1
|
Cruz-Montecinos C, Valderrama-Mejías J, Martínez-Arnau FM, Carrasco JJ, Núñez-Cortés R, Cortés-Amador S. Neuromuscular control of masticatory muscles in people with intellectual disability, middle-aged adults and older adults. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2024; 68:84-93. [PMID: 37698385 DOI: 10.1111/jir.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Motor control issues are common for people with intellectual disabilities (PWID), resulting in difficulties with basic activities of daily living, including eating. Mastication, which is crucial for digestion and overall health, is poorly understood in this population. PWID shows frailty similar to older people, highlighting the importance of comparing masticatory motor control with older adults. This study compared the neuromuscular control of the masticatory muscles in middle-aged, PWID and older adults. METHODS A cross-sectional analytical design was used. During the mastication task of a carrot piece (2 cm in diameter and weighing 0.5 g), surface electromyography was used to record muscle activity patterns from the right and left masseter and temporalis muscles. Principal component analysis (PCA) was used to assess neuromuscular control. A z-score normalisation of the first component's variance from PCA to identify those individuals with altered neuromuscular control. A mixed ANOVA was performed to assess the interaction between principal components, groups and body composition. RESULTS Thirty PWIDs (aged 35-55 years), middle-aged adults and 32 older adults were recruited. PWID and older adults showed decreased neuromuscular control of the masticatory muscles compared to middle-aged control adults (P < 0.05). PWID had the highest proportion of individuals with altered neuromuscular control of the masticatory muscle (53%) compared to older adults (19%) and middle-aged adults (0%) (P < 0.05). CONCLUSIONS Our results indicate that PWID and older adults have reduced neuromuscular control compared to middle-aged adults. Notably, a significant proportion of the PWID showed altered masticatory muscle control compared to older adults. Further research is needed to explore the potential benefits of masticatory muscle training for PWID.
Collapse
Affiliation(s)
- C Cruz-Montecinos
- Laboratory of Clinical Biomechanics, Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | - F M Martínez-Arnau
- Department of Physiotherapy, University of Valencia, Valencia, Spain
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - J J Carrasco
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
- Intelligent Data Analysis Laboratory, University of Valencia, Valencia, Spain
| | - R Núñez-Cortés
- Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, Chile
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| | - S Cortés-Amador
- Department of Physiotherapy, University of Valencia, Valencia, Spain
- Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), Department of Physiotherapy, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Blitz DM. Neural circuit regulation by identified modulatory projection neurons. Front Neurosci 2023; 17:1154769. [PMID: 37008233 PMCID: PMC10063799 DOI: 10.3389/fnins.2023.1154769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Rhythmic behaviors (e.g., walking, breathing, and chewing) are produced by central pattern generator (CPG) circuits. These circuits are highly dynamic due to a multitude of input they receive from hormones, sensory neurons, and modulatory projection neurons. Such inputs not only turn CPG circuits on and off, but they adjust their synaptic and cellular properties to select behaviorally relevant outputs that last from seconds to hours. Similar to the contributions of fully identified connectomes to establishing general principles of circuit function and flexibility, identified modulatory neurons have enabled key insights into neural circuit modulation. For instance, while bath-applying neuromodulators continues to be an important approach to studying neural circuit modulation, this approach does not always mimic the neural circuit response to neuronal release of the same modulator. There is additional complexity in the actions of neuronally-released modulators due to: (1) the prevalence of co-transmitters, (2) local- and long-distance feedback regulating the timing of (co-)release, and (3) differential regulation of co-transmitter release. Identifying the physiological stimuli (e.g., identified sensory neurons) that activate modulatory projection neurons has demonstrated multiple “modulatory codes” for selecting particular circuit outputs. In some cases, population coding occurs, and in others circuit output is determined by the firing pattern and rate of the modulatory projection neurons. The ability to perform electrophysiological recordings and manipulations of small populations of identified neurons at multiple levels of rhythmic motor systems remains an important approach for determining the cellular and synaptic mechanisms underlying the rapid adaptability of rhythmic neural circuits.
Collapse
|
3
|
Pirtle TJ. A review of the circuit-level and cellular mechanisms contributing to locomotor acceleration in the marine mollusk Clione limacina. Front Neurosci 2022; 16:1072974. [PMID: 36620465 PMCID: PMC9815461 DOI: 10.3389/fnins.2022.1072974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The pteropod mollusk, Clione limacina, is a useful model system for understanding the neural basis of behavior. Of particular interest are the unique swimming behavior and neural circuitry that underlies this swimming behavior. The swimming system of Clione has been studied by two primary groups-one in Russia and one in the United States of America-for more than four decades. The neural circuitry, the cellular properties, and ion channels that create and change the swimming locomotor rhythm of Clione-particularly mechanisms that contribute to swimming acceleration-are presented in this review.
Collapse
Affiliation(s)
- Thomas J. Pirtle
- Department of Biology, The College of Idaho, Caldwell, ID, United States
| |
Collapse
|
4
|
Ramakrishnan S, Murphy AD. Peptidergic modulation of a multi-functional central pattern generator in the pulmonate snail. J Exp Biol 2022; 225:286115. [PMID: 36533565 DOI: 10.1242/jeb.244953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Egg laying in pulmonate snails is a well-orchestrated process that involves a period of reduced locomotion, followed by substrate cleaning with rhythmic rasping of the surface to make tiny grooves, into which eggs are deposited. Although the neurohormonal control of initiating egg laying has been well established, the signals that modulate the buccal central pattern generator to substrate cleaning during egg laying are not known. Neuropeptides of the invertebrate gonadotropin-releasing hormone/corazonin family (invGnRH/CRZ) have been shown to be involved in reproduction and allied behaviors in many vertebrates and invertebrates. Here, we show that the buccal motor pattern underlying substrate cleaning during egg laying is altered by a vertebrate GnRH agonist. Signals from the intestinal nerve innervating reproductive structures, previously shown to be both necessary and sufficient for egg-laying behaviors, are blocked by a vertebrate GnRH antagonist. Further, the vertebrate GnRH-triggered response elicits rhythmic, phase 2 and non-phase 2 activity in the buccal motor pattern, with a shutdown of phase 3, indicative of repetitive rasping without accompanied swallowing behavior. Using immunohistochemistry, intracellular electrophysiology and extracellular nerve stimulation, we show that a member of the invGnRH/CRZ family of neuropeptides could be the signal that contextually switches the multifunctional buccal CPG to a biphasic rasping rhythm that underlies substrate cleaning behavior during egg laying in the pulmonate snail Planorbella (Helisoma) trivolvis.
Collapse
Affiliation(s)
- Siddharth Ramakrishnan
- Department of Biology and Neuroscience Program, University of Puget Sound, Tacoma, WA 98416, USA
| | - A Don Murphy
- Department of Biology, University of Illinois, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Muscato AJ, Powell DJ, Bulhan W, Mackenzie ES, Pupo A, Rolph M, Christie AE, Dickinson PS. Structural variation between neuropeptide isoforms affects function in the lobster cardiac system. Gen Comp Endocrinol 2022; 327:114065. [PMID: 35623446 PMCID: PMC9936564 DOI: 10.1016/j.ygcen.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/11/2022] [Accepted: 05/22/2022] [Indexed: 02/08/2023]
Abstract
Neuronal responses to peptide signaling are determined by the specific binding of a peptide to its receptor(s). For example, isoforms of the same peptide family can drive distinct responses in the same circuit by having different affinities for the same receptor, by having each isoform bind to a different receptor, or by a combination of these scenarios. Small changes in peptide composition can alter the binding kinetics and overall physiological response to a given peptide. In the American lobster (Homarus americanus), native isoforms of C-type allatostatins (AST-Cs) usually decrease heartbeat frequency and alter contraction force. However, one of the three AST-C isoforms, AST-C II, drives a cardiac response distinct from the response elicited by the other two. To investigate the aspects of the peptide that might be responsible for these differential responses, we altered various features of each peptide sequence. Although the presence of an amide group at the end of a peptide sequence (amidation) is often essential for determining physiological function, we demonstrate that C-terminal amidation does not dictate the AST-C response in the lobster cardiac system. However, single amino acid substitution within the consensus sequence did account for many of the differences in specific response characteristics (e.g. contraction frequency or force).
Collapse
Affiliation(s)
- Audrey J Muscato
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Daniel J Powell
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Warsameh Bulhan
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Evalyn S Mackenzie
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alixander Pupo
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Madeline Rolph
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Patsy S Dickinson
- Biology Dept., Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| |
Collapse
|
6
|
Embedded Real-Time Implementation of Bio-Inspired Central Pattern Generator with Self-Repairing Function. ELECTRONICS 2022. [DOI: 10.3390/electronics11132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Both robustness and self-repairing of the rhythmic behaviors generated by central pattern generators (CPGs) play significant roles in locomotion control. Although current CPG models have been established to mimic rhythmic outputs, the mechanisms by which the self-repairing capacities of CPG systems are formed are largely unknown. In this paper, a novel bio-inspired self-repairing CPG model (BiSRP-CPG) is proposed based on the tripartite synapse, which reveals the critical role of astrocytes in the dynamic coordination of CPGs. BiSRP-CPG is implemented on the parallel FPGA platform to simulate CPG systems on real physiological scale, in which a hardware implementation method without multiplier is utilized to break the limitation of FPGA hardware resources. The experimental results verified both the robustness and self-repairing capabilities of rhythm of BiSRP-CPG in the presence of stochastic synaptic inputs and “faulty” synapse. Under the synaptic failure rate of 20%, BiSRP-CPG suffered only 10.53% performance degradation, which was much lower than the 36.84% spike loss rate of CPG networks without astrocytes. This paper provides an insight into one of the possible self-repair mechanisms of brain rhythms which can be utilized to develop autonomously fault-tolerant electronic systems.
Collapse
|
7
|
Piñeiro M, Mena W, Ewer J, Orio P. Extracting temporal relationships between weakly coupled peptidergic and motoneuronal signaling: Application to Drosophila ecdysis behavior. PLoS Comput Biol 2021; 17:e1008933. [PMID: 34910730 PMCID: PMC8716061 DOI: 10.1371/journal.pcbi.1008933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/29/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.
Collapse
Affiliation(s)
- Miguel Piñeiro
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilson Mena
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Department of Neuroscience, Institut Pasteur, Paris, France
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| |
Collapse
|
8
|
Synaptic Dynamics Convey Differential Sensitivity to Input Pattern Changes in Two Muscles Innervated by the Same Motor Neurons. eNeuro 2021; 8:ENEURO.0351-21.2021. [PMID: 34764189 PMCID: PMC8609967 DOI: 10.1523/eneuro.0351-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Postsynaptic responses depend on input patterns as well as short-term synaptic plasticity, summation, and postsynaptic membrane properties, but the interactions of those dynamics with realistic input patterns are not well understood. We recorded the responses of the two pyloric dilator (PD) muscles, cpv2a and cpv2b, that are innervated by and receive identical periodic bursting input from the same two motor neurons in the lobster Homarus americanus. Cpv2a and cpv2b showed quantitative differences in membrane nonlinearities and synaptic summation. At a short timescale, responses in both muscles were dominated by facilitation, albeit with different frequency and time dependence. Realistic burst stimulations revealed more substantial differences. Across bursts, cpv2a showed transient depression, whereas cpv2b showed transient facilitation. Steady-state responses to bursting input also differed substantially. Neither muscle had a monotonic dependence on frequency, but cpv2b showed particularly pronounced bandpass filtering. Cpv2a was sensitive to changes in both burst frequency and intra-burst spike frequency, whereas, despite its much slower responses, cpv2b was largely insensitive to changes in burst frequency. Cpv2a was sensitive to both burst duration and number of spikes per burst, whereas cpv2b was sensitive only to the former parameter. Neither muscle showed consistent sensitivity to changes in the overall spike interval structure, but cpv2b was surprisingly sensitive to changes in the first intervals in each burst, a parameter known to be regulated by dopamine (DA) modulation of spike propagation of the presynaptic axon. These findings highlight how seemingly minor circuit output changes mediated by neuromodulation could be read out differentially at the two synapses.
Collapse
|
9
|
Does Differential Receptor Distribution Underlie Variable Responses to a Neuropeptide in the Lobster Cardiac System? Int J Mol Sci 2021; 22:ijms22168703. [PMID: 34445418 PMCID: PMC8395929 DOI: 10.3390/ijms22168703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/07/2021] [Indexed: 11/17/2022] Open
Abstract
Central pattern generators produce rhythmic behaviors independently of sensory input; however, their outputs can be modulated by neuropeptides, thereby allowing for functional flexibility. We investigated the effects of C-type allatostatins (AST-C) on the cardiac ganglion (CG), which is the central pattern generator that controls the heart of the American lobster, Homarus americanus, to identify the biological mechanism underlying the significant variability in individual responses to AST-C. We proposed that the presence of multiple receptors, and thus differential receptor distribution, was at least partly responsible for this observed variability. Using transcriptome mining and PCR-based cloning, we identified four AST-C receptors (ASTCRs) in the CG; we then characterized their cellular localization, binding potential, and functional activation. Only two of the four receptors, ASTCR1 and ASTCR2, were fully functional GPCRs that targeted to the cell surface and were activated by AST-C peptides in our insect cell expression system. All four, however, were amplified from CG cDNAs. Following the confirmation of ASTCR expression, we used physiological and bioinformatic techniques to correlate receptor expression with cardiac responses to AST-C across individuals. Expression of ASTCR1 in the CG showed a negative correlation with increasing contraction amplitude in response to AST-C perfusion through the lobster heart, suggesting that the differential expression of ASTCRs within the CG is partly responsible for the specific physiological response to AST-C exhibited by a given individual lobster.
Collapse
|
10
|
Barkan CL, Leininger EC, Zornik E. Everything in modulation: neuromodulators as keys to understanding communication dynamics. Integr Comp Biol 2021; 61:854-866. [PMID: 34038510 DOI: 10.1093/icb/icab102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Across the animal kingdom, the ability to produce communication signals appropriate to social encounters is essential, but how these behaviors are selected and adjusted in a context-dependent manner is poorly understood. This question can be addressed on many levels, including sensory processing by peripheral organs and the CNS, sensorimotor integration in decision-making brain regions, and motor circuit activation and modulation. Because neuromodulator systems act at each of these levels, they are a useful lens through which to explore the mechanisms underlying complex patterns of communication. It has been clear for decades that understanding the logic of input-output decision making by the nervous system requires far more than simply identifying the connections linking sensory organs to motor circuits; this is due in part to the fact that neuromodulators can promote distinct and temporally dynamic responses to similar signals. We focus on the vocal circuit dynamics of Xenopus frogs, and describe complementary examples from diverse vertebrate communication systems. While much remains to be discovered about how neuromodulators direct flexibility in communication behaviors, these examples illustrate that several neuromodulators can act upon the same circuit at multiple levels of control, and that the functional consequence of neuromodulation can depend on species-specific factors as well as dynamic organismal characteristics like internal state.
Collapse
Affiliation(s)
| | | | - Erik Zornik
- Reed College, Biology Department, Portland, OR
| |
Collapse
|
11
|
David I, Ayali A. From Motor-Output to Connectivity: An In-Depth Study of in-vitro Rhythmic Patterns in the Cockroach Periplaneta americana. FRONTIERS IN INSECT SCIENCE 2021; 1:655933. [PMID: 38468881 PMCID: PMC10926548 DOI: 10.3389/finsc.2021.655933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/22/2021] [Indexed: 03/13/2024]
Abstract
The cockroach is an established model in the study of locomotion control. While previous work has offered important insights into the interplay among brain commands, thoracic central pattern generators, and the sensory feedback that shapes their motor output, there remains a need for a detailed description of the central pattern generators' motor output and their underlying connectivity scheme. To this end, we monitored pilocarpine-induced activity of levator and depressor motoneurons in two types of novel in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses focused on the motoneuron firing patterns and the coordination among motoneuron types in the network. The burstiness and rhythmicity of the motoneurons were monitored, and phase relations, coherence, coupling strength, and frequency-dependent variability were analyzed. These parameters were all measured and compared among network units both within each preparation and among the preparations. Here, we report differences among the isolated ganglia, including asymmetries in phase and coupling strength, which indicate that they are wired to serve different functions. We also describe the intrinsic default gait and a frequency-dependent coordination. The depressor motoneurons showed mostly similar characteristics throughout the network regardless of interganglia connectivity; whereas the characteristics of the levator motoneurons activity were mostly ganglion-dependent, and influenced by the presence of interganglia connectivity. Asymmetries were also found between the anterior and posterior homolog parts of the thoracic network, as well as between ascending and descending connections. Our analyses further discover a frequency-dependent inversion of the interganglia coordination from alternations between ipsilateral homolog oscillators to simultaneous activity. We present a detailed scheme of the network couplings, formulate coupling rules, and review a previously suggested model of connectivity in light of our new findings. Our data support the notion that the inter-hemiganglia coordination derives from the levator networks and their coupling with local depressor interneurons. Our findings also support a dominant role of the metathoracic ganglion and its ascending output in governing the anterior ganglia motor output during locomotion in the behaving animal.
Collapse
Affiliation(s)
- Izhak David
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Ayali
- School of Zoology, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Pirtle TJ, Satterlie RA. Cyclic Guanosine Monophosphate Modulates Locomotor Acceleration Induced by Nitric Oxide but not Serotonin in Clione limacina Central Pattern Generator Swim Interneurons. Integr Org Biol 2021; 3:obaa045. [PMID: 33791588 PMCID: PMC7884873 DOI: 10.1093/iob/obaa045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Both nitric oxide (NO) and serotonin (5HT) mediate swim acceleration in the marine mollusk, Clione limacina. In this study, we examine the role that the second messenger, cyclic guanosine monophosphate (cGMP), plays in mediating NO and 5HT-induced swim acceleration. We observed that the application of an analog of cGMP or an activator of soluble guanylyl cyclase (sGC) increased fictive locomotor speed recorded from Pd-7 interneurons of the animal's locomotor central pattern generator. Moreover, inhibition of sGC decreased fictive locomotor speed. These results suggest that basal levels of cGMP are important for slow swimming and that increased production of cGMP mediates swim acceleration in Clione. Because NO has its effect through cGMP signaling and because we show herein that cGMP produces cellular changes in Clione swim interneurons that are consistent with cellular changes produced by 5HT application, we hypothesize that both NO and 5HT function via a common signal transduction pathway that involves cGMP. Our results show that cGMP mediates NO-induced but not 5HT-induced swim acceleration in Clione.
Collapse
Affiliation(s)
- Thomas J Pirtle
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd Caldwell, ID 83605, USA
| | - Richard A Satterlie
- Department of Biology and Marine Biology and Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K. Moss Road, Wilmington, NC 28409, USA
| |
Collapse
|
13
|
Borde M, Quintana L, Comas V, Silva A. Hormone‐mediated modulation of the electromotor CPG in pulse‐type weakly electric fish. Commonalities and differences across species. Dev Neurobiol 2020; 80:70-80. [DOI: 10.1002/dneu.22732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Michel Borde
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
| | - Virginia Comas
- Departamento de Fisiología Facultad de Medicina Universidad de la República Montevideo Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta Instituto de Investigaciones Biológicas Clemente Estable Montevideo Uruguay
- Laboratorio de Neurociencias Facultad de Ciencias Universidad de la República Montevideo Uruguay
| |
Collapse
|
14
|
Howard CE, Chen CL, Tabachnik T, Hormigo R, Ramdya P, Mann RS. Serotonergic Modulation of Walking in Drosophila. Curr Biol 2019; 29:4218-4230.e8. [PMID: 31786064 PMCID: PMC6935052 DOI: 10.1016/j.cub.2019.10.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 01/05/2023]
Abstract
To navigate complex environments, animals must generate highly robust, yet flexible, locomotor behaviors. For example, walking speed must be tailored to the needs of a particular environment. Not only must animals choose the correct speed and gait, they must also adapt to changing conditions and quickly respond to sudden and surprising new stimuli. Neuromodulators, particularly the small biogenic amine neurotransmitters, have the ability to rapidly alter the functional outputs of motor circuits. Here, we show that the serotonergic system in the vinegar fly, Drosophila melanogaster, can modulate walking speed in a variety of contexts and also change how flies respond to sudden changes in the environment. These multifaceted roles of serotonin in locomotion are differentially mediated by a family of serotonergic receptors with distinct activities and expression patterns.
Collapse
Affiliation(s)
- Clare E Howard
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Medical Scientist Training Program, Columbia University, New York, NY 10027, USA
| | - Chin-Lin Chen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tanya Tabachnik
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Rick Hormigo
- Advanced Instrumentation Group, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Pavan Ramdya
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Richard S Mann
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Departments of Biochemistry and Molecular Biophysics and Neuroscience, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
15
|
Golowasch J. Neuromodulation of central pattern generators and its role in the functional recovery of central pattern generator activity. J Neurophysiol 2019; 122:300-315. [PMID: 31066614 DOI: 10.1152/jn.00784.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neuromodulators play an important role in how the nervous system organizes activity that results in behavior. Disruption of the normal patterns of neuromodulatory release or production is known to be related to the onset of severe pathologies such as Parkinson's disease, Rett syndrome, Alzheimer's disease, and affective disorders. Some of these pathologies involve neuronal structures that are called central pattern generators (CPGs), which are involved in the production of rhythmic activities throughout the nervous system. Here I discuss the interplay between CPGs and neuromodulatory activity, with particular emphasis on the potential role of neuromodulators in the recovery of disrupted neuronal activity. I refer to invertebrate and vertebrate model systems and some of the lessons we have learned from research on these systems and propose a few avenues for future research. I make one suggestion that may guide future research in the field: neuromodulators restrict the parameter landscape in which CPG components operate, and the removal of neuromodulators may enable a perturbed CPG in finding a new set of parameter values that can allow it to regain normal function.
Collapse
Affiliation(s)
- Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University-Newark , Newark, New Jersey
| |
Collapse
|
16
|
Cramer Bornemann MA, Schenck CH, Mahowald MW. A Review of Sleep-Related Violence. Chest 2019; 155:1059-1066. [DOI: 10.1016/j.chest.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022] Open
|
17
|
Tonna M, Marchesi C, Parmigiani S. The biological origins of rituals: An interdisciplinary perspective. Neurosci Biobehav Rev 2019; 98:95-106. [DOI: 10.1016/j.neubiorev.2018.12.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/31/2018] [Accepted: 12/31/2018] [Indexed: 12/31/2022]
|
18
|
Robert A, Monsinjon T, Péden R, Rasoamampianina V, Le Mével JC, Knigge T. In vivo effects of serotonin and fluoxetine on cardio-ventilatory functions in the shore crab Carcinus maenas (L. 1758). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:132-141. [PMID: 30557758 DOI: 10.1016/j.aquatox.2018.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/02/2018] [Accepted: 12/04/2018] [Indexed: 06/09/2023]
Abstract
Serotonin (5-HT) takes a key position in regulating vital functions, such as cardio-ventilatory activity, locomotion and behaviour. Selective serotonin reuptake inhibitors (SSRIs) modulate the serotonergic system and thus affect these functions. Rhythmic behaviours, such as cardio-ventilatory activity, are controlled by central pattern generators, which in turn are regulated by 5-HT. In crustaceans, 5-HT also regulates the synthesis and secretion of crustacean hyperglycaemic hormone, a pleiotropic hormone involved in the mobilisation and release of glucose into the haemolymph, thus stimulating the animal's activity. As a matter of consequence, SSRIs may affect cardio-ventilatory activity. In order to examine how the SSRIs affect fundamental physiological parameters based on rhythmic behaviours in decapods, cardio-respiratory activity in the shore crab Carcinus maenas was assessed after pericardial injection of a single dose of either 0.5 μM, 0.75 μM or 1 μM fluoxetine, respectively. Simultaneous recordings of heart and scaphognathite movements in both brachial chambers were conducted by measuring impedance changes in the respective body compartments. Injection of 5-HT had an immediate effect on cardio-ventilatory activities and strongly upregulated both cardiac and ventilatory activities. Fluoxetine showed similar effects, entailing moderate tachycardia and increased ventilation rates. Compared to 5-HT, these effects were delayed in time and much less pronounced. Metabolism of fluoxetine into the active compound nor-fluoxetine might account for the delayed action, whereas compensatory regulation of cardio-ventilatory frequencies and amplitudes are likely to explain the attenuation of the responses compared to the strong and immediate increase by 5-HT. Overall, the results suggest increased 5-HT levels in invertebrates following fluoxetine exposure, which are able to disturb physiological functions regulated by 5-HT, such as cardiac and respiratory activity.
Collapse
Affiliation(s)
- Alexandrine Robert
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Romain Péden
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France; Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| | - Virginie Rasoamampianina
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France
| | - Jean-Claude Le Mével
- Université Européenne de Bretagne, Université de Brest, INSERM U1101, Laboratoire de Traitement de l'Information Médicale, Laboratoire de Neurophysiologie, SFR ScInBioS, Faculté de Médecine et des Sciences de la Santé, CHU de Brest, 22 Avenue Camille Desmoulins, CS 93837, F-29238, Brest Cedex 3, France
| | - Thomas Knigge
- Normandie Université, FR CNRS 3730 SCALE, UMR-I 02 Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), Université Le Havre Normandie, 25 rue Philippe Lebon, F-76600, Le Havre, France.
| |
Collapse
|
19
|
Bazenkov N, Vorontsov D, Dyakonova V, Zhilyakova L, Zakharov I, Kuznetsov O, Kulivets S, Sakharov D. Discrete Modeling of Neuronal Interactions in Multi-Transmitter Networks. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2018. [DOI: 10.3103/s0147688218050015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Städele C, DeMaegd ML, Stein W. State-Dependent Modification of Sensory Sensitivity via Modulation of Backpropagating Action Potentials. eNeuro 2018; 5:ENEURO.0283-18.2018. [PMID: 30225349 PMCID: PMC6140111 DOI: 10.1523/eneuro.0283-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Neuromodulators play a critical role in sensorimotor processing via various actions, including pre- and postsynaptic signal modulation and direct modulation of signal encoding in peripheral dendrites. Here, we present a new mechanism that allows state-dependent modulation of signal encoding in sensory dendrites by neuromodulatory projection neurons. We studied the impact of antidromic action potentials (APs) on stimulus encoding using the anterior gastric receptor (AGR) neuron in the heavily modulated crustacean stomatogastric ganglion (STG). We found that ectopic AP initiation in AGR's axon trunk is under direct neuromodulatory control by the inferior ventricular (IV) neurons, a pair of descending projection neurons. IV neuron activation elicited a long-lasting decrease in AGR ectopic activity. This modulation was specific to the site of AP initiation and could be mimicked by focal application of the IV neuron co-transmitter histamine. IV neuron actions were diminished after blocking H2 receptors in AGR's axon trunk, suggesting a direct axonal modulation. This local modulation did not affect the propagation dynamics of en passant APs. However, decreases in ectopic AP frequency prolonged sensory bursts elicited distantly near AGR's dendrites. This frequency-dependent effect was mediated via the reduction of antidromic APs, and the diminishment of backpropagation into the sensory dendrites. Computational models suggest that invading antidromic APs interact with local ionic conductances, the rate constants of which determine the sign and strength of the frequency-dependent change in sensory sensitivity. Antidromic APs therefore provide descending projection neurons with a means to influence sensory encoding without affecting AP propagation or stimulus transduction.
Collapse
Affiliation(s)
- Carola Städele
- Institute of Neurobiology, Ulm University, Ulm 89069, Germany
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790
| |
Collapse
|
21
|
Sun J, Xu AQ, Giraud J, Poppinga H, Riemensperger T, Fiala A, Birman S. Neural Control of Startle-Induced Locomotion by the Mushroom Bodies and Associated Neurons in Drosophila. Front Syst Neurosci 2018; 12:6. [PMID: 29643770 PMCID: PMC5882849 DOI: 10.3389/fnsys.2018.00006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/05/2018] [Indexed: 01/12/2023] Open
Abstract
Startle-induced locomotion is commonly used in Drosophila research to monitor locomotor reactivity and its progressive decline with age or under various neuropathological conditions. A widely used paradigm is startle-induced negative geotaxis (SING), in which flies entrapped in a narrow column react to a gentle mechanical shock by climbing rapidly upwards. Here we combined in vivo manipulation of neuronal activity and splitGFP reconstitution across cells to search for brain neurons and putative circuits that regulate this behavior. We show that the activity of specific clusters of dopaminergic neurons (DANs) afferent to the mushroom bodies (MBs) modulates SING, and that DAN-mediated SING regulation requires expression of the DA receptor Dop1R1/Dumb, but not Dop1R2/Damb, in intrinsic MB Kenyon cells (KCs). We confirmed our previous observation that activating the MB α'β', but not αβ, KCs decreased the SING response, and we identified further MB neurons implicated in SING control, including KCs of the γ lobe and two subtypes of MB output neurons (MBONs). We also observed that co-activating the αβ KCs antagonizes α'β' and γ KC-mediated SING modulation, suggesting the existence of subtle regulation mechanisms between the different MB lobes in locomotion control. Overall, this study contributes to an emerging picture of the brain circuits modulating locomotor reactivity in Drosophila that appear both to overlap and differ from those underlying associative learning and memory, sleep/wake state and stress-induced hyperactivity.
Collapse
Affiliation(s)
- Jun Sun
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - An Qi Xu
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Julia Giraud
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| | - Haiko Poppinga
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Thomas Riemensperger
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - André Fiala
- Department of Molecular Neurobiology of Behavior, Johann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Serge Birman
- Genes Circuits Rhythms and Neuropathology, Brain Plasticity Unit, Centre National de la Recherche Scientifique, PSL Research University, ESPCI Paris, Paris, France
| |
Collapse
|
22
|
Chapman PD, Bradley SP, Haught EJ, Riggs KE, Haffar MM, Daly KC, Dacks AM. Co-option of a motor-to-sensory histaminergic circuit correlates with insect flight biomechanics. Proc Biol Sci 2018; 284:rspb.2017.0339. [PMID: 28747471 DOI: 10.1098/rspb.2017.0339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
Nervous systems must adapt to shifts in behavioural ecology. One form of adaptation is neural exaptation, in which neural circuits are co-opted to perform additional novel functions. Here, we describe the co-option of a motor-to-somatosensory circuit into an olfactory network. Many moths beat their wings during odour-tracking, whether walking or flying, causing strong oscillations of airflow around the antennae, altering odour plume structure. This self-induced sensory stimulation could impose selective pressures that influence neural circuit evolution, specifically fostering the emergence of corollary discharge circuits. In Manduca sexta, a pair of mesothoracic to deutocerebral histaminergic neurons (MDHns), project from the mesothoracic neuromere to both antennal lobes (ALs), the first olfactory neuropil. Consistent with a hypothetical role in providing the olfactory system with a corollary discharge, we demonstrate that the MDHns innervate the ALs of advanced and basal moths, but not butterflies, which differ in wing beat and flight pattern. The MDHns probably arose in crustaceans and in many arthropods innervate mechanosensory areas, but not the olfactory system. The MDHns, therefore, represent an example of architectural exaptation, in which neurons that provide motor output information to mechanosensory regions have been co-opted to provide information to the olfactory system in moths.
Collapse
Affiliation(s)
- Phillip D Chapman
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Samual P Bradley
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Erica J Haught
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Kassandra E Riggs
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Mouaz M Haffar
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Kevin C Daly
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
23
|
Ruiz F, Castelletto ML, Gang SS, Hallem EA. Experience-dependent olfactory behaviors of the parasitic nematode Heligmosomoides polygyrus. PLoS Pathog 2017; 13:e1006709. [PMID: 29190282 PMCID: PMC5708605 DOI: 10.1371/journal.ppat.1006709] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022] Open
Abstract
Parasitic nematodes of humans and livestock cause extensive disease and economic loss worldwide. Many parasitic nematodes infect hosts as third-stage larvae, called iL3s. iL3s vary in their infection route: some infect by skin penetration, others by passive ingestion. Skin-penetrating iL3s actively search for hosts using host-emitted olfactory cues, but the extent to which passively ingested iL3s respond to olfactory cues was largely unknown. Here, we examined the olfactory behaviors of the passively ingested murine gastrointestinal parasite Heligmosomoides polygyrus. H. polygyrus iL3s were thought to reside primarily on mouse feces, and infect when mice consume feces containing iL3s. However, iL3s can also adhere to mouse fur and infect orally during grooming. Here, we show that H. polygyrus iL3s are highly active and show robust attraction to host feces. Despite their attraction to feces, many iL3s migrate off feces to engage in environmental navigation. In addition, H. polygyrus iL3s are attracted to mammalian skin odorants, suggesting that they migrate toward hosts. The olfactory preferences of H. polygyrus are flexible: some odorants are repulsive for iL3s maintained on feces but attractive for iL3s maintained off feces. Experience-dependent modulation of olfactory behavior occurs over the course of days and is mediated by environmental carbon dioxide (CO2) levels. Similar experience-dependent olfactory plasticity occurs in the passively ingested ruminant-parasitic nematode Haemonchus contortus, a major veterinary parasite. Our results suggest that passively ingested iL3s migrate off their original fecal source and actively navigate toward hosts or new host fecal sources using olfactory cues. Olfactory plasticity may be a mechanism that enables iL3s to switch from dispersal behavior to host-seeking behavior. Together, our results demonstrate that passively ingested nematodes do not remain inactive waiting to be swallowed, but rather display complex sensory-driven behaviors to position themselves for host ingestion. Disrupting these behaviors may be a new avenue for preventing infections. Many parasitic nematodes infect by passive ingestion when the host consumes food, water, or feces containing infective third-stage larvae (iL3s). Passively ingested nematodes that infect humans cause severe gastrointestinal distress and death in endemic regions, and those that infect livestock are a major cause of production loss worldwide. Because these parasites do not actively invade hosts but instead rely on being swallowed by hosts, it has been assumed that they show only limited sensory responses and do not engage in host-seeking behaviors. Here, we investigate the olfactory behaviors of the passively ingested murine parasite Heligmosomoides polygyrus and show that this assumption is incorrect; H. polygyrus iL3s show robust attraction to a diverse array of odorants found in mammalian skin, sweat, and feces. Moreover, the olfactory responses of H. polygyrus iL3s are experience-dependent: some odorants are repulsive to iL3s cultured on feces but attractive to iL3s removed from feces. Olfactory plasticity is also observed in the ruminant parasite Haemonchus contortus, and may enable iL3s to disperse in search of new hosts or host fecal sources. Our results suggest that passively ingested nematodes use olfactory cues to navigate their environments and position themselves where they are likely to be swallowed. By providing new insights into the olfactory behaviors of these parasites, our results may enable the development of new strategies for preventing infections.
Collapse
Affiliation(s)
- Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Spencer S. Gang
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Diao F, Elliott AD, Diao F, Shah S, White BH. Neuromodulatory connectivity defines the structure of a behavioral neural network. eLife 2017; 6:29797. [PMID: 29165248 PMCID: PMC5720592 DOI: 10.7554/elife.29797] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/21/2017] [Indexed: 12/22/2022] Open
Abstract
Neural networks are typically defined by their synaptic connectivity, yet synaptic wiring diagrams often provide limited insight into network function. This is due partly to the importance of non-synaptic communication by neuromodulators, which can dynamically reconfigure circuit activity to alter its output. Here, we systematically map the patterns of neuromodulatory connectivity in a network that governs a developmentally critical behavioral sequence in Drosophila. This sequence, which mediates pupal ecdysis, is governed by the serial release of several key factors, which act both somatically as hormones and within the brain as neuromodulators. By identifying and characterizing the functions of the neuronal targets of these factors, we find that they define hierarchically organized layers of the network controlling the pupal ecdysis sequence: a modular input layer, an intermediate central pattern generating layer, and a motor output layer. Mapping neuromodulatory connections in this system thus defines the functional architecture of the network. Why do animals behave the way they do? Behavior occurs in response to signals from the environment, such as those indicating food or danger, or signals from the body, such as those indicating hunger or thirst. The nervous system detects these signals and triggers an appropriate response, such as seeking food or fleeing a threat. But because much of the nervous system takes part in generating these responses, it can make it difficult to understand how even simple behaviors come about. One behavior that has been studied extensively is molting in insects. Molting enables insects to grow and develop, and involves casting off the outer skeleton of the previous developmental stage. To do this, the insect performs a series of repetitive movements, known as an ecdysis sequence. In the fruit fly, the pupal ecdysis sequence consists of three distinct patterns rhythmic abdominal movement. A hormone called ecdysis triggering hormone, or ETH for short, initiates this sequence by triggering the release of two further hormones, Bursicon and CCAP. All three hormones act on the nervous system to coordinate molting behavior, but exactly how they do so is unclear. Diao et al. have now used genetic tools called Trojan exons to identify the neurons of fruit flies on which these hormones act. Trojan exons are short sequences of DNA that can be inserted into non-coding regions of a target gene to mark or manipulate the cells that express it. When a cell uses its copy of the target gene to make a protein, it also makes the product encoded by the Trojan exon. Using this technique, Diao et al. identified three sets of neurons that produce receptor proteins that recognize the molting hormones. Neurons with ETH receptors start the molting process by activating neurons that make Bursicon and CCAP. Neurons with Bursicon receptors then generate motor rhythms within the nervous system. Finally, neurons with CCAP receptors respond to these rhythms and produce the abdominal movements of the ecdysis sequence. Many other animal behaviors depend on substances like ETH, Bursicon and CCAP, which act within the brain to change the activity of neurons and circuits. The work of Diao et al. suggests that identifying the sites at which such substances act can help reveal the circuits that govern complex behaviors.
Collapse
Affiliation(s)
- Feici Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Amicia D Elliott
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, United States
| | - Fengqiu Diao
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Sarav Shah
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
25
|
Spontaneous body contractions are modulated by the microbiome of Hydra. Sci Rep 2017; 7:15937. [PMID: 29162937 PMCID: PMC5698334 DOI: 10.1038/s41598-017-16191-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/08/2017] [Indexed: 02/08/2023] Open
Abstract
Spontaneous contractile activity, such as gut peristalsis, is ubiquitous in animals and is driven by pacemaker cells. In humans, disruption of the contraction pattern leads to gastrointestinal conditions, which are also associated with gut microbiota dysbiosis. Spontaneous contractile activity is also present in animals lacking gastrointestinal tract. Here we show that spontaneous body contractions in Hydra are modulated by symbiotic bacteria. Germ-free animals display strongly reduced and less regular contraction frequencies. These effects are partially restored by reconstituting the natural microbiota. Moreover, soluble molecule(s) produced by symbiotic bacteria may be involved in contraction frequency modulation. As the absence of bacteria does not impair the contractile ability itself, a microbial effect on the pacemakers seems plausible. Our findings indicate that the influence of bacteria on spontaneous contractile activity is present in the early-branching cnidarian hydra as well as in Bilateria, and thus suggest an evolutionary ancient origin of interaction between bacteria and metazoans, opening a window into investigating the roots of human motility disorders.
Collapse
|
26
|
Acton D, Miles GB. Gliotransmission and adenosinergic modulation: insights from mammalian spinal motor networks. J Neurophysiol 2017; 118:3311-3327. [PMID: 28954893 DOI: 10.1152/jn.00230.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Astrocytes are proposed to converse with neurons at tripartite synapses, detecting neurotransmitter release and responding with release of gliotransmitters, which in turn modulate synaptic strength and neuronal excitability. However, a paucity of evidence from behavioral studies calls into question the importance of gliotransmission for the operation of the nervous system in healthy animals. Central pattern generator (CPG) networks in the spinal cord and brain stem coordinate the activation of muscles during stereotyped activities such as locomotion, inspiration, and mastication and may therefore provide tractable models in which to assess the contribution of gliotransmission to behaviorally relevant neural activity. We review evidence for gliotransmission within spinal locomotor networks, including studies indicating that adenosine derived from astrocytes regulates the speed of locomotor activity via metamodulation of dopamine signaling.
Collapse
Affiliation(s)
- David Acton
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife , United Kingdom
| |
Collapse
|
27
|
Guillermin ML, Carrillo MA, Hallem EA. A Single Set of Interneurons Drives Opposite Behaviors in C. elegans. Curr Biol 2017; 27:2630-2639.e6. [PMID: 28823678 PMCID: PMC6193758 DOI: 10.1016/j.cub.2017.07.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
Many chemosensory stimuli evoke innate behavioral responses that can be either appetitive or aversive, depending on an animal's age, prior experience, nutritional status, and environment [1-9]. However, the circuit mechanisms that enable these valence changes are poorly understood. Here, we show that Caenorhabditis elegans can alternate between attractive or aversive responses to carbon dioxide (CO2), depending on its recently experienced CO2 environment. Both responses are mediated by a single pathway of interneurons. The CO2-evoked activity of these interneurons is subject to extreme experience-dependent modulation, enabling them to drive opposite behavioral responses to CO2. Other interneurons in the circuit regulate behavioral sensitivity to CO2 independent of valence. A combinatorial code of neuropeptides acts on the circuit to regulate both valence and sensitivity. Chemosensory valence-encoding interneurons exist across phyla, and valence is typically determined by whether appetitive or aversive interneuron populations are activated. Our results reveal an alternative mechanism of valence determination in which the same interneurons contribute to both attractive and aversive responses through modulation of sensory neuron to interneuron synapses. This circuit design represents a previously unrecognized mechanism for generating rapid changes in innate chemosensory valence.
Collapse
Affiliation(s)
- Manon L Guillermin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mayra A Carrillo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
A real-time FPGA implementation of a biologically inspired central pattern generator network. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.03.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Gray M, Daudelin DH, Golowasch J. Activation mechanism of a neuromodulator-gated pacemaker ionic current. J Neurophysiol 2017; 118:595-609. [PMID: 28446585 DOI: 10.1152/jn.00743.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 04/19/2017] [Accepted: 04/19/2017] [Indexed: 02/04/2023] Open
Abstract
The neuromodulator-gated current (IMI) found in the crab stomatogastric ganglion is activated by neuromodulators that are essential to induce the rhythmic activity of the pyloric network in this system. One of these neuromodulators is also known to control the correlated expression of voltage-gated ionic currents in pyloric neurons, as well as synaptic plasticity and strength. Thus understanding the mechanism by which neuromodulator receptors activate IMI should provide insights not only into how oscillations are initiated but also into how other processes, and currents not directly activated by them, are regulated. To determine what specific signaling molecules are implicated in this process, we used a battery of agonists and antagonists of common signal transduction pathways. We found that the G protein inhibitor GDPβS and the G protein activator GTPγS significantly affect IMI amplitude, suggesting that its activation is mediated by G proteins. Interestingly, when using the more specific G protein blocker pertussis toxin, we observed the expected inhibition of IMI amplitude but, unexpectedly, in a calcium-dependent fashion. We also found that antagonists of calcium- and calmodulin-associated signaling significantly reduce IMI amplitude. In contrast, we found little evidence for the role of cyclic nucleotide signaling, phospholipase C (PLC), or kinases and phosphatases, except two calmodulin-dependent kinases. In sum, these results suggest that proctolin-induced IMI is mediated by a G protein whose pertussis toxin sensitivity is altered by external calcium concentration and appears to depend on intracellular calcium, calmodulin, and calmodulin-activated kinases. In contrast, we found no support for IMI being mediated by PLC signaling or cyclic nucleotides.NEW & NOTEWORTHY Neuronal rhythmic activity is generated by either network-based or cell-autonomous mechanisms. In the pyloric network of decapod crustaceans, the activation of a neuromodulator-gated pacemaker current is crucial for the generation of rhythmic activity. This current is activated by several neuromodulators, including peptides and acetylcholine, presumably via metabotropic receptors. We have previously demonstrated a novel extracellular calcium-sensitive voltage-dependence mechanism of this current. We presently report that the activation mechanism depends on intracellular and extracellular calcium-sensitive components.
Collapse
Affiliation(s)
- Michael Gray
- Behavioral and Neural Science Graduate Program, Rutgers University-Newark, Newark, New Jersey; and.,Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Daniel H Daudelin
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| | - Jorge Golowasch
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey
| |
Collapse
|
30
|
Schulz DJ, Lane BJ. Homeostatic plasticity of excitability in crustacean central pattern generator networks. Curr Opin Neurobiol 2017; 43:7-14. [PMID: 27721084 PMCID: PMC5382137 DOI: 10.1016/j.conb.2016.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/24/2016] [Accepted: 09/24/2016] [Indexed: 12/14/2022]
Abstract
Plasticity of excitability can come in two general forms: changes in excitability that alter neuronal output (e.g. long-term potentiation of intrinsic excitability) or excitability changes that stabilize neuronal output (homeostatic plasticity). Here we discuss the latter form of plasticity in the context of the crustacean stomatogastric nervous system, and a second central pattern generator circuit, the cardiac ganglion. We discuss this plasticity at three levels: rapid homeostatic changes in membrane conductance, longer-term effects of neuromodulation on excitability, and the impacts of activity-dependent feedback on steady-state channel mRNA levels. We then conclude with thoughts on the implications of plasticity of excitability for variability of conductance levels across populations of motor neurons.
Collapse
Affiliation(s)
- David J Schulz
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211 USA.
| | - Brian J Lane
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
31
|
Follmann R, Goldsmith CJ, Stein W. Spatial distribution of intermingling pools of projection neurons with distinct targets: A 3D analysis of the commissural ganglia in Cancer borealis. J Comp Neurol 2017; 525:1827-1843. [PMID: 28001296 DOI: 10.1002/cne.24161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/12/2016] [Accepted: 12/11/2016] [Indexed: 01/03/2023]
Abstract
Projection neurons play a key role in carrying long-distance information between spatially distant areas of the nervous system and in controlling motor circuits. Little is known about how projection neurons with distinct anatomical targets are organized, and few studies have addressed their spatial organization at the level of individual cells. In the paired commissural ganglia (CoGs) of the stomatogastric nervous system of the crab Cancer borealis, projection neurons convey sensory, motor, and modulatory information to several distinct anatomical regions. While the functions of descending projection neurons (dPNs) which control downstream motor circuits in the stomatogastric ganglion are well characterized, their anatomical distribution as well as that of neurons projecting to the labrum, brain, and thoracic ganglion have received less attention. Using cell membrane staining, we investigated the spatial distribution of CoG projection neurons in relation to all CoG neurons. Retrograde tracing revealed that somata associated with different axonal projection pathways were not completely spatially segregated, but had distinct preferences within the ganglion. Identified dPNs had diameters larger than 70% of CoG somata and were restricted to the most medial and anterior 25% of the ganglion. They were contained within a cluster of motor neurons projecting through the same nerve to innervate the labrum, indicating that soma position was independent of function and target area. Rather, our findings suggest that CoG neurons projecting to a variety of locations follow a generalized rule: for all nerve pathway origins, the soma cluster centroids in closest proximity are those whose axons project down that pathway.
Collapse
Affiliation(s)
- Rosangela Follmann
- School of Biological Sciences, Illinois State University, Normal, Illinois
| | | | - Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, Illinois
| |
Collapse
|
32
|
Blitz DM, Pritchard AE, Latimer JK, Wakefield AT. Muscles innervated by a single motor neuron exhibit divergent synaptic properties on multiple time scales. ACTA ACUST UNITED AC 2017; 220:1233-1244. [PMID: 28104799 DOI: 10.1242/jeb.148908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022]
Abstract
Adaptive changes in the output of neural circuits underlying rhythmic behaviors are relayed to muscles via motor neuron activity. Presynaptic and postsynaptic properties of neuromuscular junctions can impact the transformation from motor neuron activity to muscle response. Further, synaptic plasticity occurring on the time scale of inter-spike intervals can differ between multiple muscles innervated by the same motor neuron. In rhythmic behaviors, motor neuron bursts can elicit additional synaptic plasticity. However, it is unknown whether plasticity regulated by the longer time scale of inter-burst intervals also differs between synapses from the same neuron, and whether any such distinctions occur across a physiological activity range. To address these issues, we measured electrical responses in muscles innervated by a chewing circuit neuron, the lateral gastric (LG) motor neuron, in a well-characterized small motor system, the stomatogastric nervous system (STNS) of the Jonah crab, Cancer borealisIn vitro and in vivo, sensory, hormonal and modulatory inputs elicit LG bursting consisting of inter-spike intervals of 50-250 ms and inter-burst intervals of 2-24 s. Muscles expressed similar facilitation measured with paired stimuli except at the shortest inter-spike interval. However, distinct decay time constants resulted in differences in temporal summation. In response to bursting activity, augmentation occurred to different extents and saturated at different inter-burst intervals. Further, augmentation interacted with facilitation, resulting in distinct intra-burst facilitation between muscles. Thus, responses of multiple target muscles diverge across a physiological activity range as a result of distinct synaptic properties sensitive to multiple time scales.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Amy E Pritchard
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - John K Latimer
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | |
Collapse
|
33
|
Burrell BD. Comparative biology of pain: What invertebrates can tell us about how nociception works. J Neurophysiol 2017; 117:1461-1473. [PMID: 28053241 DOI: 10.1152/jn.00600.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/04/2017] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
The inability to adequately treat chronic pain is a worldwide health care crisis. Pain has both an emotional and a sensory component, and this latter component, nociception, refers specifically to the detection of damaging or potentially damaging stimuli. Nociception represents a critical interaction between an animal and its environment and exhibits considerable evolutionary conservation across species. Using comparative approaches to understand the basic biology of nociception could promote the development of novel therapeutic strategies to treat pain, and studies of nociception in invertebrates can provide especially useful insights toward this goal. Both vertebrates and invertebrates exhibit segregated sensory pathways for nociceptive and nonnociceptive information, injury-induced sensitization to nociceptive and nonnociceptive stimuli, and even similar antinociceptive modulatory processes. In a number of invertebrate species, the central nervous system is understood in considerable detail, and it is often possible to record from and/or manipulate single identifiable neurons through either molecular genetic or physiological approaches. Invertebrates also provide an opportunity to study nociception in an ethologically relevant context that can provide novel insights into the nature of how injury-inducing stimuli produce persistent changes in behavior. Despite these advantages, invertebrates have been underutilized in nociception research. In this review, findings from invertebrate nociception studies are summarized, and proposals for how research using invertebrates can address questions about the fundamental mechanisms of nociception are presented.
Collapse
Affiliation(s)
- Brian D Burrell
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
34
|
Kiely J, Collins DJ. Uniqueness of Human Running Coordination: The Integration of Modern and Ancient Evolutionary Innovations. Front Psychol 2016; 7:262. [PMID: 27148098 PMCID: PMC4826868 DOI: 10.3389/fpsyg.2016.00262] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/10/2016] [Indexed: 12/26/2022] Open
Abstract
Running is a pervasive activity across human cultures and a cornerstone of contemporary health, fitness, and sporting activities. Yet for the overwhelming predominance of human existence running was an essential prerequisite for survival. A means to hunt, and a means to escape when hunted. In a very real sense humans have evolved to run. Yet curiously, perhaps due to running's cultural ubiquity and the natural ease with which we learn to run, we rarely consider the uniqueness of human bipedal running within the animal kingdom. Our unique upright, single stance, bouncing running gait imposes a unique set of coordinative difficulties. Challenges demanding we precariously balance our fragile brains in the very position where they are most vulnerable to falling injury while simultaneously retaining stability, steering direction of travel, and powering the upcoming stride: all within the abbreviated time-frames afforded by short, violent ground contacts separated by long flight times. These running coordination challenges are solved through the tightly-integrated blending of primitive evolutionary legacies, conserved from reptilian and vertebrate lineages, and comparatively modern, more exclusively human, innovations. The integrated unification of these top-down and bottom-up control processes bestows humans with an agile control system, enabling us to readily modulate speeds, change direction, negotiate varied terrains and to instantaneously adapt to changing surface conditions. The seamless integration of these evolutionary processes is facilitated by pervasive, neural and biological, activity-dependent adaptive plasticity. Over time, and with progressive exposure, this adaptive plasticity shapes neural and biological structures to best cope with regularly imposed movement challenges. This pervasive plasticity enables the gradual construction of a robust system of distributed coordinated control, comprised of processes that are so deeply collectively entwined that describing their functionality in isolation obscures their true irrevocably entangled nature. Although other species rely on a similar set of coordinated processes to run, the bouncing bipedal nature of human running presents a specific set of coordination challenges, solved using a customized blend of evolved solutions. A deeper appreciation of the foundations of the running coordination phenomenon promotes conceptual clarity, potentially informing future advances in running training and running-injury rehabilitation interventions.
Collapse
Affiliation(s)
- John Kiely
- School of Health and Wellbeing, Institute of Coaching and Performance, University of Central LancashirePreston, UK; Fitness Department, Irish Rugby Football UnionDublin, Ireland
| | - David J Collins
- School of Health and Wellbeing, Institute of Coaching and Performance, University of Central Lancashire Preston, UK
| |
Collapse
|
35
|
Convergent neuromodulation onto a network neuron can have divergent effects at the network level. J Comput Neurosci 2016; 40:113-35. [PMID: 26798029 DOI: 10.1007/s10827-015-0587-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/13/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.
Collapse
|
36
|
Dethier J, Drion G, Franci A, Sepulchre R. A positive feedback at the cellular level promotes robustness and modulation at the circuit level. J Neurophysiol 2015; 114:2472-84. [PMID: 26311181 DOI: 10.1152/jn.00471.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
This article highlights the role of a positive feedback gating mechanism at the cellular level in the robustness and modulation properties of rhythmic activities at the circuit level. The results are presented in the context of half-center oscillators, which are simple rhythmic circuits composed of two reciprocally connected inhibitory neuronal populations. Specifically, we focus on rhythms that rely on a particular excitability property, the postinhibitory rebound, an intrinsic cellular property that elicits transient membrane depolarization when released from hyperpolarization. Two distinct ionic currents can evoke this transient depolarization: a hyperpolarization-activated cation current and a low-threshold T-type calcium current. The presence of a slow activation is specific to the T-type calcium current and provides a slow positive feedback at the cellular level that is absent in the cation current. We show that this slow positive feedback is required to endow the network rhythm with physiological modulation and robustness properties. This study thereby identifies an essential cellular property to be retained at the network level in modeling network robustness and modulation.
Collapse
Affiliation(s)
- Julie Dethier
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Laboratory of Pharmacology and GIGA Neurosciences, University of Liège, Liège, Belgium; Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts; and
| | - Alessio Franci
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Rodolphe Sepulchre
- Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium; Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Dickinson PS, Sreekrishnan A, Kwiatkowski MA, Christie AE. Distinct or shared actions of peptide family isoforms: I. Peptide-specific actions of pyrokinins in the lobster cardiac neuromuscular system. ACTA ACUST UNITED AC 2015. [PMID: 26206360 DOI: 10.1242/jeb.124800] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the crustacean heart is modulated by a large number of peptides and amines, few of these molecules have been localized to the cardiac ganglion itself; most appear to reach the cardiac ganglion only by hormonal routes. Immunohistochemistry in the American lobster Homarus americanus indicates that pyrokinins are present not only in neuroendocrine organs (pericardial organ and sinus gland), but also in the cardiac ganglion itself, where pyrokinin-positive terminals were found in the pacemaker cell region, as well as surrounding the motor neurons. Surprisingly, the single pyrokinin peptide identified from H. americanus, FSPRLamide, which consists solely of the conserved FXPRLamide residues that characterize pyrokinins, did not alter the activity of the cardiac neuromuscular system. However, a pyrokinin from the shrimp Litopenaeus vannamei [ADFAFNPRLamide, also known as Penaeus vannamei pyrokinin 2 (PevPK2)] increased both the frequency and amplitude of heart contractions when perfused through the isolated whole heart. None of the other crustacean pyrokinins tested (another from L. vannamei and two from the crab Cancer borealis) had any effect on the lobster heart. Similarly, altering the PevPK2 sequence either by truncation or by the substitution of single amino acids resulted in much lower or no activity in all cases; only the conservative substitution of serine for alanine at position 1 resulted in any activity on the heart. Thus, in contrast to other systems (cockroach and crab) in which all tested pyrokinins elicit similar bioactivities, activation of the pyrokinin receptor in the lobster heart appears to be highly isoform specific.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Anirudh Sreekrishnan
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Molly A Kwiatkowski
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
38
|
Dickinson PS, Kurland SC, Qu X, Parker BO, Sreekrishnan A, Kwiatkowski MA, Williams AH, Ysasi AB, Christie AE. Distinct or shared actions of peptide family isoforms: II. Multiple pyrokinins exert similar effects in the lobster stomatogastric nervous system. ACTA ACUST UNITED AC 2015. [PMID: 26206359 DOI: 10.1242/jeb.124818] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many neuropeptides are members of peptide families, with multiple structurally similar isoforms frequently found even within a single species. This raises the question of whether the individual peptides serve common or distinct functions. In the accompanying paper, we found high isoform specificity in the responses of the lobster (Homarus americanus) cardiac neuromuscular system to members of the pyrokinin peptide family: only one of five crustacean isoforms showed any bioactivity in the cardiac system. Because previous studies in other species had found little isoform specificity in pyrokinin actions, we examined the effects of the same five crustacean pyrokinins on the lobster stomatogastric nervous system (STNS). In contrast to our findings in the cardiac system, the effects of the five pyrokinin isoforms on the STNS were indistinguishable: they all activated or enhanced the gastric mill motor pattern, but did not alter the pyloric pattern. These results, in combination with those from the cardiac ganglion, suggest that members of a peptide family in the same species can be both isoform specific and highly promiscuous in their modulatory capacity. The mechanisms that underlie these differences in specificity have not yet been elucidated; one possible explanation, which has yet to be tested, is the presence and differential distribution of multiple receptors for members of this peptide family.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Sienna C Kurland
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Xuan Qu
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Brett O Parker
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Anirudh Sreekrishnan
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Molly A Kwiatkowski
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alex H Williams
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Alexandra B Ysasi
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
39
|
A modeling approach on why simple central pattern generators are built of irregular neurons. PLoS One 2015; 10:e0120314. [PMID: 25799556 PMCID: PMC4370567 DOI: 10.1371/journal.pone.0120314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
The crustacean pyloric Central Pattern Generator (CPG) is a nervous circuit that endogenously provides periodic motor patterns. Even after about 40 years of intensive studies, the rhythm genesis is still not rigorously understood in this CPG, mainly because it is made of neurons with irregular intrinsic activity. Using mathematical models we addressed the question of using a network of irregularly behaving elements to generate periodic oscillations, and we show some advantages of using non-periodic neurons with intrinsic behavior in the transition from bursting to tonic spiking (as found in biological pyloric CPGs) as building components. We studied two- and three-neuron model CPGs built either with Hindmarsh-Rose or with conductance-based Hodgkin-Huxley-like model neurons. By changing a model’s parameter we could span the neuron’s intrinsic dynamical behavior from slow periodic bursting to fast tonic spiking, passing through a transition where irregular bursting was observed. Two-neuron CPG, half center oscillator (HCO), was obtained for each intrinsic behavior of the neurons by coupling them with mutual symmetric synaptic inhibition. Most of these HCOs presented regular antiphasic bursting activity and the changes of the bursting frequencies was studied as a function of the inhibitory synaptic strength. Among all HCOs, those made of intrinsic irregular neurons presented a wider burst frequency range while keeping a reliable regular oscillatory (bursting) behavior. HCOs of periodic neurons tended to be either hard to change their behavior with synaptic strength variations (slow periodic burster neurons) or unable to perform a physiologically meaningful rhythm (fast tonic spiking neurons). Moreover, 3-neuron CPGs with connectivity and output similar to those of the pyloric CPG presented the same results.
Collapse
|
40
|
Quattrocki E, Friston K. Autism, oxytocin and interoception. Neurosci Biobehav Rev 2014; 47:410-30. [PMID: 25277283 PMCID: PMC4726659 DOI: 10.1016/j.neubiorev.2014.09.012] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 07/23/2014] [Accepted: 09/20/2014] [Indexed: 02/08/2023]
Abstract
Autism is a pervasive developmental disorder characterized by profound social and verbal communication deficits, stereotypical motor behaviors, restricted interests, and cognitive abnormalities. Autism affects approximately 1% of children in developing countries. Given this prevalence, identifying risk factors and therapeutic interventions are pressing objectives—objectives that rest on neurobiologically grounded and psychologically informed theories about the underlying pathophysiology. In this article, we review the evidence that autism could result from a dysfunctional oxytocin system early in life. As a mediator of successful procreation, not only in the reproductive system, but also in the brain, oxytocin plays a crucial role in sculpting socio-sexual behavior. Formulated within a (Bayesian) predictive coding framework, we propose that oxytocin encodes the saliency or precision of interoceptive signals and enables the neuronal plasticity necessary for acquiring a generative model of the emotional and social 'self.' An aberrant oxytocin system in infancy could therefore help explain the marked deficits in language and social communication—as well as the sensory, autonomic, motor, behavioral, and cognitive abnormalities—seen in autism.
Collapse
Affiliation(s)
- E Quattrocki
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, UCL, 12 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
41
|
Ventilation and Locomotion in Humans: Mechanisms, Implications, and Perturbations to the Coupling of These Two Rhythms. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s40362-014-0020-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Abstract
Different modulatory inputs commonly elicit distinct rhythmic motor patterns from a central pattern generator (CPG), but they can instead elicit the same pattern. We are determining the rhythm-generating mechanisms in this latter situation, using the gastric mill (chewing) CPG in the crab (Cancer borealis) stomatogastric ganglion, where stimulating the projection neuron MCN1 (modulatory commissural neuron 1) or bath applying CabPK (C. borealis pyrokinin) peptide elicits the same gastric mill motor pattern, despite configuring different gastric mill circuits. In both cases, the core rhythm generator includes the same reciprocally inhibitory neurons LG (lateral gastric) and Int1 (interneuron 1), but the pyloric (food-filtering) circuit pacemaker neuron AB (anterior burster) is additionally necessary only for CabPK rhythm generation. MCN1 drives this rhythm generator by activating in the LG neuron the modulator-activated inward current (IMI), which waxes and wanes periodically due to phasic feedback inhibition of MCN1 transmitter release. Each buildup of IMI enables the LG neuron to generate a self-terminating burst and thereby alternate with Int1 activity. Here we establish that CabPK drives gastric mill rhythm generation by activating in the LG neuron IMI plus a slowly activating transient, low-threshold inward current (ITrans-LTS) that is voltage, time, and Ca(2+) dependent. Unlike MCN1, CabPK maintains a steady IMI activation, causing a subthreshold depolarization in LG that facilitates a periodic postinhibitory rebound burst caused by the regular buildup and decay of the availability of ITrans-LTS. Thus, different modulatory inputs can use different rhythm-generating mechanisms to drive the same neuronal rhythm. Additionally, the same ionic current (IMI) can play different roles under these different conditions, while different currents (IMI, ITrans-LTS) can play the same role.
Collapse
|
43
|
Abstract
In the isolated CNS, different modulatory inputs can enable one motor network to generate multiple output patterns. Thus far, however, few studies have established whether different modulatory inputs also enable a defined network to drive distinct muscle and movement patterns in vivo, much as they enable these distinctions in behavioral studies. This possibility is not a foregone conclusion, because additional influences present in vivo (e.g., sensory feedback, hormonal modulation) could alter the motor patterns. Additionally, rhythmic neuronal activity can be transformed into sustained muscle contractions, particularly in systems with slow muscle dynamics, as in the crab (Cancer borealis) stomatogastric system used here. We assessed whether two different versions of the biphasic (protraction, retraction) gastric mill (chewing) rhythm, triggered in the isolated stomatogastric system by the modulatory ventral cardiac neurons (VCNs) and postoesophageal commissure (POC) neurons, drive different muscle and movement patterns. One distinction between these rhythms is that the lateral gastric (LG) protractor motor neuron generates tonic bursts during the VCN rhythm, whereas its POC-rhythm bursts are divided into fast, rhythmic burstlets. Intracellular muscle fiber recordings and tension measurements show that the LG-innervated muscles retain the distinct VCN-LG and POC-LG neuron burst structures. Moreover, endoscope video recordings in vivo, during VCN-triggered and POC-triggered chewing, show that the lateral teeth protraction movements exhibit the same, distinct protraction patterns generated by LG in the isolated nervous system. Thus, the multifunctional nature of an identified motor network in the isolated CNS can be preserved in vivo, where it drives different muscle activity and movement patterns.
Collapse
|
44
|
Telles SCL, Alves RSC, Chadi G. Spinal cord injury as a trigger to develop periodic leg movements during sleep: an evolutionary perspective. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:880-4. [PMID: 23175202 DOI: 10.1590/s0004-282x2012001100011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 04/13/2012] [Indexed: 12/17/2022]
Abstract
The primary trigger to periodic limb movement (PLM) during sleep is still unknown. Its association with the restless legs syndrome (RLS) is established in humans and was reported in spinal cord injury (SCI) patients classified by the American Spinal Injury Association (ASIA) as A. Its pathogenesis has not been completely unraveled, though recent advances might enhance our knowledge about those malfunctions. PLM association with central pattern generator (CPG) is one of the possible pathologic mechanisms involved. This article reviewed the advances in PLM and RLS genetics, the evolution of CPG functioning, and the neurotransmitters involved in CPG, PLM and RLS. We have proposed that SCI might be a trigger to develop PLM.
Collapse
Affiliation(s)
- Susana Cristina Lerosa Telles
- Neuroregeneration Center, Experimental Neurology, Department of Neurology, School of Medicine, Universidade de São Paulo, São Paulo SP, Brazil.
| | | | | |
Collapse
|
45
|
Abstract
The master coordinator of daily schedules in mammals, located in the ventral hypothalamus, is the suprachiasmatic nucleus (SCN). This relatively small population of neurons and glia generates circadian rhythms in physiology and behavior and synchronizes them to local time. Recent advances have begun to define the roles of specific cells and signals (e.g., peptides, amino acids, and purine derivatives) within this network that generate and synchronize daily rhythms. Here we focus on the best-studied signals between neurons and between glia in the mammalian circadian system with an emphasis on time-of-day pharmacology. Where possible, we highlight how commonly used drugs affect the circadian system.
Collapse
|
46
|
Schöneich S, Hedwig B. Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2012; 2:707-25. [PMID: 23170234 PMCID: PMC3500458 DOI: 10.1002/brb3.89] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/17/2012] [Accepted: 07/30/2012] [Indexed: 01/23/2023] Open
Abstract
The singing behavior of male crickets allows analyzing a central pattern generator (CPG) that was shaped by sexual selection for reliable production of species-specific communication signals. After localizing the essential ganglia for singing in Gryllus bimaculatus, we now studied the calling song CPG at the cellular level. Fictive singing was initiated by pharmacological brain stimulation. The motor pattern underlying syllables and chirps was recorded as alternating spike bursts of wing-opener and wing-closer motoneurons in a truncated wing nerve; it precisely reflected the natural calling song. During fictive singing, we intracellularly recorded and stained interneurons in thoracic and abdominal ganglia and tested their impact on the song pattern by intracellular current injections. We identified three interneurons of the metathoracic and first unfused abdominal ganglion that rhythmically de- and hyperpolarized in phase with the syllable pattern and spiked strictly before the wing-opener motoneurons. Depolarizing current injection in two of these opener interneurons caused additional rhythmic singing activity, which reliably reset the ongoing chirp rhythm. The closely intermeshing arborizations of the singing interneurons revealed the dorsal midline neuropiles of the metathoracic and three most anterior abdominal neuromeres as the anatomical location of singing pattern generation. In the same neuropiles, we also recorded several closer interneurons that rhythmically hyper- and depolarized in the syllable rhythm and spiked strictly before the wing-closer motoneurons. Some of them received pronounced inhibition at the beginning of each chirp. Hyperpolarizing current injection in the dendrite revealed postinhibitory rebound depolarization as one functional mechanism of central pattern generation in singing crickets.
Collapse
Affiliation(s)
- Stefan Schöneich
- Department of Zoology, University of Cambridge Downing Street, Cambridge, CB2 3EJ, U.K
| | | |
Collapse
|
47
|
From modulated Hebbian plasticity to simple behavior learning through noise and weight saturation. Neural Netw 2012; 34:28-41. [DOI: 10.1016/j.neunet.2012.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 06/08/2012] [Accepted: 06/17/2012] [Indexed: 11/21/2022]
|
48
|
Wiwatpanit T, Powers B, Dickinson PS. Inter-animal variability in the effects of C-type allatostatin on the cardiac neuromuscular system in the lobster Homarus americanus. ACTA ACUST UNITED AC 2012; 215:2308-18. [PMID: 22675192 DOI: 10.1242/jeb.069989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the global effects of many modulators on pattern generators are relatively consistent among preparations, modulators can induce different alterations in different preparations. We examined the mechanisms that underlie such variability in the modulatory effects of the peptide C-type allatostatin (C-AST; pQIRYHQCYFNPISCF) on the cardiac neuromuscular system of the lobster Homarus americanus. Perfusion of C-AST through the semi-intact heart consistently decreased the frequency of ongoing contractions. However, the effect of C-AST on contraction amplitude varied between preparations, decreasing in some preparations and increasing in others. To investigate this variable effect, we examined the effects of C-AST both peripherally and centrally. When contractions of the myocardium were elicited by controlled stimuli, C-AST did not alter heart contraction at the periphery (myocardium or neuromuscular junction) in any hearts. However, when applied either to the semi-intact heart or to the cardiac ganglion (CG) isolated from hearts that responded to C-AST with increased contraction force, C-AST increased both motor neuron burst duration and the number of spikes per burst by about 25%. In contrast, CG output was increased only marginally in hearts that responded to C-AST with a decrease in contraction amplitude, suggesting that the decrease in amplitude in those preparations resulted from decreased peripheral facilitation. Our data suggest that the differential effects of a single peptide on the cardiac neuromuscular system are due solely to differential effects of the peptide on the pattern generator; the extent to which the peptide induces increased burst duration is crucial in determining its overall effect on the system.
Collapse
Affiliation(s)
- Teerawat Wiwatpanit
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
49
|
Calabrese RL. Neuronal networks: enhanced feedback feeds forward. Curr Biol 2012; 22:R803-4. [PMID: 23017995 DOI: 10.1016/j.cub.2012.07.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Modulatory projection neurons gate neuronal networks, such as those comprising motor central pattern generators; in turn, they receive feedback from the networks they gate. A recent study has shown that, in the crab stomatogastric ganglion, this feedback is also subject to modulation: the enhanced feedback feeds forward through the projection neurons to modify circuit output.
Collapse
|
50
|
Abstract
Bidirectional communication (i.e., feedforward and feedback pathways) between functional levels is common in neural systems, but in most systems little is known regarding the function and modifiability of the feedback pathway. We are exploring this issue in the crab (Cancer borealis) stomatogastric nervous system by examining bidirectional communication between projection neurons and their target central pattern generator (CPG) circuit neurons. Specifically, we addressed the question of whether the peptidergic post-oesophageal commissure (POC) neurons trigger a specific gastric mill (chewing) motor pattern in the stomatogastric ganglion solely by activating projection neurons, or by additionally altering the strength of CPG feedback to these projection neurons. The POC-triggered gastric mill rhythm is shaped by feedback inhibition onto projection neurons from a CPG neuron. Here, we establish that POC stimulation triggers a long-lasting enhancement of feedback-mediated IPSC/Ps in the projection neurons, which persists for the same duration as POC-gastric mill rhythms. This strengthened CPG feedback appears to result from presynaptic modulation, because it also occurs in other projection neurons whose activity does not change after POC stimulation. To determine the function of this strengthened feedback synapse, we compared the influence of dynamic-clamp-injected feedback IPSPs of pre- and post-POC amplitude into a pivotal projection neuron after POC stimulation. Only the post-POC amplitude IPSPs elicited the POC-triggered activity pattern in this projection neuron and enabled full expression of the POC-gastric mill rhythm. Thus, the strength of CPG feedback to projection neurons is modifiable and can be instrumental to motor pattern selection.
Collapse
|