1
|
Ulhaq ZS, You MS, Jiang YJ, Tse WKF. p53 inhibitor or antioxidants reduce the severity of ethmoid plate deformities in zebrafish Type 3 Treacher Collins syndrome model. Int J Biol Macromol 2024; 266:131216. [PMID: 38556235 DOI: 10.1016/j.ijbiomac.2024.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
MacGowan J, Cardenas M, Williams MK. Vangl2 deficient zebrafish exhibit hallmarks of neural tube closure defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566412. [PMID: 37986956 PMCID: PMC10659374 DOI: 10.1101/2023.11.09.566412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Neural tube defects (NTDs) are among the most devastating and common congenital anomalies worldwide, and the ability to model these conditions in vivo is essential for identifying causative genetic and environmental factors. Although zebrafish are ideal for rapid candidate testing, their neural tubes develop primarily via a solid neural keel rather that the fold-and-fuse method employed by mammals, raising questions about their suitability as an NTD model. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time, we directly observe fusion of the bilateral neural folds to enclose a lumen in zebrafish embryos. The neural folds fuse by zippering between multiple distinct but contiguous closure sites. Embryos lacking vangl2, a core planar cell polarity and NTD risk gene, exhibit delayed neural fold fusion and abnormal neural groove formation, yielding distinct openings and midline bifurcations in the developing neural tube. These data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting conservation of vertebrate neurulation and the utility of zebrafish for modeling NTDs.
Collapse
Affiliation(s)
- Jacalyn MacGowan
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Mara Cardenas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX
| | - Margot Kossmann Williams
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
4
|
Gladysheva J, Evnukova E, Kondakova E, Kulakova M, Efremov V. Neurulation in the posterior region of zebrafish, Danio rerio embryos. J Morphol 2021; 282:1437-1454. [PMID: 34233026 DOI: 10.1002/jmor.21396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 11/06/2022]
Abstract
The neural tube of amniotes is formed through different mechanisms that take place in the anterior and posterior regions and involve neural plate folding or mesenchymal condensation followed by its cavitation. Meanwhile, in teleost trunk region, the neural plate forms the neural keel, while the lumen develops later. However, the data on neurulation and other morphogenetic processes in the posterior body region in Teleostei remain fragmentary. We proposed that there could be variations in the morphogenetic processes, such as cell shape changes and cell rearrangements, in the posterior region compared to the anterior one at the different stages. Here, we performed morphological and histochemical analyses of morphogenetic processes with an emphasis on neurulation in the zebrafish tail bud (TB) and posterior region. To analyze the posterior expression of sox2 and tbxta we performed whole mount in situ hybridization. We showed that the TB cells of variable shapes and orientation are tightly packed, and the neural and notochord primordia develop first. The shape of the neural primordium undergoes numerous changes as a result of cell rearrangements leading to the development of the neural rod. At the prim-6 stage, the cells of the neural primordium directly form the neural rod. The neuroepithelial cells undergo sequential shape changes. At the stage of the neural rod formation, the apical regions of triangular neuroepithelial cells of the floor plate are enriched in F-actin. The neurocoel development onset is above the apical poles of neuroepithelial cells. The expression domains of sox2 and tbxta become more restricted during the development.
Collapse
Affiliation(s)
- Julia Gladysheva
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,The Scandinavia AVA-PETER Clinic, St. Petersburg, Russian Federation
| | - Evdokia Evnukova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Ekaterina Kondakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation.,Federal State Scientific Establishment "Berg State Research Institute on Lake and River Fisheries" (GosNIORH), St. Petersburg branch of VNIRO, Russian federal Research Institute of Fisheries and Oceanography, Moscow, Russian Federation
| | - Milana Kulakova
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| | - Vladimir Efremov
- Department of Embryology of the Faculty of Biology of St. Petersburg University, St. Petersburg, Russian Federation
| |
Collapse
|
5
|
Jung J, Kim E, Rhee M. Kapd Is Essential for Specification of the Dopaminergic Neurogenesis in Zebrafish Embryos. Mol Cells 2021; 44:233-244. [PMID: 33820883 PMCID: PMC8112167 DOI: 10.14348/molcells.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/23/2023] Open
Abstract
To define novel networks of Parkinson's disease (PD) pathogenesis, the substantia nigra pars compacta of A53T mice, where a death-promoting protein, FAS-associated factor 1 was ectopically expressed for 2 weeks in the 2-, 4-, 6-, and 8-month-old mice, and was subjected to transcriptomic analysis. Compendia of expression profiles and a hierarchical clustering heat map of differentially expressed genes associated with PD were bioinformatically generated. Transcripts level of a particular gene was fluctuated by 20, 60, and 0.75 fold in the 4-, 6-, and 8-month-old mice compared to the 2 months old. Because the gene contained Kelch domain, it was named as Kapd (Kelch-containing protein associated with PD). Biological functions of Kapd were systematically investigated in the zebrafish embryos. First, transcripts of a zebrafish homologue of Kapd, kapd were found in the floor plate of the neural tube at 10 h post fertilization (hpf), and restricted to the tegmentum, hypothalamus, and cerebellum at 24 hpf. Second, knockdown of kapd caused developmental defects of DA progenitors in the midbrain neural keel and midbrain? hindbrain boundary at 10 hpf. Third, overexpression of kapd increased transcripts level of the dopaminergic immature neuron marker, shha in the prethalamus at 16.5 hpf. Finally, developmental consequences of kapd knockdown reduced transcripts level of the markers for the immature and mature DA neurons, nkx2.2, olig2, otx2b, and th in the ventral diencephalon of the midbrain at 18 hpf. It is thus most probable that Kapd play a key role in the specification of the DA neuronal precursors in zebrafish embryos.
Collapse
Affiliation(s)
- Jangham Jung
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134, Korea
| | - Eunhee Kim
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| | - Myungchull Rhee
- Department of Life Science, BK21 Plus Program, Graduate School, Chungnam National University, Daejeon 34134, Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
6
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
7
|
Williams ML, Solnica-Krezel L. Cellular and molecular mechanisms of convergence and extension in zebrafish. Curr Top Dev Biol 2020; 136:377-407. [DOI: 10.1016/bs.ctdb.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Rgma-Induced Neo1 Proteolysis Promotes Neural Tube Morphogenesis. J Neurosci 2019; 39:7465-7484. [PMID: 31399534 DOI: 10.1523/jneurosci.3262-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Neuroepithelial cell (NEC) elongation is one of several key cell behaviors that mediate the tissue-level morphogenetic movements that shape the neural tube (NT), the precursor of the brain and spinal cord. However, the upstream signals that promote NEC elongation have been difficult to tease apart from those regulating apico-basal polarity and hingepoint formation, due to their confounding interdependence. The Repulsive Guidance Molecule a (Rgma)/Neogenin 1 (Neo1) signaling pathway plays a conserved role in NT formation (neurulation) and is reported to regulate both NEC elongation and apico-basal polarity, through signal transduction events that have not been identified. We examine here the role of Rgma/Neo1 signaling in zebrafish (sex unknown), an organism that does not use hingepoints to shape its hindbrain, thereby enabling a direct assessment of the role of this pathway in NEC elongation. We confirm that Rgma/Neo1 signaling is required for microtubule-mediated NEC elongation, and demonstrate via cell transplantation that Neo1 functions cell autonomously to promote elongation. However, in contrast to previous findings, our data do not support a role for this pathway in establishing apical junctional complexes. Last, we provide evidence that Rgma promotes Neo1 glycosylation and intramembrane proteolysis, resulting in the production of a transient, nuclear intracellular fragment (NeoICD). Partial rescue of Neo1a and Rgma knockdown embryos by overexpressing neoICD suggests that this proteolytic cleavage is essential for neurulation. Based on these observations, we propose that RGMA-induced NEO1 proteolysis orchestrates NT morphogenesis by promoting NEC elongation independently of the establishment of apical junctional complexes.SIGNIFICANCE STATEMENT The neural tube, the CNS precursor, is shaped during neurulation. Neural tube defects occur frequently, yet underlying genetic risk factors are poorly understood. Neuroepithelial cell (NEC) elongation is essential for proper completion of neurulation. Thus, connecting NEC elongation with the molecular pathways that control this process is expected to reveal novel neural tube defect risk factors and increase our understanding of NT development. Effectors of cell elongation include microtubules and microtubule-associated proteins; however, upstream regulators remain controversial due to the confounding interdependence of cell elongation and establishment of apico-basal polarity. Here, we reveal that Rgma-Neo1 signaling controls NEC elongation independently of the establishment of apical junctional complexes and identify Rgma-induced Neo1 proteolytic cleavage as a key upstream signaling event.
Collapse
|
10
|
Araya C, Häkkinen HM, Carcamo L, Cerda M, Savy T, Rookyard C, Peyriéras N, Clarke JDW. Cdh2 coordinates Myosin-II dependent internalisation of the zebrafish neural plate. Sci Rep 2019; 9:1835. [PMID: 30755665 PMCID: PMC6372647 DOI: 10.1038/s41598-018-38455-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Tissue internalisation is a key morphogenetic mechanism by which embryonic tissues generate complex internal organs and a number of studies of epithelia have outlined a general view of tissue internalisation. Here we have used quantitative live imaging and mutant analysis to determine whether similar mechanisms are responsible for internalisation in a tissue that apparently does not have a typical epithelial organisation - the zebrafish neural plate. We found that although zebrafish embryos begin neurulation without a conventional epithelium, medially located neural plate cells adopt strategies typical of epithelia in order to constrict their dorsal surface membrane during cell internalisation. Furthermore, we show that Myosin-II activity is a significant driver of this transient cell remodeling which also depends on Cdh2 (N-cadherin). Abrogation of Cdh2 results in defective Myosin-II distribution, mislocalised internalisation events and defective neural plate morphogenesis. Our work suggests Cdh2 coordinates Myosin-II dependent internalisation of the zebrafish neural plate.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile. .,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh, Valdivia, Chile.
| | - Hanna-Maria Häkkinen
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile
| | - Luis Carcamo
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, 5090000, Valdivia, Chile
| | - Mauricio Cerda
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, PO Box 70031, Santiago, Chile.,Biomedical Neuroscience Institute, Independencia, 1027, Santiago, Chile
| | - Thierry Savy
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France.,USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur- Yvette, France
| | - Christopher Rookyard
- Centre for Developmental Neurobiology, Institute of Psychiatry Psychology and Neuroscience, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, United Kingdom
| | - Nadine Peyriéras
- UPS3611 Complex Systems Institute Paris Ile-de-France (ISC-PIF), CNRS, Paris, France.,USR3695 BioEmergences, CNRS, Paris-Saclay University, Gif-sur- Yvette, France
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry Psychology and Neuroscience, King's College London, New Hunt's House, Guy's Campus, London, SE1 1UL, United Kingdom
| |
Collapse
|
11
|
Ahsan K, Singh N, Rocha M, Huang C, Prince VE. Prickle1 is required for EMT and migration of zebrafish cranial neural crest. Dev Biol 2019; 448:16-35. [PMID: 30721665 DOI: 10.1016/j.ydbio.2019.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 01/06/2023]
Abstract
The neural crest-a key innovation of the vertebrates-gives rise to diverse cell types including melanocytes, neurons and glia of the peripheral nervous system, and chondrocytes of the jaw and skull. Proper development of the cephalic region is dependent on the tightly-regulated specification and migration of cranial neural crest cells (NCCs). The core PCP proteins Frizzled and Disheveled have previously been implicated in NCC migration. Here we investigate the functions of the core PCP proteins Prickle1a and Prickle1b in zebrafish cranial NCC development. Using analysis of pk1a and pk1b mutant embryos, we uncover similar roles for both genes in facilitating cranial NCC migration. Disruption of either gene causes pre-migratory NCCs to cluster together at the dorsal aspect of the neural tube, where they adopt aberrant polarity and movement. Critically, in investigating Pk1-deficient cells that fail to migrate ventrolaterally, we have also uncovered roles for pk1a and pk1b in the epithelial-to-mesenchymal transition (EMT) of pre-migratory NCCs that precedes their collective migration to the periphery. Normally, during EMT, pre-migratory NCCs transition from a neuroepithelial to a bleb-based and subsequently, mesenchymal morphology capable of directed migration. When either Pk1a or Pk1b is disrupted, NCCs continue to perform blebbing behaviors characteristic of pre-migratory cells over extended time periods, indicating a block in a key transition during EMT. Although some Pk1-deficient NCCs transition successfully to mesenchymal, migratory morphologies, they fail to separate from neighboring NCCs. Additionally, Pk1b-deficient NCCs show elevated levels of E-Cadherin and reduced levels of N-Cadherin, suggesting that Prickle1 molecules regulate Cadherin levels to ensure the completion of EMT and the commencement of cranial NCC migration. We conclude that Pk1 plays crucial roles in cranial NCCs both during EMT and migration. These roles are dependent on the regulation of E-Cad and N-Cad.
Collapse
Affiliation(s)
- Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, USA
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, USA
| | - Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, USA
| | | | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, USA; Department of Organismal Biology and Anatomy, The University of Chicago, USA.
| |
Collapse
|
12
|
Gao Y, Wang J, Shangguan S, Bao Y, Lu X, Zou J, Dai Y, Liu J, Zhang T. Quantitative Measurement of PARD3 Copy Number Variations in Human Neural Tube Defects. Cell Mol Neurobiol 2018; 38:605-614. [PMID: 28623428 DOI: 10.1007/s10571-017-0506-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/05/2017] [Indexed: 11/29/2022]
Abstract
Although more than 200 genes are known to be related to neural tube defects (NTDs), the exact molecular basis is still unclear. Evaluating the contribution of copy number variation (CNV) might be a priority because CNV involves changes in the copy number of large segments of DNA, leading to phenotypic traits and disease susceptibility. Recent studies have documented that the polarity protein partitioning defective 3 homolog (Pard3) plays an essential role in the process of neural tube closure. The aim of this study was to assess the role of PARD3 CNVs in the etiology of human NTDs. Relative quantitative PCR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry were used to quantitative measurement of CNVs in 25 PARD3 exons in 202 NTD cases and 231 controls from a region of China with a high prevalence of NTDs. The results showed that microduplications ranging from 3 to 4 were evident in coding Exon 21 and Exon 25 in both case and control groups. A novel heterozygous microdeletion spanning 444 bp of Exon 14 was identified in two cases of anencephaly and is absent from all controls analyzed. Expression analyses indicated that this heterozygotic microdeletion showed no tissue specificity and led to defective expression of PARD3. Our study provides further evidence implicating PARD3 in the etiology of NTDs.
Collapse
Affiliation(s)
- Yonghui Gao
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| | - Jianhua Wang
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Shaofang Shangguan
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yihua Bao
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Xiaoli Lu
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Jizhen Zou
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Yaohua Dai
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China
| | - Junling Liu
- Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ting Zhang
- Capital Institute of Pediatrics, No.2, Yabao Road, Chaoyang District, Beijing, 100020, People's Republic of China.
| |
Collapse
|
13
|
Nikolopoulou E, Galea GL, Rolo A, Greene NDE, Copp AJ. Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 2017; 144:552-566. [PMID: 28196803 DOI: 10.1242/dev.145904] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neural tube closure has been studied for many decades, across a range of vertebrates, as a paradigm of embryonic morphogenesis. Neurulation is of particular interest in view of the severe congenital malformations - 'neural tube defects' - that result when closure fails. The process of neural tube closure is complex and involves cellular events such as convergent extension, apical constriction and interkinetic nuclear migration, as well as precise molecular control via the non-canonical Wnt/planar cell polarity pathway, Shh/BMP signalling, and the transcription factors Grhl2/3, Pax3, Cdx2 and Zic2. More recently, biomechanical inputs into neural tube morphogenesis have also been identified. Here, we review these cellular, molecular and biomechanical mechanisms involved in neural tube closure, based on studies of various vertebrate species, focusing on the most recent advances in the field.
Collapse
Affiliation(s)
- Evanthia Nikolopoulou
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Gabriel L Galea
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Ana Rolo
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
14
|
Inoue Y, Suzuki M, Watanabe T, Yasue N, Tateo I, Adachi T, Ueno N. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomech Model Mechanobiol 2016; 15:1733-1746. [PMID: 27193152 PMCID: PMC5106510 DOI: 10.1007/s10237-016-0794-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/02/2016] [Indexed: 01/18/2023]
Abstract
Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.
Collapse
Affiliation(s)
- Yasuhiro Inoue
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan.
| | - Makoto Suzuki
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tadashi Watanabe
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoko Yasue
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Itsuki Tateo
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Taiji Adachi
- Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Naoto Ueno
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| |
Collapse
|
15
|
Araya C, Carmona-Fontaine C, Clarke JDW. Extracellular matrix couples the convergence movements of mesoderm and neural plate during the early stages of neurulation. Dev Dyn 2016; 245:580-9. [PMID: 26933766 DOI: 10.1002/dvdy.24401] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/01/2015] [Accepted: 02/08/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the initial stages zebrafish neurulation, neural plate cells undergo highly coordinated movements before they assemble into a multicellular solid neural rod. We have previously identified that the underlying mesoderm is critical to ensure such coordination and generate correct neural tube organization. However, how intertissue coordination is achieved in vivo during zebrafish neural tube morphogenesis is unknown. RESULTS In this work, we use quantitative live imaging to study the coordinated movements of neural ectoderm and mesoderm during dorsal tissue convergence. We show the extracellular matrix components laminin and fibronectin that lie between mesoderm and neural plate act to couple the movements of neural plate and mesoderm during early stages of neurulation and to maintain the close apposition of these two tissues. CONCLUSIONS Our study highlights the importance of the extracellular matrix proteins laminin and libronectin in coupling the movements and spatial proximity of mesoderm and neuroectoderm during the morphogenetic movements of neurulation. Developmental Dynamics 245:580-589, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| | - Carlos Carmona-Fontaine
- Program in Computational Biology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Jonathan D W Clarke
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London, United Kingdom
| |
Collapse
|
16
|
Cearns MD, Escuin S, Alexandre P, Greene NDE, Copp AJ. Microtubules, polarity and vertebrate neural tube morphogenesis. J Anat 2016; 229:63-74. [PMID: 27025884 DOI: 10.1111/joa.12468] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Microtubules (MTs) are key cellular components, long known to participate in morphogenetic events that shape the developing embryo. However, the links between the cellular functions of MTs, their effects on cell shape and polarity, and their role in large-scale morphogenesis remain poorly understood. Here, these relationships were examined with respect to two strategies for generating the vertebrate neural tube: bending and closure of the mammalian neural plate; and cavitation of the teleost neural rod. The latter process has been compared with 'secondary' neurulation that generates the caudal spinal cord in mammals. MTs align along the apico-basal axis of the mammalian neuroepithelium early in neural tube closure, participating functionally in interkinetic nuclear migration, which indirectly impacts on cell shape. Whether MTs play other functional roles in mammalian neurulation remains unclear. In the zebrafish, MTs are important for defining the neural rod midline prior to its cavitation, both by localizing apical proteins at the tissue midline and by orienting cell division through a mirror-symmetric MT apparatus that helps to further define the medial localization of apical polarity proteins. Par proteins have been implicated in centrosome positioning in neuroepithelia as well as in the control of polarized morphogenetic movements in the neural rod. Understanding of MT functions during early nervous system development has so far been limited, partly by techniques that fail to distinguish 'cause' from 'effect'. Future developments will likely rely on novel ways to selectively impair MT function in order to investigate the roles they play.
Collapse
Affiliation(s)
- Michael D Cearns
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Sarah Escuin
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Paula Alexandre
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Nicholas D E Greene
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | - Andrew J Copp
- Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| |
Collapse
|
17
|
Jayachandran P, Olmo VN, Sanchez SP, McFarland RJ, Vital E, Werner JM, Hong E, Sanchez-Alberola N, Molodstov A, Brewster RM. Microtubule-associated protein 1b is required for shaping the neural tube. Neural Dev 2016; 11:1. [PMID: 26782621 PMCID: PMC4717579 DOI: 10.1186/s13064-015-0056-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Shaping of the neural tube, the precursor of the brain and spinal cord, involves narrowing and elongation of the neural tissue, concomitantly with other morphogenetic changes that contribue to this process. In zebrafish, medial displacement of neural cells (neural convergence or NC), which drives the infolding and narrowing of the neural ectoderm, is mediated by polarized migration and cell elongation towards the dorsal midline. Failure to undergo proper NC results in severe neural tube defects, yet the molecular underpinnings of this process remain poorly understood. RESULTS We investigated here the role of the microtubule (MT) cytoskeleton in mediating NC in zebrafish embryos using the MT destabilizing and hyperstabilizing drugs nocodazole and paclitaxel respectively. We found that MTs undergo major changes in organization and stability during neurulation and are required for the timely completion of NC by promoting cell elongation and polarity. We next examined the role of Microtubule-associated protein 1B (Map1b), previously shown to promote MT dynamicity in axons. map1b is expressed earlier than previously reported, in the developing neural tube and underlying mesoderm. Loss of Map1b function using morpholinos (MOs) or δMap1b (encoding a truncated Map1b protein product) resulted in delayed NC and duplication of the neural tube, a defect associated with impaired NC. We observed a loss of stable MTs in these embryos that is likely to contribute to the NC defect. Lastly, we found that Map1b mediates cell elongation in a cell autonomous manner and polarized protrusive activity, two cell behaviors that underlie NC and are MT-dependent. CONCLUSIONS Together, these data highlight the importance of MTs in the early morphogenetic movements that shape the neural tube and reveal a novel role for the MT regulator Map1b in mediating cell elongation and polarized cell movement in neural progenitor cells.
Collapse
Affiliation(s)
- Pradeepa Jayachandran
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Valerie N Olmo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Stephanie P Sanchez
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Rebecca J McFarland
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Eudorah Vital
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Jonathan M Werner
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Elim Hong
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA. .,Institut de Biologie Paris Seine-Laboratoire Neuroscience Paris Seine INSERM UMRS 1130, CNRS UMR 8246, UPMC UM 118 Université Pierre et Marie Curie, Paris, France.
| | - Neus Sanchez-Alberola
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Aleksey Molodstov
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| | - Rachel M Brewster
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
18
|
miR-430 regulates oriented cell division during neural tube development in zebrafish. Dev Biol 2015; 409:442-50. [PMID: 26658217 DOI: 10.1016/j.ydbio.2015.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/19/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
Abstract
MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.
Collapse
|
19
|
Araya C, Ward LC, Girdler GC, Miranda M. Coordinating cell and tissue behavior during zebrafish neural tube morphogenesis. Dev Dyn 2015; 245:197-208. [PMID: 26177834 DOI: 10.1002/dvdy.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/15/2015] [Accepted: 07/03/2015] [Indexed: 12/12/2022] Open
Abstract
The development of a vertebrate neural epithelium with well-organized apico-basal polarity and a central lumen is essential for its proper function. However, how this polarity is established during embryonic development and the potential influence of surrounding signals and tissues on such organization has remained less understood. In recent years the combined superior transparency and genetics of the zebrafish embryo has allowed for in vivo visualization and quantification of the cellular and molecular dynamics that govern neural tube structure. Here, we discuss recent studies revealing how co-ordinated cell-cell interactions coupled with adjacent tissue dynamics are critical to regulate final neural tissue architecture. Furthermore, new findings show how the spatial regulation and timing of orientated cell division is key in defining precise lumen formation at the tissue midline. In addition, we compare zebrafish neurulation with that of amniotes and amphibians in an attempt to understand the conserved cellular mechanisms driving neurulation and resolve the apparent differences among animals. Zebrafish neurulation not only offers fundamental insights into early vertebrate brain development but also the opportunity to explore in vivo cell and tissue dynamics during complex three-dimensional animal morphogenesis.
Collapse
Affiliation(s)
- Claudio Araya
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile.,UACh Program in Cellular Dynamics and Microscopy.,Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), UACh
| | - Laura C Ward
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences, University Walk, Bristol, United Kingdom
| | - Gemma C Girdler
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Miguel Miranda
- Laboratory of Developmental Biology, Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja s/n, Valdivia, Chile
| |
Collapse
|
20
|
Bazin-Lopez N, Valdivia LE, Wilson SW, Gestri G. Watching eyes take shape. Curr Opin Genet Dev 2015; 32:73-9. [PMID: 25748250 PMCID: PMC4931046 DOI: 10.1016/j.gde.2015.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/01/2015] [Indexed: 01/12/2023]
Abstract
Vertebrate eye formation is a multistep process requiring coordinated inductive interactions between neural and non-neural ectoderm and underlying mesendoderm. The induction and shaping of the eyes involves an elaborate cellular choreography characterized by precise changes in cell shape coupled with complex cellular and epithelial movements. Consequently, the forming eye is an excellent model to study the cellular mechanisms underlying complex tissue morphogenesis. Using examples largely drawn from recent studies of optic vesicle formation in zebrafish and in cultured embryonic stem cells, in this short review, we highlight some recent advances in our understanding of the events that shape the vertebrate eye.
Collapse
Affiliation(s)
- Naiara Bazin-Lopez
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Leonardo E Valdivia
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| | - Gaia Gestri
- Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
21
|
Araya C, Tawk M, Girdler GC, Costa M, Carmona-Fontaine C, Clarke JD. Mesoderm is required for coordinated cell movements within zebrafish neural plate in vivo. Neural Dev 2014; 9:9. [PMID: 24755297 PMCID: PMC4022452 DOI: 10.1186/1749-8104-9-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 04/01/2014] [Indexed: 01/24/2023] Open
Abstract
Background Morphogenesis of the zebrafish neural tube requires the coordinated movement of many cells in both time and space. A good example of this is the movement of the cells in the zebrafish neural plate as they converge towards the dorsal midline before internalizing to form a neural keel. How these cells are regulated to ensure that they move together as a coherent tissue is unknown. Previous work in other systems has suggested that the underlying mesoderm may play a role in this process but this has not been shown directly in vivo. Results Here we analyze the roles of subjacent mesoderm in the coordination of neural cell movements during convergence of the zebrafish neural plate and neural keel formation. Live imaging demonstrates that the normal highly coordinated movements of neural plate cells are lost in the absence of underlying mesoderm and the movements of internalization and neural tube formation are severely disrupted. Despite this, neuroepithelial polarity develops in the abnormal neural primordium but the resulting tissue architecture is very disorganized. Conclusions We show that the movements of cells in the zebrafish neural plate are highly coordinated during the convergence and internalization movements of neurulation. Our results demonstrate that the underlying mesoderm is required for these coordinated cell movements in the zebrafish neural plate in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | - Jonathan Dw Clarke
- Medical Research Council (MRC) Centre for Developmental Neurobiology, King's College London, New Hunt's House, 4th Floor, Guy's Hospital Campus, London SE1 1UL, UK.
| |
Collapse
|
22
|
Ivanovitch K, Cavodeassi F, Wilson S. Precocious acquisition of neuroepithelial character in the eye field underlies the onset of eye morphogenesis. Dev Cell 2013; 27:293-305. [PMID: 24209576 PMCID: PMC3898423 DOI: 10.1016/j.devcel.2013.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 08/16/2013] [Accepted: 09/24/2013] [Indexed: 11/30/2022]
Abstract
Using high-resolution live imaging in zebrafish, we show that presumptive eye cells acquire apicobasal polarity and adopt neuroepithelial character prior to other regions of the neural plate. Neuroepithelial organization is first apparent at the margin of the eye field, whereas cells at its core have mesenchymal morphology. These core cells subsequently intercalate between the marginal cells contributing to the bilateral expansion of the optic vesicles. During later evagination, optic vesicle cells shorten, drawing their apical surfaces laterally relative to the basal lamina, resulting in further laterally directed evagination. The early neuroepithelial organization of the eye field requires Laminin1, and ectopic Laminin1 can redirect the apicobasal orientation of eye field cells. Furthermore, disrupting cell polarity through combined abrogation of the polarity protein Pard6γb and Laminin1 severely compromises optic vesicle evagination. Our studies elucidate the cellular events underlying early eye morphogenesis and provide a framework for understanding epithelialization and complex tissue formation.
Collapse
Affiliation(s)
- Kenzo Ivanovitch
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
23
|
Xiong F, Tentner AR, Huang P, Gelas A, Mosaliganti KR, Souhait L, Rannou N, Swinburne IA, Obholzer ND, Cowgill PD, Schier AF, Megason SG. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell 2013; 153:550-61. [PMID: 23622240 DOI: 10.1016/j.cell.2013.03.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/22/2013] [Accepted: 03/13/2013] [Indexed: 01/09/2023]
Abstract
Sharply delineated domains of cell types arise in developing tissues under instruction of inductive signal (morphogen) gradients, which specify distinct cell fates at different signal levels. The translation of a morphogen gradient into discrete spatial domains relies on precise signal responses at stable cell positions. However, cells in developing tissues undergoing morphogenesis and proliferation often experience complex movements, which may affect their morphogen exposure, specification, and positioning. How is a clear pattern achieved with cells moving around? Using in toto imaging of the zebrafish neural tube, we analyzed specification patterns and movement trajectories of neural progenitors. We found that specified progenitors of different fates are spatially mixed following heterogeneous Sonic Hedgehog signaling responses. Cell sorting then rearranges them into sharply bordered domains. Ectopically induced motor neuron progenitors also robustly sort to correct locations. Our results reveal that cell sorting acts to correct imprecision of spatial patterning by noisy inductive signals.
Collapse
Affiliation(s)
- Fengzhu Xiong
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In the classic picture of morphogen-mediated patterning, cells acquire the correct spatial arrangement of specified fates by reading a precisely distributed gradient of morphogen. Xiong et al. now provide evidence for an alternate strategy-cells of the zebrafish neural tube actively sort to their correct positions following disordered specification by Sonic hedgehog.
Collapse
|
25
|
Hocking JC, Distel M, Köster RW. Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Exp Neurol 2013; 242:1-10. [DOI: 10.1016/j.expneurol.2012.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 11/22/2011] [Accepted: 03/15/2012] [Indexed: 12/23/2022]
|
26
|
Schmidt R, Strähle U, Scholpp S. Neurogenesis in zebrafish - from embryo to adult. Neural Dev 2013; 8:3. [PMID: 23433260 PMCID: PMC3598338 DOI: 10.1186/1749-8104-8-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 01/19/2023] Open
Abstract
Neurogenesis in the developing central nervous system consists of the induction and proliferation of neural progenitor cells and their subsequent differentiation into mature neurons. External as well as internal cues orchestrate neurogenesis in a precise temporal and spatial way. In the last 20 years, the zebrafish has proven to be an excellent model organism to study neurogenesis in the embryo. Recently, this vertebrate has also become a model for the investigation of adult neurogenesis and neural regeneration. Here, we summarize the contributions of zebrafish in neural development and adult neurogenesis.
Collapse
Affiliation(s)
- Rebecca Schmidt
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, 76021, Karlsruhe, Germany
| | | | | |
Collapse
|
27
|
Mirror-symmetric microtubule assembly and cell interactions drive lumen formation in the zebrafish neural rod. EMBO J 2012; 32:30-44. [PMID: 23202854 PMCID: PMC3545300 DOI: 10.1038/emboj.2012.305] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/30/2012] [Indexed: 02/06/2023] Open
Abstract
By analysing the cellular and subcellular events that occur in the centre of the developing zebrafish neural rod, we have uncovered a novel mechanism of cell polarisation during lumen formation. Cells from each side of the neural rod interdigitate across the tissue midline. This is necessary for localisation of apical junctional proteins to the region where cells intersect the tissue midline. Cells assemble a mirror-symmetric microtubule cytoskeleton around the tissue midline, which is necessary for the trafficking of proteins required for normal lumen formation, such as partitioning defective 3 and Rab11a to this point. This occurs in advance and is independent of the midline cell division that has been shown to have a powerful role in lumen organisation. To our knowledge, this is the first example of the initiation of apical polarisation part way along the length of a cell, rather than at a cell extremity. Although the midline division is not necessary for apical polarisation, it confers a morphogenetic advantage by efficiently eliminating cellular processes that would otherwise bridge the developing lumen.
Collapse
|
28
|
Gao Y, Chen X, Shangguan S, Bao Y, Lu X, Zou J, Guo J, Dai Y, Zhang T. Association study of PARD3 gene polymorphisms with neural tube defects in a Chinese Han population. Reprod Sci 2012; 19:764-71. [PMID: 22447895 DOI: 10.1177/1933719111433886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Partitioning defective 3 homolog (PARD3) is an attractive candidate gene for screening neural tube defect (NTD) risk. To investigate the role of genetic variants in PARD3 on NTD risk, a case-control study was performed in a region of China with a high prevalence of NTDs. Total 53 single-nucleotide polymorphisms (SNPs) in PARD3 were genotyped in 224 fetuses with NTDs and in 253 normal fetuses. We found that 6 SNPs (rs2496720, rs2252655, rs3851068, rs118153230, rs10827337, and rs12218196) were statistically associated with NTDs (P < .05). After stratifying participants by NTD phenotypes, the significant association only existed in cases with anencephaly rather than spina bifida. Further haplotype analysis confirmed the association between PARD3 polymorphisms and NTD risk (global test P = 3.41e-008). Our results suggested that genetic variants in PARD3 were associated with susceptibility to NTDs in a Chinese Han population, and this association was affected by NTD phenotypes.
Collapse
Affiliation(s)
- Yonghui Gao
- Peking Union Medical College, Capital Institute of Pediatrics, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen Y, Wang Z, Xie Y, Guo X, Tang X, Wang S, Yang S, Chen K, Niu Y, Ji W. Folic acid deficiency inhibits neural rosette formation and neuronal differentiation from rhesus monkey embryonic stem cells. J Neurosci Res 2012; 90:1382-91. [PMID: 22411734 DOI: 10.1002/jnr.23030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 12/02/2011] [Accepted: 12/18/2011] [Indexed: 01/25/2023]
Abstract
Evidence from epidemiological studies has proved that periconceptional use of folic acid (FA) can significantly reduce the risk of neural tube defects (NTDs). However, it is hard to explore when and how FA plays roles in neurogenesis and brain development in vivo, especially in human or other nonhuman primate systems. Primate embryonic stem cell (ESC) lines are ideal models for studying cell differentiation and organogenesis in vitro. In the present study, the roles of FA in neural differentiation were assessed in a rhesus monkey ESC system in vitro. The results showed no significant difference in the expression of neural precursor markers, such as nestin, Sox-1, or Pax-6, among neural progenitors obtained from different FA concentrations or with the FA antagonist methotrexate (MTX). However, FA depletion decreased cell proliferation and affected embryoid body (EB) and neural rosette formation, as well as neuronal but not neuroglia differentiation. Our data imply that the ESC system is a suitable model for further exploring the mechanism of how FA works in prevention of NTDs in primates.
Collapse
Affiliation(s)
- Yongchang Chen
- Laboratory of Reproductive and Developmental Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Divide and polarize: recent advances in the molecular mechanism regulating epithelial tubulogenesis. Curr Opin Cell Biol 2011; 23:638-46. [PMID: 21807489 DOI: 10.1016/j.ceb.2011.07.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 06/28/2011] [Accepted: 07/07/2011] [Indexed: 11/22/2022]
Abstract
Epithelial organs are generated from groups of non-polarized cells by a combination of processes that induce the acquisition of cell polarity, lumen formation, and the subsequent steps required for tubulogenesis. The subcellular mechanisms associated to these processes are still poorly understood. The extracellular environment provides a cue for the initial polarization, while cytoskeletal rearrangements build up the three-dimensional architecture that supports the central lumen. The proper orientation of cell division in the epithelium has been found to be required for the normal formation of the central lumen in epithelial morphogenesis. Moreover, recent data in cellular models and in vivo have shed light into the underlying mechanisms that connect the spindle orientation machinery with cell polarity. In addition, recent work has clarified the core molecular components of the vesicle trafficking machinery in epithelial morphogenesis, including Rab-GTPases and the Exocyst, as well as an increasing list of microtubule-binding and actin-binding proteins and motors, most of which are conserved from yeast to humans. In this review we will focus on the discussion of novel findings that have unveiled important clues for the mechanisms that regulate epithelial tubulogenesis.
Collapse
|
31
|
Wansleeben C, Meijlink F. The planar cell polarity pathway in vertebrate development. Dev Dyn 2011; 240:616-26. [PMID: 21305650 DOI: 10.1002/dvdy.22564] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2010] [Indexed: 12/29/2022] Open
Abstract
Directing the orientation of cells in three dimensions is a fundamental aspect of many of the processes underlying the generation of the appropriate shape and function of tissues and organs during embryonic development. In an epithelium, this requires not only the establishment of apicobasal polarity, but also cell arrangement in a specific direction in the plane of the cell sheet. The molecular pathway central to regulating this planar cell polarity (PCP) was originally discovered in the fruit fly Drosophila melanogaster and has more recently been shown to act in a highly analogous way in vertebrates, involving a strongly overlapping set of genes. Mutant studies and molecular analyses have led to insights into the role of ordered planar cell polarity in the development of a wide variety of organs and tissues. In this review, we give an overview of recent developments in the study of planar polarity signaling in vertebrates.
Collapse
|
32
|
The polarity protein Pard3 is required for centrosome positioning during neurulation. Dev Biol 2010; 341:335-45. [PMID: 20138861 DOI: 10.1016/j.ydbio.2010.01.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 01/22/2010] [Accepted: 01/27/2010] [Indexed: 12/12/2022]
Abstract
Microtubules are essential regulators of cell polarity, architecture and motility. The organization of the microtubule network is context-specific. In non-polarized cells, microtubules are anchored to the centrosome and form radial arrays. In most epithelial cells, microtubules are noncentrosomal, align along the apico-basal axis and the centrosome templates a cilium. It follows that cells undergoing mesenchyme-to-epithelium transitions must reorganize their microtubule network extensively, yet little is understood about how this process is orchestrated. In particular, the pathways regulating the apical positioning of the centrosome are unknown, a central question given the role of cilia in fluid propulsion, sensation and signaling. In zebrafish, neural progenitors undergo progressive epithelialization during neurulation, and thus provide a convenient in vivo cellular context in which to address this question. We demonstrate here that the microtubule cytoskeleton gradually transitions from a radial to linear organization during neurulation and that microtubules function in conjunction with the polarity protein Pard3 to mediate centrosome positioning. Pard3 depletion results in hydrocephalus, a defect often associated with abnormal cerebrospinal fluid flow that has been linked to cilia defects. These findings thus bring to focus cellular events occurring during neurulation and reveal novel molecular mechanisms implicated in centrosome positioning.
Collapse
|
33
|
Harrington MJ, Hong E, Brewster R. Comparative analysis of neurulation: First impressions do not count. Mol Reprod Dev 2009; 76:954-65. [DOI: 10.1002/mrd.21085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|