1
|
Zhao Y, Lin M, Zhai F, Chen J, Jin X. Exploring the Role of Ubiquitin-Proteasome System in the Pathogenesis of Parkinson's Disease. Pharmaceuticals (Basel) 2024; 17:782. [PMID: 38931449 PMCID: PMC11207014 DOI: 10.3390/ph17060782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder among the elderly population. The pathogenesis of PD encompasses genetic alterations, environmental factors, and age-related neurodegenerative processes. Numerous studies have demonstrated that aberrant functioning of the ubiquitin-proteasome system (UPS) plays a crucial role in the initiation and progression of PD. Notably, E3 ubiquitin ligases serve as pivotal components determining substrate specificity within UPS and are intimately associated with the regulation of various proteins implicated in PD pathology. This review comprehensively summarizes the mechanisms by which E3 ubiquitin ligases and deubiquitinating enzymes modulate PD-associated proteins and signaling pathways, while exploring the intricate relationship between UPS dysfunctions and PD etiology. Furthermore, this article discusses recent research advancements regarding inhibitors targeting PD-related E3 ubiquitin ligases.
Collapse
Affiliation(s)
- Yiting Zhao
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Department of Ultrasound Medicine, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Man Lin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Fengguang Zhai
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Jun Chen
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| | - Xiaofeng Jin
- Department of Chemoradiotherapy, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China; (Y.Z.); (M.L.)
- Zhejiang Key Laboratory of Pathophysiology, Department of Biochemistry and Molecular Biology, Health Science Center of Ningbo University, Ningbo 315211, China;
| |
Collapse
|
2
|
Singh R, Kaur N, Choubey V, Dhingra N, Kaur T. Endoplasmic reticulum stress and its role in various neurodegenerative diseases. Brain Res 2024; 1826:148742. [PMID: 38159591 DOI: 10.1016/j.brainres.2023.148742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The Endoplasmic reticulum (ER), a critical cellular organelle, maintains cellular homeostasis by regulating calcium levels and orchestrating essential functions such as protein synthesis, folding, and lipid production. A pivotal aspect of ER function is its role in protein quality control. When misfolded proteins accumulate within the ER due to factors like protein folding chaperone dysfunction, toxicity, oxidative stress, or inflammation, it triggers the Unfolded protein response (UPR). The UPR involves the activation of chaperones like calnexin, calreticulin, glucose-regulating protein 78 (GRP78), and Glucose-regulating protein 94 (GRP94), along with oxidoreductases like protein disulphide isomerases (PDIs). Cells employ the Endoplasmic reticulum-associated degradation (ERAD) mechanism to counteract protein misfolding. ERAD disruption causes the detachment of GRP78 from transmembrane proteins, initiating a cascade involving Inositol-requiring kinase/endoribonuclease 1 (IRE1), Activating transcription factor 6 (ATF6), and Protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathways. The accumulation and deposition of misfolded proteins within the cell are hallmarks of numerous neurodegenerative diseases. These aberrant proteins disrupt normal neuronal signalling and contribute to impaired cellular homeostasis, including oxidative stress and compromised protein degradation pathways. In essence, ER stress is defined as the cellular response to the accumulation of misfolded proteins in the endoplasmic reticulum, encompassing a series of signalling pathways and molecular events that aim to restore cellular homeostasis. This comprehensive review explores ER stress and its profound implications for the pathogenesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimaljot Singh
- Department of Biophysics, Panjab University Chandigarh, India
| | - Navpreet Kaur
- Department of Biophysics, Panjab University Chandigarh, India
| | - Vinay Choubey
- Department of Pharmacology, University of Tartu, Ravila 19, 51014 Tartu, Estonia
| | - Neelima Dhingra
- University Institute of Pharmaceutical Sciences, Panjab University Chandigarh, India
| | - Tanzeer Kaur
- Department of Biophysics, Panjab University Chandigarh, India.
| |
Collapse
|
3
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
4
|
Martín-Jiménez R, Lurette O, Hebert-Chatelain E. Damage in Mitochondrial DNA Associated with Parkinson's Disease. DNA Cell Biol 2020; 39:1421-1430. [PMID: 32397749 DOI: 10.1089/dna.2020.5398] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are the only organelles that contain their own genetic material (mtDNA). Mitochondria are involved in several key physiological functions, including ATP production, Ca2+ homeostasis, and metabolism of neurotransmitters. Since these organelles perform crucial processes to maintain neuronal homeostasis, mitochondrial dysfunctions can lead to various neurodegenerative diseases. Several mitochondrial proteins involved in ATP production are encoded by mtDNA. Thus, any mtDNA alteration can ultimately lead to mitochondrial dysfunction and cell death. Accumulation of mutations, deletions, and rearrangements in mtDNA has been observed in animal models and patients suffering from Parkinson's disease (PD). Also, specific inherited variations associated with mtDNA genetic groups (known as mtDNA haplogroups) are associated with lower or higher risk of developing PD. Consequently, mtDNA alterations should now be considered important hallmarks of this neurodegenerative disease. This review provides an update about the role of mtDNA alterations in the physiopathology of PD.
Collapse
Affiliation(s)
- Rebeca Martín-Jiménez
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Olivier Lurette
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| | - Etienne Hebert-Chatelain
- Department of Biology and Université de Moncton, Moncton, Canada
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, Canada
| |
Collapse
|
5
|
Key J, Mueller AK, Gispert S, Matschke L, Wittig I, Corti O, Münch C, Decher N, Auburger G. Ubiquitylome profiling of Parkin-null brain reveals dysregulation of calcium homeostasis factors ATP1A2, Hippocalcin and GNA11, reflected by altered firing of noradrenergic neurons. Neurobiol Dis 2019; 127:114-130. [PMID: 30763678 DOI: 10.1016/j.nbd.2019.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder in the old population. Among its monogenic variants, a frequent cause is a mutation in the Parkin gene (Prkn). Deficient function of Parkin triggers ubiquitous mitochondrial dysfunction and inflammation in the brain, but it remains unclear how selective neural circuits become vulnerable and finally undergo atrophy. We attempted to go beyond previous work, mostly done in peripheral tumor cells, which identified protein targets of Parkin activity, an ubiquitin E3 ligase. Thus, we now used aged Parkin-knockout (KO) mouse brain for a global quantification of ubiquitylated peptides by mass spectrometry (MS). This approach confirmed the most abundant substrate to be VDAC3, a mitochondrial outer membrane porin that modulates calcium flux, while uncovering also >3-fold dysregulations for neuron-specific factors. Ubiquitylation decreases were prominent for Hippocalcin (HPCA), Calmodulin (CALM1/CALML3), Pyruvate Kinase (PKM2), sodium/potassium-transporting ATPases (ATP1A1/2/3/4), the Rab27A-GTPase activating protein alpha (TBC1D10A) and an ubiquitin ligase adapter (DDB1), while strong increases occurred for calcium transporter ATP2C1 and G-protein subunits G(i)/G(o)/G(Tr). Quantitative immunoblots validated elevated abundance for the electrogenic pump ATP1A2, for HPCA as neuron-specific calcium sensor, which stimulates guanylate cyclases and modifies axonal slow afterhyperpolarization (sAHP), and for the calcium-sensing G-protein GNA11. We assessed if compensatory molecular regulations become insufficient over time, leading to functional deficits. Patch clamp experiments in acute Parkin-KO brain slices indeed revealed alterations of the electrophysiological properties in aged noradrenergic locus coeruleus (LC) neurons. LC neurons of aged Parkin-KO brain showed an acceleration of the spontaneous pacemaker frequency, a reduction in sAHP and shortening of action potential duration, without modulation of KCNQ potassium currents. These findings indicate altered calcium-dependent excitability in a PARK2 model of PD, mediated by diminished turnover of potential Parkin targets such as ATP1A2 and HPCA. The data also identified further novel Parkin substrate candidates like SIRT2, OTUD7B and CUL5. Our elucidation of neuron-specific mechanisms of PD pathogenesis helps to explain the known exceptional susceptibility of noradrenergic and dopaminergic projections to alterations of calcium homeostasis and its mitochondrial buffering.
Collapse
Affiliation(s)
- J Key
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - A K Mueller
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - S Gispert
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - L Matschke
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany
| | - I Wittig
- Functional Proteomics, SFB 815 Core Unit, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - O Corti
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, F-75013, France; Inserm, U1127, Paris, F-75013, France; CNRS, UMR 7225, Paris, F-75013, France; Sorbonne Universités, Paris, F-75013, France
| | - C Münch
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - N Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - MCMBB; Clinic for Neurology, Philipps-University Marburg, 35037 Marburg, Germany.
| | - G Auburger
- Exp. Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
6
|
Kroeger H, Chiang WC, Felden J, Nguyen A, Lin JH. ER stress and unfolded protein response in ocular health and disease. FEBS J 2018; 286:399-412. [PMID: 29802807 DOI: 10.1111/febs.14522] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/07/2018] [Accepted: 05/24/2018] [Indexed: 01/17/2023]
Abstract
The human eye is the organ that is able to react to light in order to provide sharp three-dimensional and colored images. Unfortunately, the health of the eye can be impacted by various stimuli that can lead to vision loss, such as environmental changes, genetic mutations, or aging. Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) signaling have been detected in many diverse ocular diseases, and chemical and genetic approaches to modulate ER stress and specific UPR regulatory molecules have shown beneficial effects in animal models of eye disease. This review highlights specific eye diseases associated with ER stress and UPR activity, based on a recent symposia exploring this theme.
Collapse
Affiliation(s)
- Heike Kroeger
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Wei-Chieh Chiang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Julia Felden
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Germany
| | - Amanda Nguyen
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jonathan H Lin
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
7
|
Lindholm D, Mäkelä J, Di Liberto V, Mudò G, Belluardo N, Eriksson O, Saarma M. Current disease modifying approaches to treat Parkinson's disease. Cell Mol Life Sci 2016; 73:1365-79. [PMID: 26616211 PMCID: PMC11108524 DOI: 10.1007/s00018-015-2101-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD is a progressive neurological disorder characterized by the degeneration and death of midbrain dopamine and non-dopamine neurons in the brain leading to motor dysfunctions and other symptoms, which seriously influence the quality of life of PD patients. The drug L-dopa can alleviate the motor symptoms in PD, but so far there are no rational therapies targeting the underlying neurodegenerative processes. Despite intensive research, the molecular mechanisms causing neuronal loss are not fully understood which has hampered the development of new drugs and disease-modifying therapies. Neurotrophic factors are by virtue of their survival promoting activities attract candidates to counteract and possibly halt cell degeneration in PD. In particular, studies employing glial cell line-derived neurotrophic factor (GDNF) and its family member neurturin (NRTN), as well as the recently described cerebral dopamine neurotrophic factor (CDNF) and the mesencephalic astrocyte-derived neurotrophic factor (MANF) have shown positive results in protecting and repairing dopaminergic neurons in various models of PD. Other substances with trophic actions in dopaminergic neurons include neuropeptides and small compounds that target different pathways impaired in PD, such as increased cell stress, protein handling defects, dysfunctional mitochondria and neuroinflammation. In this review, we will highlight the recent developments in this field with a focus on trophic factors and substances having the potential to beneficially influence the viability and functions of dopaminergic neurons as shown in preclinical or in animal models of PD.
Collapse
Affiliation(s)
- Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Johanna Mäkelä
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
- Minerva Medical Research Institute, Biomedicum-2 Helsinki, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Valentina Di Liberto
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Natale Belluardo
- Division of Human Physiology, Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Ove Eriksson
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, P.O.Box 56, Viikinkaari 9, 00014, Helsinki, Finland
| |
Collapse
|
8
|
Cho JH, Park JH, Chung CG, Shim HJ, Jeon KH, Yu SW, Lee SB. Parkin-mediated responses against infection and wound involve TSPO-VDAC complex in Drosophila. Biochem Biophys Res Commun 2015; 463:1-6. [PMID: 25979357 DOI: 10.1016/j.bbrc.2015.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/04/2015] [Indexed: 01/27/2023]
Abstract
Parkin, an E3 ubuquitin ligase associated with Parkinson's disease (PD), has recently been implicated in mediating innate immunity. However, molecular details regarding parkin-mediated immune response remain to be elucidated. Here, we identified mitochondrial TSPO-VDAC complex to genetically interact with parkin in mediating responses against infection and wound in Drosophila. The loss-of-function mutation in parkin results in defective immune response against bacterial infection. Additionally, parkin mutant larvae showed hypersensitivity against wound regardless of bacterial infection. Interestingly, the combinatorial trans-heterozygotic mutations in parkin and TSPO, or parkin and VDAC showed similar lethal tendency with parkin homozygous mutants. Furthermore, knockdown of TSPO alone also resulted in defective responses to infection and wound analogously to parkin mutants. Taken together, we propose that parkin cooperates with TSPO-VDAC complex to mediate responses against infection and wound.
Collapse
Affiliation(s)
- Jae Ho Cho
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Hyun-Jung Shim
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Keun Hye Jeon
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu 711-873, Republic of Korea.
| |
Collapse
|
9
|
Wilck N, Ludwig A. Targeting the ubiquitin-proteasome system in atherosclerosis: status quo, challenges, and perspectives. Antioxid Redox Signal 2014; 21:2344-63. [PMID: 24506455 DOI: 10.1089/ars.2013.5805] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a vascular disease of worldwide significance with fatal complications such as myocardial infarction, stroke, and peripheral artery disease. Atherosclerosis is recognized as a chronic inflammatory disease leading to arterial plaque formation and vessel narrowing in different vascular beds. Besides the strong inflammatory nature of atherosclerosis, it is also characterized by proliferation, apoptosis, and enhanced oxidative stress. The ubiquitin-proteasome system (UPS) is the major intracellular degradation system in eukaryotic cells. Besides its essential role in the degradation of dysfunctional and oxidatively damaged proteins, it is involved in many processes that influence disease progression in atherosclerosis. Hence, it is logical to ask whether targeting the proteasome is a reasonable and feasible option for the treatment of atherosclerosis. RECENT ADVANCES Several lines of evidence suggest stage-specific dysfunction of the UPS in atherogenesis. Regulation of key processes by the proteasome in atherosclerosis, as well as the modulation of these processes by proteasome inhibitors in vascular cells, is outlined in this review. The treatment of atherosclerotic animal models with proteasome inhibitors yielded partly opposing results, the potentially underlying reasons of which are discussed here. CRITICAL ISSUES AND FUTURE DIRECTIONS Targeting UPS function in atherosclerosis is a promising but challenging option. Limitations of current proteasome inhibitors, dose dependency, and the cell specificity of effects, as well as the potential of future therapeutics are discussed. A stage-specific in-depth exploration of UPS function in atherosclerosis in the future will help identify targets and windows for beneficial intervention.
Collapse
Affiliation(s)
- Nicola Wilck
- 1 Medizinische Klinik für Kardiologie und Angiologie, Charité-Universitätsmedizin Berlin , Campus Mitte, Berlin, Germany
| | | |
Collapse
|
10
|
Kazlauskaite A, Kelly V, Johnson C, Baillie C, Hastie CJ, Peggie M, Macartney T, Woodroof HI, Alessi DR, Pedrioli PGA, Muqit MMK. Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity. Open Biol 2014; 4:130213. [PMID: 24647965 PMCID: PMC3971407 DOI: 10.1098/rsob.130213] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mutations in PINK1 and Parkin are associated with early-onset Parkinson's disease. We recently discovered that PINK1 phosphorylates Parkin at serine65 (Ser65) within its Ubl domain, leading to its activation in a substrate-free activity assay. We now demonstrate the critical requirement of Ser65 phosphorylation for substrate ubiquitylation through elaboration of a novel in vitro E3 ligase activity assay using full-length untagged Parkin and its putative substrate, the mitochondrial GTPase Miro1. We observe that Parkin efficiently ubiquitylates Miro1 at highly conserved lysine residues, 153, 230, 235, 330 and 572, upon phosphorylation by PINK1. We have further established an E2-ubiquitin discharge assay to assess Parkin activity and observe robust discharge of ubiquitin-loaded UbcH7 E2 ligase upon phosphorylation of Parkin at Ser65 by wild-type, but not kinase-inactive PINK1 or a Parkin Ser65Ala mutant, suggesting a possible mechanism of how Ser65 phosphorylation may activate Parkin E3 ligase activity. For the first time, to the best of our knowledge, we report the effect of Parkin disease-associated mutations in substrate-based assays using full-length untagged recombinant Parkin. Our mutation analysis indicates an essential role for the catalytic cysteine Cys431 and reveals fundamental new knowledge on how mutations may confer pathogenicity via disruption of Miro1 ubiquitylation, free ubiquitin chain formation or by impacting Parkin's ability to discharge ubiquitin from a loaded E2. This study provides further evidence that phosphorylation of Parkin at Ser65 is critical for its activation. It also provides evidence that Miro1 is a direct Parkin substrate. The assays and reagents developed in this study will be important to uncover new insights into Parkin biology as well as aid in the development of screens to identify small molecule Parkin activators for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Agne Kazlauskaite
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Biology of mitochondria in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 107:355-415. [PMID: 22482456 DOI: 10.1016/b978-0-12-385883-2.00005-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal degeneration in these familial diseases, and in the more common idiopathic (sporadic) diseases, are unresolved. Genetic, biochemical, and morphological analyses of human AD, PD, and ALS, as well as their cell and animal models, reveal that mitochondria could have roles in this neurodegeneration. The varied functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and the overlying genetic variations. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial programmed cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This chapter reviews several aspects of mitochondrial biology and how mitochondrial pathobiology might contribute to the mechanisms of neurodegeneration in AD, PD, and ALS.
Collapse
|
12
|
Hata N, Oshitari T, Yokoyama A, Mitamura Y, Yamamoto S. Increased expression of IRE1alpha and stress-related signal transduction proteins in ischemia-reperfusion injured retina. Clin Ophthalmol 2011; 2:743-52. [PMID: 19668425 PMCID: PMC2699777 DOI: 10.2147/opth.s3009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to determine whether the expression of ER stress-related factors IRE1alpha, apoptosis signal-regulating kinase 1 (ASK1), SAPK/ERK kinase 1 (SEK1) and c-Jun N-terminal kinase (JNK) is associated with the damaged retinal neurons induced by ischemia-reperfusion injury. After 60 minutes of ischemia, the rat retinas were reperfused, and retinas were isolated and fixed after 6, 9, 12, 18, and 24 hours, and 2, 5, and 9 days of reperfusion. Cryosections were immunostained with Fluoro-Jade B, a degenerating neuron marker to label degenerating neurons. Semi-quantitative analysis of the expression of IRE1alpha, ASK1, SEK1, and JNK were performed in both control and ischemic retinas. In ischemic retinas, the intensities of IRE1alpha immunoreactivity in the ganglion cell layer (GCL) were significantly higher than in the control retinas. In ischemic retinas, the numbers of SEK1-, ASK1-, and JNK-positive cells were significantly increased in the GCL compared to those in the control retinas. In addition, the cells that were positive for SEK1-, ASK1-, and JNK were also positive for Fluoro-Jade B-positive cells. These results indicate that the increased expression of ER stress-related factors was, in part, associated with the retinal neuronal abnormalities after ischemia-reperfusion injury in rat retinas.
Collapse
Affiliation(s)
- Natsuyo Hata
- Department of Ophthalmology and Visual Science, Chiba University, Graduate School of Medicine, Chuo-ku, Chiba, Japan
| | | | | | | | | |
Collapse
|
13
|
Does neurotrophic factor benefit to PD therapy via co-function with ubiquitin–proteasome system? Med Hypotheses 2011; 76:589-92. [DOI: 10.1016/j.mehy.2011.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/14/2010] [Accepted: 01/06/2011] [Indexed: 01/29/2023]
|
14
|
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy.
Collapse
|
15
|
Motor neuron synapse and axon defects in a C. elegans alpha-tubulin mutant. PLoS One 2010; 5:e9655. [PMID: 20300184 PMCID: PMC2836382 DOI: 10.1371/journal.pone.0009655] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022] Open
Abstract
Regulation of microtubule dynamics underlies many fundamental cellular mechanisms including cell division, cell motility, and transport. In neurons, microtubules play key roles in cell migration, axon outgrowth, control of axon and synapse growth, and the regulated transport of vesicles and structural components of synapses. Loss of synapse and axon integrity and disruption of axon transport characterize many neurodegenerative diseases. Recently, mutations that specifically alter the assembly or stability of microtubules have been found to directly cause neurodevelopmental defects or neurodegeneration in vertebrates. We report here the characterization of a missense mutation in the C-terminal domain of C. elegans alpha-tubulin, tba-1(ju89), that disrupts motor neuron synapse and axon development. Mutant ju89 animals exhibit reduction in the number and size of neuromuscular synapses, altered locomotion, and defects in axon extension. Although null mutations of tba-1 show a nearly wild-type pattern, similar axon outgrowth defects were observed in animals lacking the beta-tubulin TBB-2. Genetic analysis reveals that tba-1(ju89) affects synapse development independent of its role in axon outgrowth. tba-1(ju89) is an altered function allele that most likely perturbs interactions between TBA-1 and specific microtubule-associated proteins that control microtubule dynamics and transport of components needed for synapse and axon growth.
Collapse
|
16
|
Ikeuchi K, Marusawa H, Fujiwara M, Matsumoto Y, Endo Y, Watanabe T, Iwai A, Sakai Y, Takahashi R, Chiba T. Attenuation of proteolysis-mediated cyclin E regulation by alternatively spliced Parkin in human colorectal cancers. Int J Cancer 2009; 125:2029-35. [PMID: 19585504 DOI: 10.1002/ijc.24565] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkin has a critical role in the ubiquitin-proteasome system as an E3-ligase targeting several substrates. Our recent finding that Parkin-deficient mice are susceptible to tumorigenesis provided evidence that Parkin is a tumor suppressor gene. Dysfunction of the Parkin gene is frequently observed in various human cancers, but the mechanism underlying the cell cycle disruption induced by Parkin dysfunction that leads to carcinogenesis is not known. Here, we demonstrated that Parkin expression in colonic epithelial cells is regulated in a cell cycle-associated manner. Epidermal growth factor (EGF) stimulation upregulated Parkin gene expression in human colon cells. Inhibition of the phosphoinositide 3-kinase [PI(3)K]-Akt-dependent pathways suppressed growth factor-induced Parkin expression. The expression of alternatively spliced Parkin isoforms with various deletions spanning exons 3-6 was detected in 18 of 43 (42%) human colorectal cancer tissues. Wild-type Parkin induced the degradation of cyclin E protein, but the alternatively spliced Parkin identified in colon cancers showed defective proteolysis of cyclin E. These findings indicate that Parkin expression is induced by growth factor stimulation and is involved in the cell cycle regulation of colon cells. Tumor-specific expression of alternatively spliced Parkin isoforms might contribute to enhanced cell proliferation through the attenuation of proteolysis-mediated cyclin E regulation in human colorectal cancers.
Collapse
Affiliation(s)
- Kyoko Ikeuchi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dusonchet J, Bensadoun JC, Schneider BL, Aebischer P. Targeted overexpression of the parkin substrate Pael-R in the nigrostriatal system of adult rats to model Parkinson's disease. Neurobiol Dis 2009; 35:32-41. [DOI: 10.1016/j.nbd.2009.03.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/03/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022] Open
|
18
|
Abstract
Parkinson's disease is the second most common neurodegenerative disorder and remains incurable. Considerable progress has been made in understanding the molecular mechanisms of this disease, in particular, a distinct set of genes have emerged, whose dysfunctional regulation is strongly associated with the condition. These genes include alpha-synuclein, parkin, PTEN induced Putative Kinase 1 (PINK1), DJ-1, Leucine Rich Repeat Kinase 2 (LRRK2) and ATP13A2. Here we discuss what has been learnt in the study of these genes and how these genes may contribute to the pathogenesis of Parkinson's disease through different molecular pathways, and consider how these pathways might converge to lead to the onset of Parkinson's disease.
Collapse
|
19
|
Pruning and loss of excitatory synapses by the parkin ubiquitin ligase. Proc Natl Acad Sci U S A 2008; 105:19492-7. [PMID: 19033459 DOI: 10.1073/pnas.0802280105] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the PARK2 gene cause hereditary Parkinson disease (PD). The PARK2 gene product, termed parkin, is an E3 ubiquitin ligase that mediates the transfer of ubiquitin onto diverse substrate proteins. Despite progress in defining the molecular properties and substrates of parkin, little is known about its physiological function. Here, we show that parkin regulates the function and stability of excitatory glutamatergic synapses. Postsynaptic expression of parkin dampens excitatory synaptic transmission and causes a marked loss of excitatory synapses onto hippocampal neurons. Conversely, knockdown of endogenous parkin or expression of PD-linked parkin mutants profoundly enhances synaptic efficacy and triggers a proliferation of glutamatergic synapses. This proliferation is associated with increased vulnerability to synaptic excitotoxicity. Thus, parkin negatively regulates the number and strength of excitatory synapses. Increased excitatory drive produced by disruption of parkin may contribute to the pathophysiology of PD.
Collapse
|
20
|
Oshitari T, Hata N, Yamamoto S. Endoplasmic reticulum stress and diabetic retinopathy. Vasc Health Risk Manag 2008. [PMID: 18629365 DOI: 10.2147/vhrm.s2293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic beta-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan.
| | | | | |
Collapse
|
21
|
Abstract
Endoplasmic reticulum (ER) stress is involved in the pathogenesis of several diseases including Alzheimer disease and Parkinson disease. Many recent studies have shown that ER stress is related to the pathogenesis of diabetes mellitus, and with the death of pancreatic β-cells, insulin resistance, and the death of the vascular cells in the retina. Diabetic retinopathy is a major complication of diabetes and results in death of both neural and vascular cells. Because the death of the neurons directly affects visual function, the precise mechanism causing the death of neurons in early diabetic retinopathy must be determined. The ideal therapy for preventing the onset and the progression of diabetic retinopathy would be to treat the factors involved with both the vascular and neuronal abnormalities in diabetic retinopathy. In this review, we present evidence that ER stress is involved in the death of both retinal neurons and vascular cells in diabetic eyes, and thus reducing or blocking ER stress may be a potential therapy for preventing the onset and the progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Toshiyuki Oshitari
- Department of Ophthalmology and Visual Science, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan.
| | | | | |
Collapse
|
22
|
Abstract
α-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson’s disease (PD), and α-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of α-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed α-synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. α-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that α-synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of α-synuclein-induced neurodegeneration. α-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of α-synuclein with components of neuronal membrane traffic.
Collapse
|
23
|
Abstract
Neuronal cell death plays a role in many chronic neurodegenerative diseases with the loss of particular subsets of neurons. The loss of the neurons occurs during a period of many years, which can make the mode(s) of cell death and the initiating factors difficult to determine. In vitro and in vivo models have proved invaluable in this regard, yielding insight into cell death pathways. This review describes the main mechanisms of neuronal cell death, particularly apoptosis, necrosis, excitotoxicity and autophagic cell death, and their role in neurodegenerative diseases such as ischaemia, Alzheimer's, Parkinson's and Huntington's diseases. Crosstalk between these death mechanisms is also discussed. The link between cell death and protein mishandling, including misfolded proteins, impairment of protein degradation, protein aggregation is described and finally, some pro-survival strategies are discussed.
Collapse
Affiliation(s)
- Adrienne M Gorman
- Department of Biochemistry, National University of Ireland, Galway Ireland.
| |
Collapse
|
24
|
Chen CM, Wu YR, Hu FJ, Chen YC, Chuang TJ, Cheng YF, Lee-Chen GJ. HSPA5 promoter polymorphisms and risk of Parkinson's disease in Taiwan. Neurosci Lett 2008; 435:219-22. [PMID: 18343577 DOI: 10.1016/j.neulet.2008.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 02/03/2008] [Accepted: 02/18/2008] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) stress induced by misfolded proteins has been implicated in Parkinson's disease (PD) pathogenesis. A malfunction of unfolded protein response (UPR) to ER stress can result in PD as well as other neurodegenerative diseases. Heat shock 70 kDa protein 5 (HSPA5) is one of the UPR chaperones reactive to ER stress to block the apoptotic process. HSPA5 promoter polymorphisms -415 G/A (rs391957), -370 C/T (rs17840761) and -180 del/G (rs3216733) and their derived haplotypes may affect promoter activity of the gene. This study examines whether these HSPA5 promoter polymorphisms are associated with the risk of Taiwanese PD and the age of disease onset using a case-control study. Polymorphisms -415 G/A and -180 del/G were completely linked in our population (D'=1.00, Delta(2)=1.00). The genotype or allele frequency distribution of each HSPA5 polymorphism was not significantly different between the controls (n=341) and the PD patients (n=393). Neither the linked -415 G/A and -180 del/G nor -370 C/T polymorphism influences PD onset age. Our data suggest that the HSPA5 -415 G/A, -370 C/T, and -180 del/G polymorphisms are unlikely to play a major role in risk of developing PD in Taiwan.
Collapse
Affiliation(s)
- Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang-Gung University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
25
|
Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson's disease. Prog Neurobiol 2007; 84:25-39. [PMID: 18037225 DOI: 10.1016/j.pneurobio.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/11/2007] [Indexed: 12/21/2022]
Abstract
Symptomatic medications, l-Dopa and dopaminergic agents, remain the only clinically pertinent pharmacological treatment proven effective and available for the large population of patients with Parkinson's disease. The challenge for the pharmaceutical industry is to develop disease-modifying drugs which could arrest, delay or at least oppose the progression of the specific pathogenic processes underlying Parkinson's disease. The purpose of this review, based on recent biological and genetic data to be validated with appropriate animal models, was to re-examine the putative neuroprotective agents in Parkinson's disease and discuss the development of new strategies with the ultimate goal of demonstrating neurocytoprotective activity in this neurodegenerative disease. Since guidelines for research on neurocytoprotective drugs remain to be written, innovation will be the key to success of future clinical trials. It is reasonable to expect that future advances in our understanding of the pathogenic processes of Parkinson's disease will open the way to new perspectives for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, 2 av. du Pr Léon Bernard, F-35043 Rennes, France
| | | | | |
Collapse
|
26
|
Martin LJ. Transgenic mice with human mutant genes causing Parkinson's disease and amyotrophic lateral sclerosis provide common insight into mechanisms of motor neuron selective vulnerability to degeneration. Rev Neurosci 2007; 18:115-36. [PMID: 17593875 DOI: 10.1515/revneuro.2007.18.2.115] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A variety of gene mutations can cause familial forms of Parkinson's disease (PD) or amyotrophic lateral sclerosis (ALS). Mutations in the synaptic protein alpha-synuclein (alpha-Syn) cause PD. Mutations in the antioxidant enzyme superoxide dismutase-1 (SOD1) cause ALS. The mechanisms of human mutant a-Syn and SOD1 toxicity to neurons are not known. Transgenic (tg) mice expressing human mutant alpha-Syn or SOD1 develop profound fatal neurologic disease characterized by progressive motor deficits, paralysis, and neurodegeneration. Ala-53-->Thr (A53T)-mutant alpha-Syn and Gly-93-->Ala (G93A)-mutant SOD1 tg mice develop prominent mitochondrial abnormalities. Interestingly, although nigral neurons in A53T mice are relatively preserved, spinal motor neurons (MNs) undergo profound degeneration. In A53T mice, mitochondria degenerate in neurons, and complex IV activity is reduced. Furthermore, mitochondria in neurons develop DNA breaks and have p53 targeted to the outer membrane. Nitrated a-Syn accumulates in degenerating MNs in A53T mice. mSOD1 mouse MNs accumulate mitochondria from the axon terminals and generate higher levels of reactive oxygen/nitrogen species than MNs in control mice. mSOD1 mouse MNs accumulate DNA single-strand breaks prior to double-strand breaks occurring in nuclear and mitochondrial DNA. Nitrated and aggregated cytochrome c oxidase subunit-I and nitrated SOD2 accumulate in mSOD1 mouse spinal cord. Mitochondria in mSOD1 mouse MNs accumulate NADPH diaphorase and inducible NOS (iNOS)-like immunoreactivity, and iNOS gene deletion significantly extends the lifespan of G93A-mSOD1 mice. Mitochondrial changes develop long before symptoms emerge. These experiments reveal that mitochondrial nitrative stress and perturbations in mitochondrial trafficking may be antecedents of neuronal cell death in animal models of PD and ALS.
Collapse
Affiliation(s)
- Lee J Martin
- Department of Pathology, Division of Neuropathology, Department of Neuroscience, Johns Hopkins University School ofMedicine, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
27
|
Wang HQ, Imai Y, Kataoka A, Takahashi R. Cell type-specific upregulation of Parkin in response to ER stress. Antioxid Redox Signal 2007; 9:533-42. [PMID: 17465879 DOI: 10.1089/ars.2006.1522] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parkin is the gene responsible for a familial form of Parkinson's disease (PD) termed autosomal recessive juvenile parkinsonism (AR-JP)/PARK2. Parkin has been shown to protect cells from endoplasmic reticulum (ER) stress and oxidative stress, presumably due to its ubiquitin ligase (E3) activity that targets proteins for proteasomal degradation. Although the authors showed that parkin is upregulated in response to ER stress, subsequent reports suggest that it does not represent a universal unfolded protein response (UPR). Here the authors report different regulation of parkin in response to ER stress in different cell lines, demonstrating upregulation of parkin as a cell type-specific response to ER stress. 2-Mercaptoethanol (2-ME) and tunicamycin increased the expression of parkin in SH-SY5Y (H) cells, Neuro2a cells, Goto-P3 cells, but not in SH-SY5Y (J) cells and IMR32 cells. In parallel with these studies, similar upregulation of the parkin coregulated gene (PACRG)/gene adjacent to parkin (Glup) was also observed by ER stress. Luciferase assays failed to detect the transcriptional activation of 500 bp parkin/Glup promoter in response to ER stress. These results indicate that induction of parkin by ER stress represents a cell type-specific response.
Collapse
Affiliation(s)
- Hua-Qin Wang
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | |
Collapse
|
28
|
Reppe S, Stilgren L, Abrahamsen B, Olstad OK, Cero F, Brixen K, Nissen-Meyer LS, Gautvik KM. Abnormal muscle and hematopoietic gene expression may be important for clinical morbidity in primary hyperparathyroidism. Am J Physiol Endocrinol Metab 2007; 292:E1465-73. [PMID: 17227961 DOI: 10.1152/ajpendo.00487.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In primary hyperparathyroidism (PHPT), excess PTH secretion by adenomatous or hyperplastic parathyroid glands leads to elevated serum [Ca(2+)]. Patients present complex symptoms of muscular fatigue, various neuropsychiatric, neuromuscular, and cardiovascular manifestations, and, in advanced disease, kidney stones and metabolic bone disease. Our objective was to characterize changes in muscle and hematopoietic gene expression in patients with reversible mild PHPT after parathyroidectomy and possibly link molecular pathology to symptoms. Global mRNA profiling using Affymetrix gene chips was carried out in biopsies obtained before and 1 yr after parathyroidectomy in seven patients discovered by routine blood [Ca(2+)] screening. The tissue distribution of PTH receptor (PTHR1 and PTHR2) mRNAs were quantitated using real-time RT-PCR in unrelated persons to define PTH target tissues. Of about 10,000 expressed genes, 175 muscle, 169 hematological, and 99 bone-associated mRNAs were affected. Notably, the major part of muscle-related mRNAs was increased whereas hematological mRNAs were predominantly decreased during disease. Functional and molecular network analysis demonstrated major alterations of several tissue characteristic groups of mRNAs as well as those belonging to common cell signaling and major metabolic pathways. PTHR1 and PTHR2 mRNAs were more abundantly expressed in muscle and brain than in hematopoietic cells. We suggest that sustained stimulation of PTH receptors present in brain, muscle, and hematopoietic cells have to be considered as one independent, important cause of molecular disease in PHPT leading to profound alterations in gene expression that may help explain symptoms like muscle fatigue, cardiovascular pathology, and precipitation of psychiatric illness.
Collapse
MESH Headings
- Aged
- Biopsy
- Gene Expression Regulation
- Hematopoietic System/metabolism
- Hematopoietic System/physiology
- Humans
- Hyperparathyroidism, Primary/genetics
- Hyperparathyroidism, Primary/metabolism
- Middle Aged
- Muscles/metabolism
- Muscles/physiology
- Oligonucleotide Array Sequence Analysis
- Parathyroid Hormone/biosynthesis
- Parathyroid Hormone/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptor, Parathyroid Hormone, Type 1/biosynthesis
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 2/biosynthesis
- Receptor, Parathyroid Hormone, Type 2/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Sjur Reppe
- Department of Medical Biochemistry, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
alpha-synuclein gene mutations are major underlying genetic defects known in familial juvenile onset Parkinson's disease (PD), and alpha-synuclein is a major constituent of Lewy Bodies, the pathological hallmark of PD. The normal cellular function of alpha-synuclein has been elusive, and its exact etiological mechanism in causing dopaminergic neuronal death in PD is also not clearly understood. Very recent reports now indicate that mutant or simply over-expressed alpha- synuclein could cause damage by interfering with particular steps of neuronal membrane traffic. alpha-synuclein selectively blocks endoplamic reticulum-to-Golgi transport, thus causing ER stress. A screen in a yeast revealed that alpha- synuclein toxicity could be suppressed by over-expression of the small GTPase Ypt1/Rab1, and that over-expression of the latter rescues neuron loss in invertebrate and mammalian models of alpha-synuclein-induced neurodegeneration. alpha-synuclein may also serve a chaperone function for the proper folding of synaptic SNAREs that are important for neurotransmitter release. We discuss these recent results and the emerging pathophysiological interaction of alpha-synuclein with components of neuronal membrane traffic.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
30
|
Lin Chua CE, Tang BL. ? - synuclein and Parkinson's disease: the first roadblock. J Cell Mol Med 2006. [DOI: 10.1111/j.1582-4934.2006.tb00442.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
31
|
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Gene mutations have been found in rare familial forms of PD, with mutations in parkin being the most common cause. Oxidative stresses have also been implicated as an important contributing factor in the pathogenesis of PD. Currently, there is accumulating evidence that parkin may play a role in maintaining mitochondrial function and preventing oxidative stress. We demonstrated here that parkin is up-regulated when SH-SY5Y dopaminergic neuroblastoma cells are exposed to the oxidant dopamine. The up-regulation of parkin appeared to be due to transcriptional activation as luciferase assays confirmed that specific parkin promoter constructs could confer enhanced transcriptional activation in response to dopamine. Moreover, this effect was also seen when SH-SY5Y cells were subjected to another oxidative stress, 1-methyl-4-phenylpyridinium. In parallel with these studies, we also observed similar transcriptional activation of the parkin coregulated gene by oxidative stress. This is the first demonstration that parkin expression is up-regulated by oxidative stresses and may suggest that this might be a general neuroprotective response of parkin to oxidative stresses.
Collapse
Affiliation(s)
- Yan Xiang Yang
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
32
|
Buneeva OA, Medvedev AE. Ubiquitin-protein ligase parkin and its role in the development of Parkinson’s disease. BIOCHEMISTRY (MOSCOW) 2006; 71:851-60. [PMID: 16978147 DOI: 10.1134/s0006297906080050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkin is a protein encoded by the corresponding parkin gene. It exhibits ubiquitin-protein ligase activity. In this review, we analyze domain structure, substrate specificity, subcellular localization of parkin, and regulation of its activity. Then we discuss data on the effects of various mutations in the parkin gene on structure and functions of this protein and results obtained with parkin knock-out animals. Better understanding of parkin biochemistry, its compartmentalization, functions, and altered functions would help the development of new approaches for the treatment of both inherited and sporadic cases of Parkinson's disease.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 119121, Russia
| | | |
Collapse
|
33
|
Abstract
Endoplasmic reticulum (ER) stress is caused by disturbances in the structure and function of the ER with the accumulation of misfolded proteins and alterations in the calcium homeostasis. The ER response is characterized by changes in specific proteins, causing translational attenuation, induction of ER chaperones and degradation of misfolded proteins. In case of prolonged or aggravated ER stress, cellular signals leading to cell death are activated. ER stress has been suggested to be involved in some human neuronal diseases, such as Parkinson's disease, Alzheimer's and prion disease, as well as other disorders. The exact contributions to and casual effects of ER stress in the various disease processes, however, are not known. Here we will discuss the possible role of ER stress in neurodegenerative diseases, and highlight current knowledge in this field that may reveal novel insight into disease mechanisms and help to design better therapies for these disorders.
Collapse
Affiliation(s)
- D Lindholm
- Department of Neuroscience, Unit of Neurobiology, Uppsala University, Biomedical Centre, Box 587, S-751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
34
|
Abstract
Ubiquitylation of membrane proteins has gained considerable interest in recent years. It has been recognized as a signal that negatively regulates the cell surface expression of many plasma membrane proteins both in yeast and in mammalian cells. Moreover, it is also involved in endoplasmic reticulum-associated degradation of membrane proteins, and it acts as a sorting signal both in the secretory pathway and in endosomes, where it targets proteins into multivesicular bodies in the lumen of vacuoles/lysosomes. In this review we discuss the progress in understanding these processes, achieved during the past several years.
Collapse
Affiliation(s)
- Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
35
|
Abstract
The etiologies of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, polyglutamine diseases, or prion diseases may be diverse; however, aberrations in protein folding, processing, and/or degradation are common features of these entities, implying a role of quality control systems, such as molecular chaperones and the ubiquitin-proteasome pathway. There is substantial evidence for a causal role of protein misfolding in the pathogenic process coming from neuropathology, genetics, animal modeling, and biophysics. The presence of protein aggregates in all neurodegenerative diseases gave rise to the hypothesis that protein aggregates, be it intracellular or extracellular deposits, may perturb the cellular homeostasis and disintegrate neuronal function (Table 1). More recently, however, an increasing number of studies have indicated that protein aggregates are not toxic per se and might even serve a protective role by sequestering misfolded proteins. Specifically, experimental models of polyglutamine diseases, Alzheimer's disease, and Parkinson's disease revealed that the appearance of aggregates can be dissociated from neuronal toxicity, while misfolded monomers or oligomeric intermediates seem to be the toxic species. The unique features of molecular chaperones to assist in the folding of nascent proteins and to prevent stress-induced misfolding was the rationale to exploit their effects in different models of neurodegenerative diseases. This chapter concentrates on two neurodegenerative diseases, Parkinson's disease and prion diseases, with a special focus on protein misfolding and a possible role of molecular chaperones.
Collapse
Affiliation(s)
- K F Winklhofer
- Department of Cellular Biochemistry, Max-Planck-Institute for Biochemistry, Martinsried, Germany.
| | | |
Collapse
|
36
|
Wang C, Ko HS, Thomas B, Tsang F, Chew KCM, Tay SP, Ho MWL, Lim TM, Soong TW, Pletnikova O, Troncoso J, Dawson VL, Dawson TM, Lim KL. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet 2005; 14:3885-97. [PMID: 16278233 DOI: 10.1093/hmg/ddi413] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in parkin are currently recognized as the most common cause of familial Parkinsonism. Emerging evidence also suggests that parkin expression variability may confer a risk for the development of the more common, sporadic form of Parkinson's disease (PD). Supporting this, we have recently demonstrated that parkin solubility in the human brain becomes altered with age. As parkin apparently functions as a broad-spectrum neuroprotectant, the resulting decrease in the availability of soluble parkin with age may underlie the progressive susceptibility of the brain to stress. Interestingly, we also observed that many familial-PD mutations of parkin alter its solubility in a manner that is highly reminiscent of our observations with the aged brain. The converging effects on parkin brought about by aging and PD-causing mutations are probably not trivial and suggest that environmental modulators affecting parkin solubility would increase an individual's risk of developing PD. Using both cell culture and in vivo models, we demonstrate here that several PD-linked stressors, including neurotoxins (MPP+, rotenone, 6-hydroxydopamine), paraquat, NO, dopamine and iron, induce alterations in parkin solubility and result in its intracellular aggregation. Furthermore, the depletion of soluble, functional forms of parkin is associated with reduced proteasomal activities and increased cell death. Our results suggest that exogenously introduced stress as well as endogenous dopamine could affect the native structure of parkin, promote its misfolding, and concomitantly compromise its protective functions. Mechanistically, our results provide a link between the influence of environmental and intrinsic factors and genetic susceptibilities in PD pathogenesis.
Collapse
Affiliation(s)
- Cheng Wang
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Serdaroglu P, Tasli H, Hanagasi H, Emre M. Parkin expression in human skeletal muscle. J Clin Neurosci 2005; 12:927-9. [PMID: 16257218 DOI: 10.1016/j.jocn.2005.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
Parkin is known to be present in human neurons and peripheral nerves. Using an antibody against parkin protein we have now demonstrated that parkin is also expressed in the sarcoplasm and sarcolemmal region of human skeletal muscle fibres. We have also found different age-related patterns of expression with increase in intensity and organization of distribution at older ages. These findings suggest a change in the functional role of parkin in skeletal muscle with ageing and may contribute to understanding the mechanisms of muscle aging.
Collapse
Affiliation(s)
- P Serdaroglu
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey.
| | | | | | | |
Collapse
|
38
|
Takahashi R. [Neurodegeneration caused by ER stress?--the pathogenetic mechanisms underlying AR-JP]. Nihon Yakurigaku Zasshi 2005; 124:375-82. [PMID: 15572841 DOI: 10.1254/fpj.124.375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutations of the Parkin gene are responsible for autosomal recessive juvenile parkinsonism (AR-JP), the most common cause of early-onset familial Parkinson's disease. Parkin functions as an E3 ubiquitin ligase, thereby promoting ubiquitination and subsequent proteosomal degradation of its substrate(s). AR-JP is, therefore, thought to be caused by accumulation of an unknown toxic protein(s), which would normally be degraded by a molecular machinery involving Parkin. To date, ten different proteins are reported to be substrates of Parkin. Among these, a G protein-coupled orphan receptor called the Pael receptor (Pael-R), which is highly expressed in dopaminergic neurons, attracts particular attention. When over-expressed in cells, the Pael-R protein became improperly folded and insoluble. Excessive accumulation of insoluble Pael-R led to endoplasmic reticulum (ER) stress-induced cell death. Parkin was observed to ubiquitinate the misfolded Pael-R protein, thereby promoting its degradation and suppressing misfolded Pael-R-induced cell death. Moreover, selective dopaminergic neurodegeneration was observed when human Pael-R was ectopically expressed in Drosophila brain, further supporting the idea that Pael-R accumulation plays a major role in AR-JP. In contrast, neither dopaminergic neurodegeneration nor accumulation of any known Parkin substrates was detected in Parkin knockout mice. The role of Pael-R in AR-JP will be discussed based on recent data.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Laboratory of Motor System Neurodegeneration, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Greene JC, Whitworth AJ, Andrews LA, Parker TJ, Pallanck LJ. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum Mol Genet 2005; 14:799-811. [PMID: 15689351 DOI: 10.1093/hmg/ddi074] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Loss-of-function mutations of the parkin gene, which encodes a ubiquitin-protein ligase, are a common cause of autosomal recessive juvenile parkinsonism (ARJP). Previous work has led to the identification of a number of Parkin substrates that implicate specific pathways in ARJP pathogenesis, including endoplasmic reticulum (ER) stress and cell cycle activation. To test the involvement of previously implicated pathways, as well as to identify novel pathways in ARJP pathogenesis, we are using genetic and genomic approaches to study Parkin function in the fruit fly Drosophila melanogaster. In previous work, we demonstrated that Drosophila parkin null mutants exhibit mitochondrial pathology and flight muscle degeneration. To further explore the mechanisms responsible for pathology in parkin mutants, we analyzed the transcriptional alterations that occur during muscle degeneration and performed a genetic screen for parkin modifiers. Results of these studies indicate that oxidative stress response components are induced in parkin mutants and that loss-of-function mutations in oxidative stress components enhance the parkin mutant phenotypes. Genes involved in the innate immune response are also induced in parkin mutants. In contrast, our studies did not reveal evidence for cell cycle or ER stress pathway induction in parkin mutants. These results suggest that oxidative stress and/or inflammation may play a fundamental role in the etiology of ARJP.
Collapse
Affiliation(s)
- Jessica C Greene
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
40
|
Corti O, Hampe C, Darios F, Ibanez P, Ruberg M, Brice A. Parkinson's disease: from causes to mechanisms. C R Biol 2005; 328:131-42. [PMID: 15770999 DOI: 10.1016/j.crvi.2004.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common age-related, progressive neurodegenerative disease of unknown etiology. Environmental factors have long been suspected to participate in the pathogenesis of PD due to the existence of neurotoxins that preferentially damage the dopaminergic nigrostriatal pathway. In the past few years, novel insights into the degenerative process have been provided by the discovery of genes responsible for rare monogenic parkinsonian syndromes. Compelling evidence is accumulating, suggesting that the products of several of these genes can interact with environmental toxins and intervene in molecular pathways controlling the functional integrity of mitochondria.
Collapse
Affiliation(s)
- Olga Corti
- INSERM U 289, hôpital de la Pitié-Salpêtrière, 47, bd de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|