, large Voc, and FF values and low Eb when the typical fullerene derivatives are used as acceptors. The FMO energy levels of the designed molecules can provide match well with the typical fullerene acceptors PC61BM, bisPC61BM, and PC71BM. Our results suggest that the designed molecules are expected to be promising donor materials for OSCs. METHODS All DFT and TD-DFT calculations were carried out using the Gaussian 09 code. The computational technique chosen was the hybrid functional B3LYP and the 6-31G(d,p) basis set. The benzene and chloroform solvent effects have been considered using the polarized continuum model (PCM) at the TD-DFT level. The simulated absorption spectra of designed molecules were plotted by using the GaussSum 1.0 program.
Collapse
Affiliation(s)
- Ruifa Jin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China.
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China.
| | - Xinhao Zhang
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Jingfan Xin
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| | - Wenmin Xiao
- College of Chemistry and Life Sciences, Chifeng University, Chifeng, 024000, China
- Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng University, Chifeng, 024000, China
| |
Collapse
|
8
|
Azaid A, Abram T, Alaqarbeh M, Raftani M, Kacimi R, Sbai A, Lakhlifi T, Bouachrine M. Design new organic material based on triphenylamine (TPA) with D-π-A-π-D structure used as an electron donor for organic solar cells: A DFT approach. J Mol Graph Model 2023; 122:108470. [PMID: 37116334 DOI: 10.1016/j.jmgm.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/30/2023]
Abstract
Because of the increasing scarcity of fossil fuels and the growing need for energy, it has become necessary to research new renewable energy resources. In this study, five new high-performance materials (TP-FA1F-TP - TP-FA5F-TP) of the D-π-A-π-D configuration based on triphenylamine (TPA) were theoretically investigated by applying DFT and TD-DFT methods for future application as heterojunction organic solar cells (BHJ). The influence of the modification of the acceptor (A) of the parent molecule TP-FTzF-TP on the structural, electronic, photovoltaic and optical properties of the TP-FA1F-TP - TP-FA5F-TP organic molecules was investigated in detail. TP-FA1F-TP - TP-FA5F-TP showed Egap in the interval of 1.44-2.01 eV with λabs in the range of 536-774 nm, open-circuit voltage (Voc) values varied between 0.3 and 0.56 V and power conversion efficiencies (PCE) ranging from (3-6) %. Our results also show that the donor molecules suggested in this research exhibit an improved performance compared to the recently synthesized TP-FTzF-TP, such as a lowest HOMO energy, a smaller Egap, and a greater absorption spectrum, and can lead to higher performance. Indeed, this theoretical research could lead to the future synthesis of better compounds as active substances used in BHJ.
Collapse
Affiliation(s)
- Ahmed Azaid
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tayeb Abram
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Marwa Alaqarbeh
- National Agricultural Research Center, Al-Baqa, 19381, Jordan.
| | - Marzouk Raftani
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Rchid Kacimi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Abdelouahid Sbai
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Sciences, University Moulay Ismail, Meknes, Morocco; EST Khenifra, University Sultan Moulay Sliman, Morocco.
| |
Collapse
|
9
|
Etabti H, Fitri A, Benjelloun AT, Benzakour M, Mcharfi M. Designing and theoretical study of benzocarbazole-based D-π-D type small molecules donor for organic solar cells. J Mol Graph Model 2023; 121:108455. [PMID: 36965230 DOI: 10.1016/j.jmgm.2023.108455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/19/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023]
Abstract
Seven new molecules (S1-S7) of D-π-D type have been designed for organic photovoltaic applications. The DFT and TD-DFT methods were used to investigate the effect of different central bridge groups on the geometric, optoelectronic, and charge transport properties of the constructed molecules. Among them, S4 and S6 have the lowest energy band gap and a red shift in the absorption spectra, revealing the perfect relationship between the central bridge and the strong electron withdrawal character through extended conjugation. Similarly, S6 explored the lowest reorganization energy (RE) value for electron and hole revealing its enhanced charge transition, also shows better ICT characteristics with its highest NLO properties. Compound S4 showed the smallest value of ΔEL-L and Eb, and the highest Voc due to its low HOMO, which improves the photocurrent density of the devices. Thus, the results suggest that bridge modification is a practical strategy to improve the efficiency of OSCs.
Collapse
Affiliation(s)
- Hanane Etabti
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Asmae Fitri
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Adil Touimi Benjelloun
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Benzakour
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Mohammed Mcharfi
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
10
|
Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar MA, Baby R, Orfali R, Perveen S. Synthesis, characterization and exploration of photovoltaic behavior of hydrazide based scaffolds: a concise experimental and DFT study. RSC Adv 2023; 13:7237-7249. [PMID: 36891493 PMCID: PMC9986803 DOI: 10.1039/d3ra00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Solar energy being a non-depleting energy resource, has attracted scientists' attention to develop efficient solar cells to meet energy demands. Herein, a series of hydrazinylthiazole-4-carbohydrazide organic photovoltaic compounds (BDTC1-BDTC7) with an A1-D1-A2-D2 framework was synthesized with 48-62% yields, and their spectroscopic characterization was accomplished using FT-IR, HRMS, 1H and 13C-NMR techniques. Density functional theory (DFT) and time dependent DFT analyses were performed utilizing the M06/6-31G(d,p) functional to calculate the photovoltaic and optoelectronic properties of BDTC1-BDTC7via numerous simulations of the frontier molecular orbitals (FMOs), transition density matrix (TDM), open circuit voltage (V oc) and density of states (DOS). Moreover, the conducted analysis on the FMOs revealed efficient transference of charge from the highest occupied to the lowest unoccupied molecular orbitals (HOMO → LUMO), further supported by TDM and DOS analyses. Furthermore, the values of binding energy (E b = 0.295 to 1.150 eV), as well as reorganization energy of the holes (-0.038-0.025 eV) and electrons (-0.023-0.00 eV), were found to be smaller for all the studied compounds, which suggests a higher exciton dissociation rate with greater hole mobility in BDTC1-BDTC7. V oc analysis was accomplished with respect to HOMOPBDB-T-LUMOACCEPTOR. Among all the synthesized molecules, BDTC7 was found to have a reduced band gap (3.583 eV), with a bathochromic shift and absorption maximum at 448.990 nm, and a promising V oc (1.97 V), thus it is regarded as a potential candidate for high performance photovoltaic applications.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan .,Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated with Mirpur University of Science and Technology (MUST)) 10250-Mirpur AJK Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan .,Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Rabia Baby
- Department of Education, Sukkur IBA University 65200 Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University Baltimore MD 21251 USA
| |
Collapse
|
11
|
Rani S, Al-Zaqri N, Iqbal J, Akram SJ, Boshaala A, Mehmood RF, Saeed MU, Rashid EU, Khera RA. Designing dibenzosilole core based, A 2-π-A 1-π-D-π-A 1-π-A 2 type donor molecules for promising photovoltaic parameters in organic photovoltaic cells. RSC Adv 2022; 12:29300-29318. [PMID: 36320777 PMCID: PMC9558076 DOI: 10.1039/d2ra05934g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
In this research work, four new molecules from the π-A-π-D-π-A-π type reference molecule "DBS-2PP", were designed for their potential application in organic solar cells by adding peripheral A2 acceptors to the reference. Under density functional theory, a comprehensive theoretical investigation was conducted to examine the structural geometries, along with the optical and photovoltaic parameters; comprising frontier molecular orbitals, density of states, light-harvesting effectiveness, excitation, binding, and reorganizational energies, molar absorption coefficient, dipole moment, as well as transition density matrix of all the molecules under study. In addition, some photo-voltaic characteristics (open circuit photo-voltage and fill factor) were also studied for these molecules. Although all the developed compounds (D1-D4) surpassed the reference molecule in the attributes mentioned above, D4 proved to be the best. D4 possessed the narrowest band-gap, as well as the highest absorption maxima and dipole moment of all the molecules in both the evaluated phases. Moreover, with PC61BM as the acceptor, D4 showed the maximum V OC and FF values. Furthermore, while D3 had the greatest hole mobility owing to its lowest value of hole reorganization energy, D4 exhibited the maximum electron mobility due to its lowermost value of electron reorganization energy. Overall, all the chromophores proposed in this study showed outstanding structural, optical, and photovoltaic features. Considering this, organic solar cell fabrication can be improved by using these newly derived donors at the donor-acceptor interfaces.
Collapse
Affiliation(s)
- Saima Rani
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University P.O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
- Department of Chemistry, College of Science, University of Bahrain Zallaq Bahrain
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ahmed Boshaala
- Research Centre, Manchester Salt & Catalysis Unit C, 88-90 Chorlton Rd M15 4AN Manchester UK
- Libyan Authority for Scientific Research P. O. Box 80045 Tripoli Libya
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Muhammad Umar Saeed
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
12
|
Asif Iqbal MM, Mehboob MY, Hassan T. Theoretical study of the structure-activity relationship of the S-shaped acceptor molecules for organic solar cell applications. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 2022; 148:106763. [DOI: 10.1016/j.mssp.2022.106763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Noureen S, Ali S, Iqbal J, Zia MA, Hussain T. Synthesis, Comparative Theoretical and Experimental Characterization of Some New 1,3,5 triazine Based Heterocyclic Compounds and in vitro Evaluation as Promising Biologically Active Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Chutia T, Kalita DJ. Theoretical investigation of fused N-methyl-dithieno-pyrrole derivatives in the context of acceptor-donor-acceptor approach. RSC Adv 2022; 12:14422-14434. [PMID: 35702239 PMCID: PMC9096627 DOI: 10.1039/d2ra01820a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
In this work we have theoretically investigated the optoelectronic properties of a series of acceptor-donor-acceptor type molecules by employing density functional theory formalism. We have used 1,1-dicyano-methylene-3-indanone as the acceptor unit and a fused N-methyl-dithieno-pyrrole as the donor unit. We have calculated the values of dihedral angle, inter-ring bond length, bond length alteration parameters, HOMO-LUMO gap, ionization potential, electron affinity, partial density of states, reorganization energies for holes and electrons, charge transfer rate for holes and electrons of the seven types of compounds designed via molecular engineering. Calculated IP and EA values manifest that PBDB-C2 shows excellent charge transportation compared to others. Absorption spectra of the designed compounds have been studied using the time-dependent density functional theory method. From the calculation of reorganization energy it is confirmed that our designed molecules behave more likely as donor materials. Our calculated results also reveal that compounds with electron donating substituents at the acceptor units show higher value of λ max. Absorption spectra of donor/acceptor blends show similar trends with the isolated compounds. Observed lower exciton binding energy values for all the compounds indicate facile charge carrier separation at the donor/acceptor interface. Moreover, the negative values of Gibb's free energy change also indicate the ease of exciton dissociation of all the designed compounds. The photovoltaic characteristics of the studied compounds infer that all the designed compounds have the potential to become suitable candidate for the fabrication of organic semiconductors. However, PBDB-C2 and PBDB-C4 with the highest PCE of 18.25% can become the best candidate for application in photovoltaics.
Collapse
Affiliation(s)
- Tridip Chutia
- Department of Chemistry, Gauhati University Guwahati-781014 India
| | | |
Collapse
|
15
|
Lee S, Park CS, Yoon H. Nanoparticulate Photoluminescent Probes for Bioimaging: Small Molecules and Polymers. Int J Mol Sci 2022; 23:4949. [PMID: 35563340 PMCID: PMC9100005 DOI: 10.3390/ijms23094949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022] Open
Abstract
Recent interest in research on photoluminescent molecules due to their unique properties has played an important role in advancing the bioimaging field. In particular, small molecules and organic dots as probes have great potential for the achievement of bioimaging because of their desirable properties. In this review, we provide an introduction of probes consisting of fluorescent small molecules and polymers that emit light across the ultraviolet and near-infrared wavelength ranges, along with a brief summary of the most recent techniques for bioimaging. Since photoluminescence probes emitting light in different ranges have different goals and targets, their respective strategies also differ. Diverse and novel strategies using photoluminescence probes against targets have gradually been introduced in the related literature. Among recent papers (published within the last 5 years) on the topic, we here concentrate on the photophysical properties and strategies for the design of molecular probes, with key examples of in vivo photoluminescence research for practical applications. More in-depth studies on these probes will provide key insights into how to control the molecular structure and size/shape of organic probes for expanded bioimaging research and applications.
Collapse
Affiliation(s)
- Sanghyuck Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - Chul Soon Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea;
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| |
Collapse
|
16
|
Efficient designing of half-moon-shaped chalcogen heterocycles as non-fullerene acceptors for organic solar cells. J Mol Model 2022; 28:125. [PMID: 35459976 DOI: 10.1007/s00894-022-05116-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
One key strategy to further improve the power conversion efficiency (PCE) of organic solar cells (OSCs) is to incorporate various complementary functional groups in a molecule. Such strategies proved attractive for tuning the photovoltaic performances of the materials and can show a much higher absorption phenomenon with narrower band gaps. Despite the outstanding benefits, materials selection and their efficient modeling is also an extremely challenging job for the development of OSCs materials. In this manuscript, we proficiently developed an efficient series of small molecule-based non-fullerene acceptors (SM-NFAs) SN1-SN9 for OSCs and characterized by density functional theory (DFT) and time-dependent DFT (TD-DFT). The characteristics required to estimate electron and hole mobility, and open-circuit voltage (Voc) were investigated by optimizing the geometrical parameters, absorption spectra, exciton binding energy, frontier molecular orbitals (FMOs), electronic structures, and charge transfer rates. The outcomes of these materials showed that all newly constructed small-molecule-based non-fullerene acceptors exhibit broader and better absorption efficiency (λmax = 761 to 778 nm) and exciton dissociation, while much lower LUMO energy levels which may help to enhance the reorganizational energies. Further, a narrow bandgap also offers better photovoltaic properties. Hence, the designed molecules exhibited narrow bandgap values (Eg = 2.82 to 2.98 eV) which are lower than that of the reference molecule (3.05 eV). High Voc and photocurrent density values with lower excitation and binding energies eventually increase the PCEs of the OSC devices. The obtained results have shown that designed molecules could be effective aspirants for high-performance OSCs.
Collapse
|
17
|
Zubair I, Ahmad Kher R, Javaid Akram S, El-Badry YA, Umar Saeed M, Iqbal J. Tuning the optoelectronic properties of indacenodithiophene based derivatives for efficient photovoltaic applications: A DFT approach. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139459] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
In silico modelling of acceptor materials by End-capped and π-linker modifications for High-Performance organic solar Cells: Estimated PCE > 18%. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Mehboob MY, Hussain R, Jamil S, Ahmed M, Khan MU, Haroon M, Janjua MRSA. Physical‐organic aspects along with linear and nonlinear optical properties of benzene sulfonamide compounds: In silico analysis. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Saba Jamil
- Super Light Materials and Nanotechnology Laboratory, Department of Chemistry University of Agriculture Faisalabad Pakistan
| | - Mahmood Ahmed
- Division of Science and Technology University of Education Lahore Pakistan
| | | | - Muhammad Haroon
- Department of Chemistry King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Saudi Arabia
| | | |
Collapse
|
20
|
Haroon M, Al‐Saadi AA, Janjua MRSA. Insights into end‐capped modifications effect on the photovoltaic and optoelectronic properties of S‐shaped fullerene‐free acceptor molecules: A density functional theory computational study for organic solar cells. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Muhammad Haroon
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Abdulaziz A. Al‐Saadi
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
- Interdisciplinary Research Center for Refining & Advanced Chemicals King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | | |
Collapse
|
21
|
Coppola C, Pecoraro A, Munoz-Garcia AB, Infantino R, Dessì A, Reginato G, Basosi R, Sinicropi A, Pavone M. Electronic structure and interfacial features of triphenylamine- and phenothiazine-based hole transport materials for methylammonium lead iodide perovskite solar cells. Phys Chem Chem Phys 2022; 24:14993-15002. [DOI: 10.1039/d2cp01270g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, great research efforts have been devoted to perovskite solar cells (PSCs) leading to sunlight-to-power conversion efficiencies above 25%. However, several barriers still hinder the full deployment of these devices....
Collapse
|
22
|
Noureen S, Ali S, Zia MA, Afzal M, Ayub AR, El-Naggar M. Synthesis, combined theoretical and spectral characterization of some new 1,3,5 triazine compounds, and their in vitro biological analysis. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00389a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
New N-heterocyclic compounds with a 1,3,5 triazine core were synthesized by a nucleophilic substitution reaction.
Collapse
Affiliation(s)
- Sadia Noureen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shaukat Ali
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Anjum Zia
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Afzal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Ali Raza Ayub
- Department of Chemistry, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Mohamed El-Naggar
- Department of Chemistry, Pure and Applied Chemistry Research Group, Faculty of Sciences University of Sharjah, Sharjah, 27272, United Arab Emirates
- National Institute of Oceanography and Fisheries, Kayet Bay, Alexandria, Egypt
| |
Collapse
|
23
|
Janjua MRSA. Quantum design of transition metals decorated on boron phosphide inorganic nanocluster for Favipiravir adsorption: a possible treatment for COVID-19. NEW J CHEM 2022. [DOI: 10.1039/d1nj04697g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a quantum drug delivery design of transition metals decorated on boron phosphide (B12P12) inorganic nanocage for favipiravir adsorption has been presented. Thus, these systems may facilitate us as COVID-19 therapy.
Collapse
|
24
|
Deciphering the role of end-capped acceptor units for amplifying the photovoltaic properties of donor materials for high-performance organic solar cell applications. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Khalid M, Momina, Imran M, Rehman MFU, Braga AAC, Akram MS. Molecular engineering of indenoindene-3-ethylrodanine acceptors with A2-A1-D-A1-A2 architecture for promising fullerene-free organic solar cells. Sci Rep 2021; 11:20320. [PMID: 34645887 PMCID: PMC8514561 DOI: 10.1038/s41598-021-99308-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
Considering the increased demand and potential of photovoltaic devices in clean, renewable electrical and hi-tech applications, non-fullerene acceptor (NFA) chromophores have gained significant attention. Herein, six novel NFA molecules IBRD1-IBRD6 have been designed by structural modification of the terminal moieties from experimentally synthesized A2-A1-D-A1-A2 architecture IBR for better integration in organic solar cells (OSCs). To exploit the electronic, photophysical and photovoltaic behavior, density functional theory/time dependent-density functional theory (DFT/TD-DFT) computations were performed at M06/6-311G(d,p) functional. The geometry, electrical and optical properties of the designed acceptor molecules were compared with reported IBR architecture. Interestingly, a reduction in bandgap (2.528-2.126 eV), with a broader absorption spectrum, was studied in IBR derivatives (2.734 eV). Additionally, frontier molecular orbital findings revealed an excellent transfer of charge from donor to terminal acceptors and the central indenoindene-core was considered responsible for the charge transfer. Among all the chromophores, IBRD3 manifested the lowest energy gap (2.126 eV) with higher λmax at 734 and 745 nm in gaseous phase and solvent (chloroform), respectively due to the strong electron-withdrawing effect of five end-capped cyano groups present on the terminal acceptor. The transition density matrix map revealed an excellent charge transfer from donor to terminal acceptors. Further, to investigate the charge transfer and open-circuit voltage (Voc), PBDBT donor polymer was blended with acceptor chromophores, and a significant Voc (0.696-1.854 V) was observed. Intriguingly, all compounds exhibited lower reorganization and binding energy with a higher exciton dissociation in an excited state. This investigation indicates that these designed chromophores can serve as excellent electron acceptor molecules in organic solar cells (OSCs) that make them attractive candidates for the development of scalable and inexpensive optoelectronic devices.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Momina
- Department of Chemistry, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | | | - Ataualpa Albert Carmo Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. LineuPrestes 748, São Paulo, 05508-000, Brazil
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
26
|
Mehboob MY, Hussain R, Irshad Z, Farwa U, Adnan M, Muhammad S. Designing and Encapsulation of Inorganic Al12N12 Nanoclusters with Be, Mg, and Ca Metals for Efficient Hydrogen Adsorption: A Step Forward Towards Hydrogen Storage Materials. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nanoclusters such as [Formula: see text][Formula: see text] have received increased attention due to their diverse applications in the fields of optoelectronics and energy storage. In this paper, we have investigated a series of alkaline earth metal (AEM)-encapsulated [Formula: see text][Formula: see text] nanoclusters for hydrogen adsorption. Thermodynamic adsorption parameters, optical and nonlinear optical properties were investigated using density functional theory (DFT) at the B3LYP/6-31G(d,p) level of theory. Encapsulation of AEMs (Be, Mg and Ca) is an effective strategy to improve the NLO reaction and thermodynamic and adsorption properties of [Formula: see text][Formula: see text] nanoclusters. The adsorption energies ranging from [Formula: see text]26.57[Formula: see text]kJ/mol to [Formula: see text]213.33[Formula: see text]kJ/mol for the three guests (Be, Mg and Ca) capsulated [Formula: see text][Formula: see text] nanoclusters are observed. The adsorption energy is affected by the size of the nanocage. Therefore, Ca- and Mg-encapsulated cages show higher values of adsorption energy. Overall, an increase in adsorption energy ([Formula: see text][Formula: see text]kJ/mol to [Formula: see text]91.06[Formula: see text]kJ/mol) is observed for (Be, Mg and Ca) encapsulated [Formula: see text][Formula: see text] nanoclusters compared to untreated [Formula: see text][Formula: see text] and H2-[Formula: see text][Formula: see text] cages. Moreover, adsorption of hydrogen on AEMs encapsulated in [Formula: see text][Formula: see text] leads to a decrease in the HOMO-LUMO energy gap with an enhancement of linear and nonlinear hyperpolarizability. All hydrogen-adsorbed AEMs [Formula: see text][Formula: see text] nanocages exhibit large [Formula: see text] and [Formula: see text] values, suggesting that these systems are potential candidates for optical materials. Various geometrical parameters such as frontier molecular orbitals (FMOs), partial density of states, global quantum descriptor of reactivity, natural bond orbital testing and molecular electrostatic strength analyses were performed to investigate the thermodynamic stability of all the studied systems. The results obtained confirmed that the designed systems are suitable for hydrogen storage. Therefore, we recommend that these systems be investigated for their hydrogen storage and optical properties.
Collapse
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Ume Farwa
- Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, 501-759, Republic of Korea
| | - Shabbir Muhammad
- Department of Physics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
27
|
Siddique SA, Arshad M, Naveed S, Mehboob MY, Adnan M, Hussain R, Ali B, Siddique MBA, Liu X. Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study. RSC Adv 2021; 11:27570-27582. [PMID: 35480647 PMCID: PMC9037920 DOI: 10.1039/d1ra04529f] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/29/2022] Open
Abstract
The growing energy demand speed up the designing of competent photovoltaic materials. Herein, five zinc phthalocyanine-based donor materials T1–T5 are designed by substituting various groups (isopropoxy, cyano, fluoro, methoxycarbonyl, and dicyanomethyl) around zinc phthalocyanine. B3LYP/6-31G (d,p) level density functional theory (DFT) was used to investigate the optoelectronic properties of five zinc phthalocyanine-based dyes T1–T5 for dye-sensitized solar cells. The designed molecule T1 shows maximum absorption wavelength (λmax) in the absorption spectrum at 708.89 and 751.88 nm both in gaseous state and in THF (tetrahydrofuran) solvent. The Eg value of T1 (1.86 eV) is less than reference R, indicating a greater charge transfer rate for T1 among the molecules. The values of open-circuit voltages achieved with acceptor polymer PC71BM are higher than R except for T1 and are 0.69 V, 1.95 V, 1.20 V, 1.44 V, and 1.84 V for T1, T2, T3, T4, and T5, respectively. The lower the reorganization energy, the higher the charge transfer for T1 due to its lower hole mobility (0.06297 eV) than R. Thus, the designed T1–T5 molecules are expected to exhibit superior performance in dye-sensitized solar cells. We used a quantum chemical approach to investigate the optoelectronic properties of dyes T1–T5 for dye-sensitized solar cells using DFT and TD-DFT computation. The newly designed molecules exhibited outstanding photovoltaic and optoelectronic properties.![]()
Collapse
Affiliation(s)
- Sabir Ali Siddique
- Center for Organic Chemistry, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | - Muhammad Arshad
- Institute of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus Bahawalpur-63100 Pakistan
| | - Sabiha Naveed
- Center for Organic Chemistry, School of Chemistry, University of the Punjab Lahore-54590 Pakistan
| | | | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University 501-759 Gwangju Republic of Korea
| | - Riaz Hussain
- Department of Chemistry, University of Okara Okara-56300 Pakistan
| | - Babar Ali
- Department of Physics, University of Okara Okara-56300 Pakistan
| | | | - Xin Liu
- State Key Laboratory of Fine Chemicals, Department of Chemistry, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
28
|
Hussain S, Chatha SAS, Hussain AI, Hussain R, Yasir Mehboob M, Mansha A, Shahzad N, Ayub K. A Theoretical Framework of Zinc-Decorated Inorganic Mg 12O 12 Nanoclusters for Efficient COCl 2 Adsorption: A Step Forward toward the Development of COCl 2 Sensing Materials. ACS OMEGA 2021; 6:19435-19444. [PMID: 34368531 PMCID: PMC8340102 DOI: 10.1021/acsomega.1c01473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2021] [Indexed: 05/09/2023]
Abstract
Gas sensors are widely explored due to their remarkable detection efficiency for pollutants. Phosgene is a toxic gas and its high concentration in the environment causes some serious health problems like swollen throat, a change in voice, late response of nervous systems, and many more. Therefore, the development of sensors for quick monitoring of COCl2 in the environment is the need of the time. In this aspect, we have explored the adsorption behavior of late transition metal-decorated Mg12O12 nanoclusters for COCl2. Density functional theory at the B3LYP/6-31G(d,p) level is used for optimization, frontier molecular orbital analysis, dipole moment, natural bonding orbitals, bond lengths, adsorption energies, and global reactivity descriptor analysis. Decoration of Zn on pure Mg12O12 delivered two geometries named as Y1 and Y2 with adsorption energy values of -388.91 and -403.11 kJ/mol, respectively. Adsorption of COCl2 on pure Mg12O12 also delivered two geometries (X1 and X2) with different orientations of COCl2. The computed adsorption energy values of X1 and X2 are -44.92 and -71.32 kJ/mol. However, adsorption of COCl2 on Zn-decorated Mg12O12 offered two geometries named as Z1 and Z2 with adsorption energy values of -455.22 and -419.04 kJ/mol, respectively. These adsorption energy values suggested that Zn decoration significantly enhances the adsorption capability of COCl2 gas. Further, the narrow band gap and large dipole moment values of COCl2-adsorbed Zn-decorated Mg12O12 nanoclusters suggested that designed systems are efficient candidates for COCl2 adsorption. Global reactivity indices unveil the great natural stability and least reactivity of designed systems. Results of all analyses suggested that Zn-decorated Mg12O12 nanoclusters are efficient aspirants for the development of high-performance COCl2 sensing materials.
Collapse
Affiliation(s)
- Shahid Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | | | - Abdullah Ijaz Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara 56300, Punjab, Pakistan
| | | | - Asim Mansha
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nabeel Shahzad
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
29
|
Muhammad Asif Iqbal M, Yasir Mehboob M, Hussain R, Adnan M, Irshad Z. Synergistic effects of fluorine, chlorine and bromine-substituted end-capped acceptor materials for highly efficient organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Mehboob MY, Hussain R, Irshad Z, Adnan M. Role of acceptor guests in tuning optoelectronic properties of benzothiadiazole core based non-fullerene acceptors for high-performance bulk-heterojunction organic solar cells. J Mol Model 2021; 27:226. [PMID: 34259943 DOI: 10.1007/s00894-021-04843-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Recently, end-capped acceptors tailoring approach has attracted many researchers because of unceasing higher power conversion efficiencies (PCEs) of resulted compounds. By keeping in view, the crucial role of NFAs in bulk-heterojunction OSCs, herein, we molecularly engineered five new non-fullerene acceptor materials (Y6A1-Y6A5) by modifying a recently synthesized Y6 molecule (R), having 18% power conversion efficiency when combined with D18 donor polymer. The structural-elemental connection, physical-chemical, optoelectronic, and photovoltaic characteristics of novel deigned and reference material (R) are studied with advanced quantum-chemical modulations. Density functional theory and time dependent-density functional theory has been employed through various basis sets to investigate the designed molecules theoretically. Interestingly, all of the newly modeled materials displayed lower excitation energies with lower HOMO-LUMO energy-gaps in-contrast with R molecule. Moreover, a red-shifted absorption and lower reorganizational energies of electron and hole are also a novel feature of these designed materials. The lower binding energy values of modeled materials offers better charge separation and high photo-current density (Jsc) as compared to R. Transition density analysis, open circuit voltage, and molecular electrostatic potential analysis suggested that end-capped acceptors alteration of R molecule is an efficient approach for tuning the optoelectronic properties of non-fullerene-based acceptor molecules (Y6A1-Y6A5). In last, composite study of donor: acceptor (D18:Y6A2) complex has also been carried-out to realize the charge transfer process at the donor-acceptor interface. After all investigations, we hope that our theoretical modeled materials are superior than Y6 molecule, therefore, we endorse these materials for the synthesis to prepare highly-efficient BHJ-OSCs devices.
Collapse
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, Gwangju, 501-759, Republic of Korea.
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, Gwangju, 501-759, Republic of Korea.
| |
Collapse
|
31
|
End-capped engineering of bipolar diketopyrrolopyrrole based small electron acceptor molecules for high performance organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113242] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
32
|
Mehboob MY, Hussain F, Hussain R, Ali S, Irshad Z, Adnan M, Ayub K. Designing of Inorganic Al 12N 12 Nanocluster with Fe, Co, Ni, Cu and Zn Metals for Efficient Hydrogen Storage Materials. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hydrogen is considered as one of the attractive environmentally friendly materials with zero carbon emission. Hydrogen storage is still challenging for its use in various energy applications. That’s why hydrogen gained more and more attention to become a major fuel of today’s energy consumption. Therefore, nowadays, hydrogen storage materials are under extensive research. Herein, efforts are being devoted to design efficient systems which could be used for future hydrogen storage purposes. To this end, we have employed density functional theory (DFT) to optimize the geometries of the designed inorganic Al[Formula: see text]N[Formula: see text] nanoclusters with transition metals (Fe, Co, Ni, Cu and Zn). Various positions of metal encapsulated Al[Formula: see text]N[Formula: see text] are examined for efficient hydrogen adsorption. After adsorption of H2 on late transition metals encapsulated Al[Formula: see text]N[Formula: see text] nanocluster, different geometric parameters like frontier molecular orbitals, adsorption energies and nature bonding orbitals have been performed for exploring the potential of metal encapsulated for hydrogen adsorption. Moreover, molecular electrostatic potential (MEP) analysis was also performed in order to explore the different charge separation upon H2 adsorption on metals encapsulated Al[Formula: see text]N[Formula: see text] nanoclusters. Also, global indices of reactivity like ionization potential, electron affinity, electrophilic index, chemical softness and chemical hardness were also examined by using DFT. The adsorption energy results suggested encapsulation of late transition metals in Al[Formula: see text]N[Formula: see text] nanocage efficiently enhancing the adsorption capability of Al[Formula: see text]N[Formula: see text] for hydrogen adsorption. Results of all analysis suggested that our designed systems are efficient candidates for hydrogen adsorption. Thus, we recommended a novel kind of systems for hydrogen storage materials.
Collapse
Affiliation(s)
| | - Fakhar Hussain
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara 56300, Pakistan
| | - Shaukat Ali
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry, Chosun University, 501-759 Gwangju, Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry, Chosun University, 501-759 Gwangju, Republic of Korea
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
33
|
Hussain S, Chatha SAS, Hussain AI, Hussain R, Yasir Mehboob M, Mansha A, Shahzad N, Ayub K. In Silico Designing of Mg12O12 Nanoclusters with a Late Transition Metal for NO 2 Adsorption: An Efficient Approach toward the Development of NO 2 Sensing Materials. ACS OMEGA 2021; 6:14191-14199. [PMID: 34124442 PMCID: PMC8190788 DOI: 10.1021/acsomega.1c00850] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/18/2021] [Indexed: 05/09/2023]
Abstract
Gas sensors are widely used for detection of environmental pollution caused by various environmental factors such as road traffic and combustion of fossil fuels. Nitrogen dioxide (NO2) is one of the leading pollutants of the present age, which causes a number of serious health issues including acute bronchitis, cough, and phlegm, particularly in children. Nowadays, researchers are focused on designing new sensor materials for detection and removal of NO2 from the environment. In this line, we have made an attempt to design NO2 sensing materials by using theoretical techniques. Here, we have reported decoration of Mg12O12 nanoclusters with a late transition metal (Cu) by employing density functional theory at the B3LYP/6-31G(d,p) basis set. The decoration of metal on Mg12O12 gives two geometries (M1 and M2) with adsorption energies of -363.81 and -384.09 kJ/mol, respectively. Adsorption of NO2 on pristine Mg12O12 expressed an adsorption energy value of -62.36 kJ/mol. Adsorption of NO2 on Cu-decorated Mg12O12 nanocages delivered two geometries (N1 and N2) with adsorption energies of -442.56 and -447.64 kJ/mol. Metal-decorated Mg12O12 nanoclusters offer better adsorption of NO2 as compared to pristine Mg12O12 . Adsorption of NO2 on Cu-Mg12O12 nanoclusters also causes narrowing of band gap of magnesium oxide nanoclusters. Large dipole moment, high Q NBO with large electrophilic index in NO2-Cu-Mg12O12 nanoclusters suggested that metal-decorated Mg12O12 nanoclusters are efficient candidates for NO2 adsorption. Different geometric parameters and results of global reactivity descriptors show that NO2-Cu-Mg12O12 nanoclusters are quite stable in nature with least reactivity. Thus, conceptualized systems are potential candidates for applications in NO2 sensing materials.
Collapse
Affiliation(s)
- Shahid Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | | | - Abdullah Ijaz Hussain
- Department
of Applied Chemistry, Government College
University, Faisalabad 38000, Pakistan
| | - Riaz Hussain
- Department
of Chemistry, University of Okara, Okara, Punjab 56300, Pakistan
| | | | - Asim Mansha
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Nabeel Shahzad
- Department
of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
34
|
Bibi S, Ahmad Khera R, Farhat A, Iqbal J. Triphenylamine based donor-acceptor-donor type small molecules for organic solar cells. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Mehboob MY, Hussain R, Irshad Z, Adnan M. Designing of U‐shaped acceptor molecules for indoor and outdoor organic solar cell applications. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4210] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju South Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju South Korea
| |
Collapse
|
36
|
Janjua MRSA. How Does Bridging Core Modification Alter the Photovoltaic Characteristics of Triphenylamine-Based Hole Transport Materials? Theoretical Understanding and Prediction. Chemistry 2021; 27:4197-4210. [PMID: 33210769 DOI: 10.1002/chem.202004299] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Indexed: 11/07/2022]
Abstract
Perovskite solar cells have gained immense interest from researchers owing to their good photophysical properties, low-cost production, and high power conversion efficiencies. Hole transport materials (HTMs) play a dominant role in enhancing the power conversion efficiencies (PCEs) and long diffusion length of holes and electrons in perovskite solar cells. In hole transport materials, modification of π-linkers has proved to be an efficient approach for enhancing the overall PCE of perovskite solar cells. In this work, π-linker modification of a recently synthesized H-Bi molecule (R) is achieved with novel π-linkers. After structural modifications, ten novel HTMs (HB1-HB10) with a D-π-D backbone are obtained. The structure-property relationship, and optoelectronic and photovoltaic characteristics of these newly designed hole transport materials are examined comprehensively and compared with reference molecules. In addition, different geometric parameters are also examined with the assistance of density functional theory (DFT) and time-dependent DFT. All the designed molecules exhibit narrow HOMO-LUMO energy gaps (Eg =2.82-2.99 eV) compared with the R molecule (Eg =3.05 eV). The designed molecules express redshifting in their absorption spectra with low values of excitation energy, which in return offer high power conversion efficiencies. Further, density of states and molecular electrostatic potential analysis is performed to locate the different charge sites in the molecules. The reorganizational energies of holes and electrons are found to have good values, suggesting that these novel designed molecules are efficient hole transport materials for perovskite solar cells. In addition, the low binding energy values of the designed molecules (compared with R) offer high current charge density. Finally, complex study of HB9:PC61 BM is also undertaken to understand the charge transfer between the molecules of the complex. The results of all analyses advocate that these novel designed HTMs are promising candidates for the construction of future high-performance perovskite solar cells.
Collapse
|
37
|
Mehboob MY, Hussain R, Irshad Z, Adnan M. Enhancement in the Photovoltaic Properties of Hole Transport Materials by End‐Capped Donor Modifications for Solar Cell Applications. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12238] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Riaz Hussain
- Department of Chemistry University of Okara Okara 56300 Pakistan
| | - Zobia Irshad
- Graduate School, Department of Chemistry Chosun University Gwangju 501‐759 Republic of Korea
| | - Muhammad Adnan
- Graduate School, Department of Chemistry Chosun University Gwangju 501‐759 Republic of Korea
| |
Collapse
|