1
|
Haggard M, Chacron MJ. Nonresponsive Neurons Improve Population Coding of Object Location. J Neurosci 2025; 45:e1068242024. [PMID: 39542727 PMCID: PMC11735655 DOI: 10.1523/jneurosci.1068-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how heterogeneous neural populations represent sensory input to give rise to behavior remains a central problem in systems neuroscience. Here we investigated how midbrain neurons within the electrosensory system of Apteronotus leptorhynchus code for object location in space. In vivo simultaneous recordings were achieved via Neuropixels probes, high-density electrode arrays, with the stimulus positioned at different locations relative to the animal. Midbrain neurons exhibited heterogeneous response profiles, with a significant proportion (65%) seemingly nonresponsive to moving stimuli. Remarkably, we found that nonresponsive neurons increased population coding of object location through synergistic interactions with responsive neurons by effectively reducing noise. Mathematical modeling demonstrated that increased response heterogeneity together with the experimentally observed correlations was sufficient to give rise to independent encoding by responsive neurons. Furthermore, the addition of nonresponsive neurons in the model gave rise to synergistic population coding. Taken together, our findings reveal that nonresponsive neurons, which are frequently excluded from analysis, can significantly improve population coding of object location through synergistic interactions with responsive neurons. Combinations of responsive and nonresponsive neurons have been observed in sensory systems across taxa; it is likely that similar synergistic interactions improve population coding across modalities and behavioral tasks.
Collapse
Affiliation(s)
- Myriah Haggard
- Quantitative Life Sciences, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6, Canada
| |
Collapse
|
2
|
Rodríguez-Cattáneo A, Pereira AC, Aguilera PA, Caputi ÁA. Packet information encoding in a cerebellum-like circuit. PLoS One 2024; 19:e0308146. [PMID: 39302961 DOI: 10.1371/journal.pone.0308146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/16/2024] [Indexed: 09/22/2024] Open
Abstract
Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs). To evaluate this hypothesis, extracellular unitary activity was recorded from the centro-medial map of the EL. Units recorded in high-decerebrate preparations were classified into six types using hierarchical cluster analysis of post-EOD spiking histograms. Cross-correlation analysis indicated that each EOD strongly influences the unit firing probability within the next inter-EOD interval. Units of the same type were similarly located in the laminar organization of the EL and showed similar stimulus-specific changes in spike count and spike timing after the EOD when a metal object was moved close by, along the fish's body parallel to the skin, or when the longitudinal impedance of a static cylindrical probe placed at the center of the receptive field was incremented in a stepwise manner in repetitive trials. These last experiments showed that spike-counts and the relative entropy, expressing a comparative measure of information before and after the step, were systematically increased with respect to a control in all unit types. The post-EOD spike-timing probability distribution and the relatively independent contribution of spike-timing and number to the content of information in the transmitted packet suggest that these are the constitutive image-encoding variables of the packets. Comparative analysis suggests that packet information transmission is a general principle for processing superposition images in cerebellum-like networks.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattáneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ana Carolina Pereira
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pedro Anibal Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ángel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
3
|
Wagner H, Egelhaaf M, Carr C. Model organisms and systems in neuroethology: one hundred years of history and a look into the future. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:227-242. [PMID: 38227005 PMCID: PMC10995084 DOI: 10.1007/s00359-023-01685-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The Journal of Comparative Physiology lived up to its name in the last 100 years by including more than 1500 different taxa in almost 10,000 publications. Seventeen phyla of the animal kingdom were represented. The honeybee (Apis mellifera) is the taxon with most publications, followed by locust (Locusta migratoria), crayfishes (Cambarus spp.), and fruitfly (Drosophila melanogaster). The representation of species in this journal in the past, thus, differs much from the 13 model systems as named by the National Institutes of Health (USA). We mention major accomplishments of research on species with specific adaptations, specialist animals, for example, the quantitative description of the processes underlying the axon potential in squid (Loligo forbesii) and the isolation of the first receptor channel in the electric eel (Electrophorus electricus) and electric ray (Torpedo spp.). Future neuroethological work should make the recent genetic and technological developments available for specialist animals. There are many research questions left that may be answered with high yield in specialists and some questions that can only be answered in specialists. Moreover, the adaptations of animals that occupy specific ecological niches often lend themselves to biomimetic applications. We go into some depth in explaining our thoughts in the research of motion vision in insects, sound localization in barn owls, and electroreception in weakly electric fish.
Collapse
Affiliation(s)
- Hermann Wagner
- Institute of Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| | - Martin Egelhaaf
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Catherine Carr
- Department of Biology, University of Maryland at College Park, College Park, USA
| |
Collapse
|
4
|
Zhou W, Schneider DM. Fish who act on impulse must learn the consequences. Neuron 2023; 111:2463-2464. [PMID: 37591200 DOI: 10.1016/j.neuron.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Animals learn internal models that link specific behaviors to their anticipated sensory outcomes. In this issue of Neuron, Wallach and Sawtell1 discover that freely moving fish learn how the sensory outcome of a single behavior changes with local context.
Collapse
Affiliation(s)
- WenXi Zhou
- Center for Neural Science, New York University, New York, NY, USA
| | | |
Collapse
|
5
|
Hladnik TC, Grewe J. Receptive field sizes and neuronal encoding bandwidth are constrained by axonal conduction delays. PLoS Comput Biol 2023; 19:e1010871. [PMID: 37566629 PMCID: PMC10446211 DOI: 10.1371/journal.pcbi.1010871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/23/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Studies on population coding implicitly assume that spikes from the presynaptic cells arrive simultaneously at the integrating neuron. In natural neuronal populations, this is usually not the case-neuronal signaling takes time and populations cover a certain space. The spread of spike arrival times depends on population size, cell density and axonal conduction velocity. Here we analyze the consequences of population size and axonal conduction delays on the stimulus encoding performance in the electrosensory system of the electric fish Apteronotus leptorhynchus. We experimentally locate p-type electroreceptor afferents along the rostro-caudal body axis and relate locations to neurophysiological response properties. In an information-theoretical approach we analyze the coding performance in homogeneous and heterogeneous populations. As expected, the amount of information increases with population size and, on average, heterogeneous populations encode better than the average same-size homogeneous population, if conduction delays are compensated for. The spread of neuronal conduction delays within a receptive field strongly degrades encoding of high-frequency stimulus components. Receptive field sizes typically found in the electrosensory lateral line lobe of A. leptorhynchus appear to be a good compromise between the spread of conduction delays and encoding performance. The limitations imposed by finite axonal conduction velocity are relevant for any converging network as is shown by model populations of LIF neurons. The bandwidth of natural stimuli and the maximum meaningful population sizes are constrained by conduction delays and may thus impact the optimal design of nervous systems.
Collapse
Affiliation(s)
- Tim C. Hladnik
- Institute for Neurobiology, Eberhardt Karls Universität Tübingen, Tübingen, Germany
- Systems Neurobiology, Werner Reichard Center for Integrative Neurobiology, Universität Tübingen, Tübingen, Germany
| | - Jan Grewe
- Institute for Neurobiology, Eberhardt Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Metzen MG, Chacron MJ. Descending pathways increase sensory neural response heterogeneity to facilitate decoding and behavior. iScience 2023; 26:107139. [PMID: 37416462 PMCID: PMC10320509 DOI: 10.1016/j.isci.2023.107139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
The functional role of heterogeneous spiking responses of otherwise similarly tuned neurons to stimulation, which has been observed ubiquitously, remains unclear to date. Here, we demonstrate that such response heterogeneity serves a beneficial function that is used by downstream brain areas to generate behavioral responses that follows the detailed timecourse of the stimulus. Multi-unit recordings from sensory pyramidal cells within the electrosensory system of Apteronotus leptorhynchus were performed and revealed highly heterogeneous responses that were similar for all cell types. By comparing the coding properties of a given neural population before and after inactivation of descending pathways, we found that heterogeneities were beneficial as decoding was then more robust to the addition of noise. Taken together, our results not only reveal that descending pathways actively promote response heterogeneity within a given cell type, but also uncover a beneficial function for such heterogeneity that is used by the brain to generate behavior.
Collapse
Affiliation(s)
- Michael G. Metzen
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
7
|
Marquez MM, Chacron MJ. Serotonin increases population coding of behaviorally relevant stimuli by enhancing responses of ON but not OFF-type sensory neurons. Heliyon 2023; 9:e18315. [PMID: 37539191 PMCID: PMC10395545 DOI: 10.1016/j.heliyon.2023.e18315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
How neural populations encode sensory input to generate behavioral responses remains a central problem in systems neuroscience. Here we investigated how neuromodulation influences population coding of behaviorally relevant stimuli to give rise to behavior in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We performed multi-unit recordings from ON and OFF sensory pyramidal cells in response to stimuli whose amplitude (i.e., envelope) varied in time, before and after electrical stimulation of the raphe nuclei. Overall, raphe stimulation increased population coding by ON- but not by OFF-type cells, despite both cell types showing similar sensitivities to the stimulus at the single neuron level. Surprisingly, only changes in population coding by ON-type cells were correlated with changes in behavioral responses. Taken together, our results show that neuromodulation differentially affects ON vs. OFF-type cells in order to enhance perception of behaviorally relevant sensory input.
Collapse
|
8
|
Haggard M, Chacron MJ. Coding of object location by heterogeneous neural populations with spatially dependent correlations in weakly electric fish. PLoS Comput Biol 2023; 19:e1010938. [PMID: 36867650 PMCID: PMC10016687 DOI: 10.1371/journal.pcbi.1010938] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/15/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Understanding how neural populations encode sensory stimuli remains a central problem in neuroscience. Here we performed multi-unit recordings from sensory neural populations in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus in response to stimuli located at different positions along the rostro-caudal axis. Our results reveal that the spatial dependence of correlated activity along receptive fields can help mitigate the deleterious effects that these correlations would otherwise have if they were spatially independent. Moreover, using mathematical modeling, we show that experimentally observed heterogeneities in the receptive fields of neurons help optimize information transmission as to object location. Taken together, our results have important implications for understanding how sensory neurons whose receptive fields display antagonistic center-surround organization encode location. Important similarities between the electrosensory system and other sensory systems suggest that our results will be applicable elsewhere.
Collapse
Affiliation(s)
- Myriah Haggard
- Quantitative Life Sciences, McGill University, Montreal, Canada
| | | |
Collapse
|
9
|
Cline HT, Lau M, Hiramoto M. Activity-dependent Organization of Topographic Neural Circuits. Neuroscience 2023; 508:3-18. [PMID: 36470479 PMCID: PMC9839526 DOI: 10.1016/j.neuroscience.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Sensory information in the brain is organized into spatial representations, including retinotopic, somatotopic, and tonotopic maps, as well as ocular dominance columns. The spatial representation of sensory inputs is thought to be a fundamental organizational principle that is important for information processing. Topographic maps are plastic throughout an animal's life, reflecting changes in development and aging of brain circuitry, changes in the periphery and sensory input, and changes in circuitry, for instance in response to experience and learning. Here, we review mechanisms underlying the role of activity in the development, stability and plasticity of topographic maps, focusing on recent work suggesting that the spatial information in the visual field, and the resulting spatiotemporal patterns of activity, provide instructive cues that organize visual projections.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA.
| | - Melissa Lau
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Masaki Hiramoto
- Department of Neuroscience and the Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
OUP accepted manuscript. Zool J Linn Soc 2022. [DOI: 10.1093/zoolinnean/zlac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Wallach A, Melanson A, Longtin A, Maler L. Mixed selectivity coding of sensory and motor social signals in the thalamus of a weakly electric fish. Curr Biol 2021; 32:51-63.e3. [PMID: 34741807 DOI: 10.1016/j.cub.2021.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
High-level neural activity often exhibits mixed selectivity to multivariate signals. How such representations arise and modulate natural behavior is poorly understood. We addressed this question in weakly electric fish, whose social behavior is relatively low dimensional and can be easily reproduced in the laboratory. We report that the preglomerular complex, a thalamic region exclusively connecting midbrain with pallium, implements a mixed selectivity strategy to encode interactions related to courtship and rivalry. We discuss how this code enables the pallial recurrent networks to control social behavior, including dominance in male-male competition and female mate selection. Notably, response latency analysis and computational modeling suggest that corollary discharge from premotor regions is implicated in flagging outgoing communications and thereby disambiguating self- versus non-self-generated signals. These findings provide new insights into the neural substrates of social behavior, multi-dimensional neural representation, and its role in perception and decision making.
Collapse
Affiliation(s)
- Avner Wallach
- Zuckerman Institute of Mind, Brain and Behavior, Columbia University, 3227 Broadway, NY 10027, USA.
| | - Alexandre Melanson
- Département de Physique et d'Astronomie, Université de Moncton, 18 Av. Antonine-Maillet, Moncton, NB E1A 3E9, Canada; Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, 150 Louis-Pasteur Pvt, Ottawa, ON K1N 6N5, Canada; Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Leonard Maler
- Center for Neural Dynamics, Brain and Mind Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
12
|
Linking active sensing and spatial learning in weakly electric fish. Curr Opin Neurobiol 2021; 71:1-10. [PMID: 34392168 DOI: 10.1016/j.conb.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/17/2021] [Accepted: 07/11/2021] [Indexed: 11/24/2022]
Abstract
Weakly electric fish can learn the spatial layout of their environment using only their short-range electric sense. During spatial learning, active sensing motions are used to memorize landmark locations so that they can serve as anchors for idiothetic-based navigation. A hindbrain feedback circuit selectively amplifies the electrosensory input arising from these motions. The ascending electrolocation pathway preferentially transmits this information to the pallial regions involved in spatial learning and navigation. Similarities in both behavioral patterns and hindbrain circuitry of gymnotiform and mormyrid fish, two families that independently evolved their electrosense, suggest that amplification and transmission of active sensing motion inputs are fundamental mechanisms for spatial memory acquisition.
Collapse
|
13
|
Nogueira J, Castelló ME, Lescano C, Caputi ÁA. Distinct neuron phenotypes may serve object feature sensing in the electrosensory lobe of Gymnotus omarorum. J Exp Biol 2021; 224:237807. [PMID: 33707195 DOI: 10.1242/jeb.242242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Early sensory relay circuits in the vertebrate medulla often adopt a cerebellum-like organization specialized for comparing primary afferent inputs with central expectations. These circuits usually have a dual output, carried by center ON and center OFF neurons responding in opposite ways to the same stimulus at the center of their receptive fields. Here, we show in the electrosensory lateral line lobe of Gymnotiform weakly electric fish that basilar pyramidal neurons, representing 'ON' cells, and non-basilar pyramidal neurons, representing 'OFF' cells, have different intrinsic electrophysiological properties. We used classical anatomical techniques and electrophysiological in vitro recordings to compare these neurons. Basilar neurons are silent at rest, have a high threshold to intracellular stimulation, delayed responses to steady-state depolarization and low pass responsiveness to membrane voltage variations. They respond to low-intensity depolarizing stimuli with large, isolated spikes. As stimulus intensity increases, the spikes are followed by a depolarizing after-potential from which phase-locked spikes often arise. Non-basilar neurons show a pacemaker-like spiking activity, smoothly modulated in frequency by slow variations of stimulus intensity. Spike-frequency adaptation provides a memory of their recent firing, facilitating non-basilar response to stimulus transients. Considering anatomical and functional dimensions, we conclude that basilar and non-basilar pyramidal neurons are clear-cut, different anatomo-functional phenotypes. We propose that, in addition to their role in contrast processing, basilar pyramidal neurons encode sustained global stimuli such as those elicited by large or distant objects while non-basilar pyramidal neurons respond to transient stimuli due to movement of objects with a textured surface.
Collapse
Affiliation(s)
- Javier Nogueira
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2515, Montevideo, Uruguay
| | - María E Castelló
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Carolina Lescano
- Laboratorio Desarrollo y Evolución Neural, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Ángel A Caputi
- Departamento Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| |
Collapse
|
14
|
Kim C, Chacron MJ. Lower Baseline Variability Gives Rise to Lower Detection Thresholds in Midbrain than Hindbrain Electrosensory Neurons. Neuroscience 2020; 448:43-54. [PMID: 32926952 DOI: 10.1016/j.neuroscience.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Understanding how the brain decodes sensory information to give rise to behaviour remains an important problem in systems neuroscience. Across various sensory modalities (e.g. auditory, visual), the time-varying contrast of natural stimuli has been shown to carry behaviourally relevant information. However, it is unclear how such information is actually decoded by the brain to evoke perception and behaviour. Here we investigated how midbrain electrosensory neurons respond to weak contrasts in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus. We found that these neurons displayed lower detection thresholds than their afferent hindbrain electrosensory neurons. Further analysis revealed that the lower detection thresholds of midbrain neurons were not due to increased sensitivity to the stimulus. Rather, these were due to the fact that midbrain neurons displayed lower variability in their firing activities in the absence of stimulation, which is due to lower firing rates. Our results suggest that midbrain neurons play an active role towards enabling the detection of weak stimulus contrasts, which in turn leads to perception and behavioral responses.
Collapse
Affiliation(s)
- Chelsea Kim
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
15
|
Toscano-Márquez B, Oboti L, Harvey-Girard E, Maler L, Krahe R. Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing. J Comp Neurol 2020; 529:1810-1829. [PMID: 33089503 DOI: 10.1002/cne.25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.
Collapse
Affiliation(s)
| | - Livio Oboti
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec.,Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| |
Collapse
|
16
|
Tethered unitary recordings suggest a spike-timing electrosensory code in the electrosensory lobe of Gymnotus omarorum. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2020.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
AbstractEvaluation of neural activity during natural behaviours is essential for understanding how the brain works. Here we show that neuron-specific self-evoked firing patterns are modulated by an object’s presence, at the electrosensory lobe neurons of tethered-moving Gymnotus omarorum. This novel preparation shows that electrosensory signals in these pulse-type weakly electric fish are not only encoded in the number of spikes per electric organ discharge (EOD), as is the case in wave-type electric fish, but also in the spike timing pattern after each EOD, as found in pulse-type Mormyroidea. Present data suggest that pulsant electrogenesis and spike timing coding of electrosensory signals developed concomitantly in the same species, and evolved convergently in African and American electric fish.
Collapse
|
17
|
Hofmann V, Chacron MJ. Neuronal On- and Off-type heterogeneities improve population coding of envelope signals in the presence of stimulus-induced noise. Sci Rep 2020; 10:10194. [PMID: 32576916 PMCID: PMC7311526 DOI: 10.1038/s41598-020-67258-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/04/2020] [Indexed: 11/14/2022] Open
Abstract
Understanding the mechanisms by which neuronal population activity gives rise to perception and behavior remains a central question in systems neuroscience. Such understanding is complicated by the fact that natural stimuli often have complex structure. Here we investigated how heterogeneities within a sensory neuron population influence the coding of a noisy stimulus waveform (i.e., the noise) and its behaviorally relevant envelope signal (i.e., the signal). We found that On- and Off-type neurons displayed more heterogeneities in their responses to the noise than in their responses to the signal. These differences in heterogeneities had important consequences when quantifying response similarity between pairs of neurons. Indeed, the larger response heterogeneity displayed by On- and Off-type neurons made their pairwise responses to the noise on average more independent than when instead considering pairs of On-type or Off-type neurons. Such relative independence allowed for better averaging out of the noise response when pooling neural activities in a mixed-type (i.e., On- and Off-type) than for same-type (i.e., only On-type or only Off-type), thereby leading to greater information transmission about the signal. Our results thus reveal a function for the combined activities of On- and Off-type neurons towards improving information transmission of envelope stimuli at the population level. Our results will likely generalize because natural stimuli across modalities are characterized by a stimulus waveform whose envelope varies independently as well as because On- and Off-type neurons are observed across systems and species.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
18
|
Sinz FH, Sachgau C, Henninger J, Benda J, Grewe J. Simultaneous spike-time locking to multiple frequencies. J Neurophysiol 2020; 123:2355-2372. [PMID: 32374223 DOI: 10.1152/jn.00615.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Locking of neural firing is ubiquitously observed in the brain and occurs when neurons fire at a particular phase or in synchronization with an external signal. Here we study in detail the locking of single neurons to multiple distinct frequencies at the example of p-type electroreceptor afferents in the electrosensory system of the weakly electric fish Apteronotus leptorhynchus (brown ghost knifefish). We find that electrosensory afferents and pyramidal cells in the electrosensory lateral line lobe (ELL) lock to multiple frequencies, including the electric organ discharge (EOD) frequency, beat, and stimulus itself. We identify key elements necessary for locking to multiple frequencies, study its limits, and provide concise mathematical models reproducing our main findings. Our findings provide another example of how rate and temporal codes can coexist and complement each other in single neurons and demonstrate that sensory coding in p-type electroreceptor afferents provides a much richer representation of the sensory environment than commonly assumed. Since the underlying mechanisms are not specific to the electrosensory system, our results could provide the basis for studying multiple frequency locking in other systems.NEW & NOTEWORTHY Locking of neuronal spikes to external and internal signals is a ubiquitous neurophysiological mechanism that has been extensively studied in several brain areas and species. Using experimental data from the electrosensory system and concise mathematical models, we analyze how a single neuron can simultaneously lock to multiple frequencies. Our findings demonstrate how temporal and rate codes can complement each other and lead to rich neuronal representations of sensory signals.
Collapse
Affiliation(s)
- Fabian H Sinz
- Institute for Bioinformatics and Medical Informatics, University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany.,Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
| | - Carolin Sachgau
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jörg Henninger
- Charité, Medical School of Humboldt University, Berlin, Germany
| | - Jan Benda
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany.,Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Jan Grewe
- Department of Neuroethology, Institute for Neuroscience, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Caputi AA, Aguilera PA. Strategies of object polarization and their role in electrosensory information gathering. BIOINSPIRATION & BIOMIMETICS 2020; 15:035008. [PMID: 31899911 DOI: 10.1088/1748-3190/ab6782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Weakly electric fish polarize the nearby environment with a stereotyped electric field and gain information by detecting the changes imposed by objects with tuned sensors. Here we focus on polarization strategies as paradigmatic bioinspiring mechanisms for sensing devices. We begin this research developing a toy model that describes three polarization strategies exhibited by three different groups of fish. We then report an experimental analysis which confirmed predictions of the model and in turn predicted functional consequences that were explored in behavioral experiments in the pulse fish Gymnotus omarorum. In the experiments, polarization was evaluated by estimating the object's stamp (i.e. the electric source that produces the same electric image as the object) as a function of object impedance, orientation, and position. Signal detection and discrimination was explored in G. omarorum by provoking novelty responses, which are known to reflect the increment in the electric image provoked by a change in nearby impedance. To achieve this, we stepped the longitudinal impedance of a cylindrical object between two impedances (either capacitive or resistive). Object polarization and novelty responses indicate that G. omarorum has two functional regions in the electrosensory field. At the front of the fish, there is a foveal field where object position and orientation are encoded in signal intensity, while the qualia associated with impedance is encoded in signal time course. On the side of the fish there is a peripheral field where the complexity of the polarizing field facilitates detection of objects oriented in any angle with respect to the fish´s longitudinal axis. These findings emphasize the importance of articulating field generation, sensor tuning and the repertoire of exploratory movements to optimize performance of artificial active electrosensory systems.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | | |
Collapse
|
20
|
Marquez MM, Chacron MJ. Serotonin modulates optimized coding of natural stimuli through increased neural and behavioural responses via enhanced burst firing. J Physiol 2020; 598:1573-1589. [DOI: 10.1113/jp278940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/23/2020] [Indexed: 01/28/2023] Open
|
21
|
Huang CG, Metzen MG, Chacron MJ. Descending pathways mediate adaptive optimized coding of natural stimuli in weakly electric fish. SCIENCE ADVANCES 2019; 5:eaax2211. [PMID: 31693006 PMCID: PMC6821470 DOI: 10.1126/sciadv.aax2211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Biological systems must be flexible to environmental changes to survive. This is exemplified by the fact that sensory systems continuously adapt to changes in the environment to optimize coding and behavioral responses. However, the nature of the underlying mechanisms remains poorly understood in general. Here, we investigated the mechanisms mediating adaptive optimized coding of naturalistic stimuli with varying statistics depending on the animal's velocity during movement. We found that central neurons adapted their responses to stimuli with different power spectral densities such as to optimally encode them, thereby ensuring that behavioral responses are, in turn, better matched to the new stimulus statistics. Sensory adaptation further required descending inputs from the forebrain as well as the raphe nuclei. Our findings thus reveal a previously unknown functional role for descending pathways in mediating adaptive optimized coding of natural stimuli that is likely generally applicable across sensory systems and species.
Collapse
|
22
|
Hofmann V, Chacron MJ. Novel Functions of Feedback in Electrosensory Processing. Front Integr Neurosci 2019; 13:52. [PMID: 31572137 PMCID: PMC6753188 DOI: 10.3389/fnint.2019.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/26/2019] [Indexed: 11/13/2022] Open
Abstract
Environmental signals act as input and are processed across successive stages in the brain to generate a meaningful behavioral output. However, a ubiquitous observation is that descending feedback projections from more central to more peripheral brain areas vastly outnumber ascending feedforward projections. Such projections generally act to modify how sensory neurons respond to afferent signals. Recent studies in the electrosensory system of weakly electric fish have revealed novel functions for feedback pathways in that their transformation of the afferent input generates neural firing rate responses to sensory signals mediating perception and behavior. In this review, we focus on summarizing these novel and recently uncovered functions and put them into context by describing the more "classical" functions of feedback in the electrosensory system. We further highlight the parallels between the electrosensory system and other systems as well as outline interesting future directions.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
23
|
Metzen MG. Encoding and Perception of Electro-communication Signals in Apteronotus leptorhynchus. Front Integr Neurosci 2019; 13:39. [PMID: 31481882 PMCID: PMC6710435 DOI: 10.3389/fnint.2019.00039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 11/13/2022] Open
Abstract
Animal communication plays an essential role in triggering diverse behaviors. It is believed in this regard that signal production by a sender and its perception by a receiver is co-evolving in order to have beneficial effects such as to ensure that conspecifics remain sensitive to these signals. However, in order to give appropriate responses to a communication signal, the receiver has to first detect and interpret it in a meaningful way. The detection of communication signals can be limited under some circumstances, for example when the signal is masked by the background noise in which it occurs (e.g., the cocktail-party problem). Moreover, some signals are very alike despite having different meanings making it hard to discriminate between them. How the central nervous system copes with these tasks and problems is a central question in systems neuroscience. Gymnotiform weakly electric fish pose an interesting system to answer these questions for various reasons: (1) they use a variety of communication signals called “chirps” during different behavioral encounters; (2) the central physiology of the electrosensory system is well known; and (3) most importantly, these fish give reliable behavioral responses to artificial stimuli that resemble natural communication signals, making it possible to uncover the neural mechanisms that lead to the observed behaviors.
Collapse
Affiliation(s)
- Michael G Metzen
- Department of Physiology, McGill University Montreal, Montreal, QC, Canada
| |
Collapse
|
24
|
Cellular and Network Mechanisms May Generate Sparse Coding of Sequential Object Encounters in Hippocampal-Like Circuits. eNeuro 2019; 6:ENEURO.0108-19.2019. [PMID: 31324676 PMCID: PMC6709220 DOI: 10.1523/eneuro.0108-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 11/21/2022] Open
Abstract
The localization of distinct landmarks plays a crucial role in encoding new spatial memories. In mammals, this function is performed by hippocampal neurons that sparsely encode an animal’s location relative to surrounding objects. Similarly, the dorsolateral pallium (DL) is essential for spatial learning in teleost fish. The DL of weakly electric gymnotiform fish receives both electrosensory and visual input from the preglomerular nucleus (PG), which has been hypothesized to encode the temporal sequence of electrosensory or visual landmark/food encounters. Here, we show that DL neurons in the Apteronotid fish and in the Carassius auratus (goldfish) have a hyperpolarized resting membrane potential (RMP) combined with a high and dynamic spike threshold that increases following each spike. Current-evoked spikes in DL cells are followed by a strong small-conductance calcium-activated potassium channel (SK)-mediated after-hyperpolarizing potential (AHP). Together, these properties prevent high frequency and continuous spiking. The resulting sparseness of discharge and dynamic threshold suggest that DL neurons meet theoretical requirements for generating spatial memory engrams by decoding the landmark/food encounter sequences encoded by PG neurons. Thus, DL neurons in teleost fish may provide a promising, simple system to study the core cell and network mechanisms underlying spatial memory.
Collapse
|
25
|
Crampton WGR. Electroreception, electrogenesis and electric signal evolution. JOURNAL OF FISH BIOLOGY 2019; 95:92-134. [PMID: 30729523 DOI: 10.1111/jfb.13922] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/05/2019] [Indexed: 05/06/2023]
Abstract
Electroreception, the capacity to detect external underwater electric fields with specialised receptors, is a phylogenetically widespread sensory modality in fishes and amphibians. In passive electroreception, a capacity possessed by c. 16% of fish species, an animal uses low-frequency-tuned ampullary electroreceptors to detect microvolt-range bioelectric fields from prey, without the need to generate its own electric field. In active electroreception (electrolocation), which occurs only in the teleost lineages Mormyroidea and Gymnotiformes, an animal senses its surroundings by generating a weak (< 1 V) electric-organ discharge (EOD) and detecting distortions in the EOD-associated field using high-frequency-tuned tuberous electroreceptors. Tuberous electroreceptors also detect the EODs of neighbouring fishes, facilitating electrocommunication. Several other groups of elasmobranchs and teleosts generate weak (< 10 V) or strong (> 50 V) EODs that facilitate communication or predation, but not electrolocation. Approximately 1.5% of fish species possess electric organs. This review has two aims. First, to synthesise our knowledge of the functional biology and phylogenetic distribution of electroreception and electrogenesis in fishes, with a focus on freshwater taxa and with emphasis on the proximate (morphological, physiological and genetic) bases of EOD and electroreceptor diversity. Second, to describe the diversity, biogeography, ecology and electric signal diversity of the mormyroids and gymnotiforms and to explore the ultimate (evolutionary) bases of signal and receptor diversity in their convergent electrogenic-electrosensory systems. Four sets of potential drivers or moderators of signal diversity are discussed. First, selective forces of an abiotic (environmental) nature for optimal electrolocation and communication performance of the EOD. Second, selective forces of a biotic nature targeting the communication function of the EOD, including sexual selection, reproductive interference from syntopic heterospecifics and selection from eavesdropping predators. Third, non-adaptive drift and, finally, phylogenetic inertia, which may arise from stabilising selection for optimal signal-receptor matching.
Collapse
|
26
|
Motipally SI, Allen KM, Williamson DK, Marsat G. Differences in Sodium Channel Densities in the Apical Dendrites of Pyramidal Cells of the Electrosensory Lateral Line Lobe. Front Neural Circuits 2019; 13:41. [PMID: 31213991 PMCID: PMC6558084 DOI: 10.3389/fncir.2019.00041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 05/20/2019] [Indexed: 12/22/2022] Open
Abstract
Heterogeneity of neural properties within a given neural class is ubiquitous in the nervous system and permits different sub-classes of neurons to specialize for specific purposes. This principle has been thoroughly investigated in the hindbrain of the weakly electric fish A. leptorhynchus in the primary electrosensory area, the Electrosensory Lateral Line lobe (ELL). The pyramidal cells (PCs) that receive inputs from tuberous electroreceptors are organized in three maps in distinct segments of the ELL. The properties of these cells vary greatly across maps due to differences in connectivity, receptor expression, and ion channel composition. These cells are a seminal example of bursting neurons and their bursting dynamic relies on the presence of voltage-gated Na+ channels in the extensive apical dendrites of the superficial PCs. Other ion channels can affect burst generation and their expression varies across ELL neurons and segments. For example, SK channels cause hyperpolarizing after-potentials decreasing the likelihood of bursting, yet bursting propensity is similar across segments. We question whether the depolarizing mechanism that generates the bursts presents quantitative differences across segments that could counterbalance other differences having the opposite effect. Although their presence and role are established, the distribution and density of the apical dendrites' Na+ channels have not been quantified and compared across ELL maps. Therefore, we test the hypothesis that Na+ channel density varies across segment by quantifying their distribution in the apical dendrites of immunolabeled ELL sections. We found the Na+ channels to be two-fold denser in the lateral segment (LS) than in the centro-medial segment (CMS), the centro-lateral segment (CLS) being intermediate. Our results imply that this differential expression of voltage-gated Na+ channels could counterbalance or interact with other aspects of neuronal physiology that vary across segments (e.g., SK channels). We argue that burst coding of sensory signals, and the way the network regulates bursting, should be influenced by these variations in Na+ channel density.
Collapse
Affiliation(s)
- Sree I Motipally
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Kathryne M Allen
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Daniel K Williamson
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Gary Marsat
- Department of Biology, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
27
|
Uyanik I, Stamper SA, Cowan NJ, Fortune ES. Sensory Cues Modulate Smooth Pursuit and Active Sensing Movements. Front Behav Neurosci 2019; 13:59. [PMID: 31024269 PMCID: PMC6463760 DOI: 10.3389/fnbeh.2019.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/11/2019] [Indexed: 11/13/2022] Open
Abstract
Animals routinely use autogenous movement to regulate the information encoded by their sensory systems. Weakly electric fish use fore-aft movements to regulate visual and electrosensory feedback as they maintain position within a moving refuge. During refuge tracking, fish produce two categories of movements: smooth pursuit that is approximately linear in its relation to the movement of the refuge and ancillary active sensing movements that are nonlinear. We identified four categories of nonlinear movements which we termed scanning, wiggle, drift, and reset. To examine the relations between sensory cues and production of both linear smooth pursuit and nonlinear active sensing movements, we altered visual and electrosensory cues for refuge tracking and measured the fore-aft movements of the fish. Specifically, we altered the length and structure of the refuge and performed experiments with light and in complete darkness. Linear measures of tracking performance were better for shorter refuges (less than a body length) than longer ones (>1.5 body lengths). The magnitude of nonlinear active sensing movements was strongly modulated by light cues but also increased as a function of both longer refuge length and decreased features. Specifically, fish shifted swimming movements from smooth pursuit to scanning when tracking in dark conditions. Finally, fish appear to use nonlinear movements as an alternate tracking strategy in longer refuges: the fish may use more drifts and resets to avoid exiting the ends of the refuge.
Collapse
Affiliation(s)
- Ismail Uyanik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| | - Sarah A Stamper
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Noah J Cowan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Eric S Fortune
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ, United States
| |
Collapse
|
28
|
Fotowat H, Lee C, Jun JJ, Maler L. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife 2019; 8:44119. [PMID: 30942169 PMCID: PMC6469930 DOI: 10.7554/elife.44119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Candice Lee
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - James Jaeyoon Jun
- Center for Computational Biology, Flatiron Institute, New York, United States
| | - Len Maler
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
29
|
Fritzsch B, Elliott KL, Pavlinkova G. Primary sensory map formations reflect unique needs and molecular cues specific to each sensory system. F1000Res 2019; 8:F1000 Faculty Rev-345. [PMID: 30984379 PMCID: PMC6439788 DOI: 10.12688/f1000research.17717.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Interaction with the world around us requires extracting meaningful signals to guide behavior. Each of the six mammalian senses (olfaction, vision, somatosensation, hearing, balance, and taste) has a unique primary map that extracts sense-specific information. Sensory systems in the periphery and their target neurons in the central nervous system develop independently and must develop specific connections for proper sensory processing. In addition, the regulation of sensory map formation is independent of and prior to central target neuronal development in several maps. This review provides an overview of the current level of understanding of primary map formation of the six mammalian senses. Cell cycle exit, combined with incompletely understood molecules and their regulation, provides chemoaffinity-mediated primary maps that are further refined by activity. The interplay between cell cycle exit, molecular guidance, and activity-mediated refinement is the basis of dominance stripes after redundant organ transplantations in the visual and balance system. A more advanced level of understanding of primary map formation could benefit ongoing restoration attempts of impaired senses by guiding proper functional connection formations of restored sensory organs with their central nervous system targets.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, USA
| | | | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
30
|
Caputi AA, Aguilera PA. Encoding phase spectrum for evaluating 'electric qualia'. ACTA ACUST UNITED AC 2019; 222:jeb.191544. [PMID: 30659081 DOI: 10.1242/jeb.191544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/14/2019] [Indexed: 11/20/2022]
Abstract
The most broadly expressed and studied aspect of sensory transduction is receptor tuning to the power spectral density of the incoming signals. Temporal cues expressed in the phase spectrum are relevant in African and American pulse-emitting electric fish showing electroreceptors sensing the signals carried by the self- and conspecific-generated electric organ discharges. This article concerns the role of electroreceptor phase sensitivity in American pulse Gymnotiformes. These fish show electroreceptors sharply tuned to narrow frequency bands. This led to the common thought that most electrosensory information is contained in the amplitude spectra of the signals. However, behavioral and modeling studies suggest that in their pulses, Gymnotiformes electroreceptors also encode cues embodied in the phase spectrum of natural stimuli. Here, we show that the two main types of tuberous primary afferents of Gymnotus omarorum differentially respond to cues embodied in the amplitude and phase spectra of self-generated electrosensory signals. One afferent type, pulse markers, is mainly driven by the amplitude spectrum, while the other, burst coders, is predominantly sensitive to the phase spectrum. This dual encoding strategy allows the fish to create a sensory manifold where patterns of 'electric color' generated by object impedance and other potential sources of 'colored' images (such as large nearby objects and other electric fish) can be represented.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, CP 11600, Montevideo, Uruguay
| | - Pedro Aníbal Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, CP 11600, Montevideo, Uruguay
| |
Collapse
|
31
|
Macova I, Pysanenko K, Chumak T, Dvorakova M, Bohuslavova R, Syka J, Fritzsch B, Pavlinkova G. Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain. J Neurosci 2019; 39:984-1004. [PMID: 30541910 PMCID: PMC6363931 DOI: 10.1523/jneurosci.2557-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Collapse
Affiliation(s)
- Iva Macova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Tetyana Chumak
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Martina Dvorakova
- Institute of Biotechnology CAS, Vestec, Czechia 25250
- Faculty of Science, Charles University, Prague, Czechia 12843
| | | | - Josef Syka
- Institute of Experimental Medicine CAS, Prague, Czechia 14220
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, and
| | | |
Collapse
|
32
|
Hofmann V, Chacron MJ. Population Coding and Correlated Variability in Electrosensory Pathways. Front Integr Neurosci 2018; 12:56. [PMID: 30542271 PMCID: PMC6277784 DOI: 10.3389/fnint.2018.00056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/30/2018] [Indexed: 11/29/2022] Open
Abstract
The fact that perception and behavior depend on the simultaneous and coordinated activity of neural populations is well established. Understanding encoding through neuronal population activity is however complicated by the statistical dependencies between the activities of neurons, which can be present in terms of both their mean (signal correlations) and their response variability (noise correlations). Here, we review the state of knowledge regarding population coding and the influence of correlated variability in the electrosensory pathways of the weakly electric fish Apteronotus leptorhynchus. We summarize known population coding strategies at the peripheral level, which are largely unaffected by noise correlations. We then move on to the hindbrain, where existing data from the electrosensory lateral line lobe (ELL) shows the presence of noise correlations. We summarize the current knowledge regarding the mechanistic origins of noise correlations and known mechanisms of stimulus dependent correlation shaping in ELL. We finish by considering future directions for understanding population coding in the electrosensory pathways of weakly electric fish, highlighting the benefits of this model system for understanding the origins and impact of noise correlations on population coding.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, Montréal, QC, Canada
| | | |
Collapse
|
33
|
Huang CG, Metzen MG, Chacron MJ. Feedback optimizes neural coding and perception of natural stimuli. eLife 2018; 7:e38935. [PMID: 30289387 PMCID: PMC6181564 DOI: 10.7554/elife.38935] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Growing evidence suggests that sensory neurons achieve optimal encoding by matching their tuning properties to the natural stimulus statistics. However, the underlying mechanisms remain unclear. Here we demonstrate that feedback pathways from higher brain areas mediate optimized encoding of naturalistic stimuli via temporal whitening in the weakly electric fish Apteronotus leptorhynchus. While one source of direct feedback uniformly enhances neural responses, a separate source of indirect feedback selectively attenuates responses to low frequencies, thus creating a high-pass neural tuning curve that opposes the decaying spectral power of natural stimuli. Additionally, we recorded from two populations of higher brain neurons responsible for the direct and indirect descending inputs. While one population displayed broadband tuning, the other displayed high-pass tuning and thus performed temporal whitening. Hence, our results demonstrate a novel function for descending input in optimizing neural responses to sensory input through temporal whitening that is likely to be conserved across systems and species.
Collapse
|
34
|
Zhang Y, Magnus G, Han VZ. Cell type-specific plasticity at parallel fiber synapses onto Purkinje cells in the posterior caudal lobe of the mormyrid fish cerebellum. J Neurophysiol 2018; 120:644-661. [PMID: 29668384 DOI: 10.1152/jn.00175.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It has been demonstrated that there are two morphological subtypes of Purkinje cells (PCs)-fan-shaped Purkinje cells (fPCs) and multipolar Purkinje cells (mPCs)-in the posterior caudal lobe of the mormyrid fish cerebellum, but whether these cell types are also functionally distinct is unknown. Here, we have used electrophysiological and pharmacological tools in a slice preparation to demonstrate that pairing parallel fiber (PF) and climbing fiber (CF) inputs at a low frequency induces long-term depression (LTD) in fPCs but long-term potentiation (LTP) in mPCs. The induction of plasticity in both cell types required postsynaptic Ca2+ and type 1α metabotropic glutamate receptors. However, the LTD in fPCs was inducted via a calcium/calmodulin-dependent protein kinase II cascade, whereas LTP induction in mPCs required calcineurin. Moreover, the LTD in fPCs and LTP in mPCs were accompanied by changes to the corresponding paired-pulse ratios and their coefficients of variation, suggesting presynaptic modes of expression for the plasticity at PF terminals for both cell types. Hence, the synaptic plasticity at PF synapses onto PCs in the posterior caudal lobe of the mormyrid cerebellum is cell type specific, with both pre- and postsynaptic mechanisms contributing to its induction and expression. NEW & NOTEWORTHY Much has been learnt about the cerebellar long-term depression (LTD) in the cortex. More recent work has shown that long-term potentiation (LTP) is equally important for cerebellar motor learning. Here we report for the first time that plasticity in the mormyrid cerebellum is cell type specific, e.g., following the conventional pairing of parallel and climbing fiber inputs in an in vitro preparation leads to LTD in one Purkinje cell subtype and LTP in another.
Collapse
Affiliation(s)
- Yueping Zhang
- Department of Pediatrics and Neuroscience, Xijing Hospital , Xi'an , China.,Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Gerhard Magnus
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| | - Victor Z Han
- Center for Integrative Brain Research, Seattle Children's Research Institute , Seattle, Washington
| |
Collapse
|
35
|
Abstract
The evolutionary relationships of the mammalian neocortex and avian dorsal telencephalon (DT) nuclei have been debated for more than a century. Despite their central importance to this debate, nonavian reptiles remain underexplored with modern molecular techniques. Reptile studies harbor great potential for understanding the changes in DT organization that occurred in the early evolution of amniotes. They may also help clarify the specializations in the avian DT, which comprises a massive, cell-dense dorsal ventricular ridge (DVR) and a nuclear dorsal-most structure, the Wulst. Crocodilians are phylogenetically and anatomically attractive for DT comparative studies: they are the closest living relatives of birds and have a strikingly bird-like DVR, but they also possess a highly differentiated reptile cerebral cortex. We studied the DT of the American alligator, Alligator mississippiensis, at late embryonic stages with a panel of molecular marker genes. Gene expression and cytoarchitectonic analyses identified clear homologs of all major avian DVR subdivisions including a mesopallium, an extensive nidopallium with primary sensory input territories, and an arcopallium. The alligator medial cortex is divided into three components that resemble the mammalian dentate gyrus, CA fields, and subiculum in gene expression and topography. The alligator dorsal cortex contains putative homologs of neocortical input, output, and intratelencephalic projection neurons and, most notably, these are organized into sublayers similar to mammalian neocortical layers. Our findings on the molecular anatomy of the crocodilian DT are summarized in an atlas of the alligator telencephalon.
Collapse
Affiliation(s)
- Steven D Briscoe
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois
| | - Clifton W Ragsdale
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois.,Department of Neurobiology, University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Physiological evidence of sensory integration in the electrosensory lateral line lobe of Gnathonemus petersii. PLoS One 2018; 13:e0194347. [PMID: 29641541 PMCID: PMC5894992 DOI: 10.1371/journal.pone.0194347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
Mormyrid fish rely on reafferent input for active electrolocation. Their electrosensory input consists of phase and amplitude information. These are encoded by differently tuned receptor cells within the Mormyromasts, A- and B-cells, respectively, which are distributed over the animal’s body. These convey their information to two topographically ordered medullary zones in the electrosensory lateral line lobe (ELL). The so-called medial zone receives only amplitude information, while the dorsolateral zone receives amplitude and phase information. Using both sources of information, Mormyrid fish can disambiguate electrical impedances. Where and how this disambiguation takes place is presently unclear. We here investigate phase-sensitivity downstream from the electroreceptors. We provide first evidence of phase-sensitivity in the medial zone of ELL. In this zone I-cells consistently decreased their rate to positive phase-shifts (6 of 20 cells) and increased their rate to negative shifts (11/20), while E-cells of the medial zone (3/9) responded oppositely to I-cells. In the dorsolateral zone the responses of E- and I-cells were opposite to those found in the medial zone. Tracer injections revealed interzonal projections that interconnect the dorsolateral and medial zones in a somatotopic manner. In summary, we show that phase information is processed differently in the dorsolateral and the medial zones. This is the first evidence for a mechanism that enhances the contrast between two parallel sensory channels in Mormyrid fish. This could be beneficial for impedance discrimination that ultimately must rely on a subtractive merging of these two sensory streams.
Collapse
|
37
|
Abstract
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.
Collapse
|
38
|
|
39
|
Abstract
A crucial step in forming spatial representations of the environment involves the estimation of relative distance. Active sampling through specific movements is considered essential for optimizing the sensory flow that enables the extraction of distance cues. However, in electric sensing, direct evidence for the generation and exploitation of sensory flow is lacking. Weakly electric fish rely on a self-generated electric field to navigate and capture prey in the dark. This electric sense provides a blurred representation of the environment, making the exquisite sensory abilities of electric fish enigmatic. Stereotyped back-and-forth swimming patterns reminiscent of visual peering movements are suggestive of the active generation of sensory flow, but how motion contributes to the disambiguation of the electrosensory world remains unclear. Here, we show that a dipole-like electric field geometry coupled to motion provides the physical basis for a nonvisual parallax. We then show in a behavioral assay that this cue is used for electrosensory distance perception across phylogenetically distant taxa of weakly electric fish. Notably, these species electrically sample the environment in temporally distinct ways (using discrete pulses or quasisinusoidal waves), suggesting a ubiquitous role for parallax in electric sensing. Our results demonstrate that electrosensory information is extracted from sensory flow and used in a behaviorally relevant context. A better understanding of motion-based electric sensing will provide insight into the sensorimotor coordination required for active sensing in general and may lead to improved electric field-based imaging applications in a variety of contexts.
Collapse
|
40
|
Shaw K, Krahe R. Pattern of aromatase mRNA expression in the brain of a weakly electric fish, Apteronotus leptorhynchus. J Chem Neuroanat 2017; 90:70-79. [PMID: 29288708 DOI: 10.1016/j.jchemneu.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 01/30/2023]
Abstract
Aromatase is a steroidogenic enzyme involved in the conversion of testosterone into estradiol. Teleosts are unique among vertebrates in possessing two distinct aromatase genes that show different expression patterns within the body. Since the brain is the essential organ underlying the control of behavior, an understanding of the expression pattern of aromatase in the brain can help to identify neural circuits and behaviors that are most likely to be affected by aromatase activity. In addition, identifying species differences in aromatase expression in the brain can further our understanding of divergence in behaviors regulated by local estradiol production and estrogen signaling. Apteronotus leptorhynchus is a species of weakly electric fish in which little is known about sex steroid expression within the brain and its role in electric signaling behavior. The goal of this study was to identify the mRNA expression pattern of aromatase in the brain of A. leptorhynchus. Aromatase mRNA was detected in several parts of the forebrain and in the pituitary gland; however, no aromatase expression was detected in the midbrain or hindbrain. These findings in A. leptorhynchus support a role for aromatase activity in reproduction, but no direct role in electric signaling behavior in non-breeding fish. The findings of this study help to broaden the basis for making phylogenetic comparisons of aromatase expression across teleost lineages as well as different signaling systems, and provide information on behaviors and neural circuits that are potentially affected by local estradiol production in A. leptorhynchus.
Collapse
Affiliation(s)
- Katherine Shaw
- Department of Biology, 1205 Docteur Penfield, McGill University, Montreal, Quebec, H3A 1B1, Canada.
| | - Rüdiger Krahe
- Department of Biology, 1205 Docteur Penfield, McGill University, Montreal, Quebec, H3A 1B1, Canada
| |
Collapse
|
41
|
Hofmann V, Chacron MJ. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish. PLoS Comput Biol 2017; 13:e1005716. [PMID: 28863136 PMCID: PMC5599069 DOI: 10.1371/journal.pcbi.1005716] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/14/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. Growing evidence across nervous systems and species shows that the activities of neighboring neurons are not independent but are correlated with one another, which has important implications for neural coding. Such correlations are generally thought to be due to shared input. However, how this shared input is integrated by neurons in order to give rise to correlated activity is not well understood in general. Here we investigated how receptive field structure determines correlations between the activities of electrosensory pyramidal neurons in weakly electric fish. To do so, we used a combination of mathematical modeling of the known antagonistic center-surround RF structure as well as in vivo electrophysiological recordings. Our results show that the amount of receptive field center overlap alone is not sufficient to explain experimentally observed neural correlations in general. This is because our experimental data shows that pyramidal neurons with very different amounts of receptive field center overlap display almost identical correlations between their activities. Further, our modeling shows that both receptive field center and surround play important roles in determining correlated activity, such that very different combinations of relative RF surround strength and size can generate nearly identical correlations between neural activities. We discuss the implications of our results for sensory processing.
Collapse
Affiliation(s)
- Volker Hofmann
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
| | - Maurice J. Chacron
- Department of Physiology, McGill University, McIntyre Medical Building, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
42
|
Optimized Parallel Coding of Second-Order Stimulus Features by Heterogeneous Neural Populations. J Neurosci 2017; 36:9859-72. [PMID: 27656024 DOI: 10.1523/jneurosci.1433-16.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Efficient processing of sensory input is essential to ensure an organism's survival in its natural environment. Growing evidence suggests that sensory neurons can optimally encode natural stimuli by ensuring that their tuning opposes stimulus statistics, such that the resulting neuronal response contains equal power at all frequencies (i.e., is "white"). Such temporal decorrelation or whitening has been observed across modalities, but the effects of neural heterogeneities on determining tuning and thus responses to natural stimuli have not been investigated. Here, we investigate how heterogeneities in sensory pyramidal neurons organized in three parallel maps representing the body surface determine responses to second-order electrosensory stimulus features in the weakly electric fish Apteronotus leptorhynchus While some sources of heterogeneities such as ON- and OFF-type responses to first-order did not affect responses to second-order electrosensory stimulus features, other sources of heterogeneity within and across the maps strongly determined responses. We found that these cells effectively performed a fractional differentiation operation on their input with exponents ranging from zero (no differentiation) to 0.4 (strong differentiation). Varying adaptation in a simple model explained these heterogeneities and predicted a strong correlation between fractional differentiation and adaptation. Using natural stimuli, we found that only a small fraction of neurons implemented temporal whitening. Rather, a large fraction of neurons did not perform any significant whitening and thus preserved natural input statistics in their responses. We propose that this information is needed to properly decode optimized information sent in parallel through temporally whitened responses based on context. SIGNIFICANCE STATEMENT We demonstrate that heterogeneities in the same sensory neuron type can either have no or significant influence on their responses to second-order stimulus features. While an ON- or OFF-type response to first-order stimulus attributes has no significant influence on responses to second-order stimulus features, we found that only a small fraction of sensory neurons optimally encoded natural stimuli through high-pass filtering, thereby implementing temporal whitening. Surprisingly, a large fraction of sensory neurons performed little if no filtering of stimuli, thereby preserving natural stimulus statistics. We hypothesize that this pathway is necessary to properly decode optimized information contained in temporally whitened responses based on context.
Collapse
|
43
|
Clarke SE, Maler L. Feedback Synthesizes Neural Codes for Motion. Curr Biol 2017; 27:1356-1361. [PMID: 28457872 DOI: 10.1016/j.cub.2017.03.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14].
Collapse
Affiliation(s)
- Stephen E Clarke
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
44
|
Sproule MKJ, Chacron MJ. Electrosensory neural responses to natural electro-communication stimuli are distributed along a continuum. PLoS One 2017; 12:e0175322. [PMID: 28384244 PMCID: PMC5383285 DOI: 10.1371/journal.pone.0175322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/23/2017] [Indexed: 11/19/2022] Open
Abstract
Neural heterogeneities are seen ubiquitously within the brain and greatly complicate classification efforts. Here we tested whether the responses of an anatomically well-characterized sensory neuron population to natural stimuli could be used for functional classification. To do so, we recorded from pyramidal cells within the electrosensory lateral line lobe (ELL) of the weakly electric fish Apteronotus leptorhynchus in response to natural electro-communication stimuli as these cells can be anatomically classified into six different types. We then used two independent methodologies to functionally classify responses: one relies of reducing the dimensionality of a feature space while the other directly compares the responses themselves. Both methodologies gave rise to qualitatively similar results: while ON and OFF-type cells could easily be distinguished from one another, ELL pyramidal neuron responses are actually distributed along a continuum rather than forming distinct clusters due to heterogeneities. We discuss the implications of our results for neural coding and highlight some potential advantages.
Collapse
Affiliation(s)
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montreal, Québec, Canada
- * E-mail:
| |
Collapse
|
45
|
Murphy K, James LS, Sakata JT, Prather JF. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration. J Neurophysiol 2017; 118:800-816. [PMID: 28331007 DOI: 10.1152/jn.00623.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Abstract
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies.
Collapse
Affiliation(s)
- Karagh Murphy
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| | - Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jonathan F Prather
- Program in Neuroscience, Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming; and
| |
Collapse
|
46
|
Huang CG, Chacron MJ. SK channel subtypes enable parallel optimized coding of behaviorally relevant stimulus attributes: A review. Channels (Austin) 2017; 11:281-304. [PMID: 28277938 DOI: 10.1080/19336950.2017.1299835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Ion channels play essential roles toward determining how neurons respond to sensory input to mediate perception and behavior. Small conductance calcium-activated potassium (SK) channels are found ubiquitously throughout the brain and have been extensively characterized both molecularly and physiologically in terms of structure and function. It is clear that SK channels are key determinants of neural excitability as they mediate important neuronal response properties such as spike frequency adaptation. However, the functional roles of the different known SK channel subtypes are not well understood. Here we review recent evidence from the electrosensory system of weakly electric fish suggesting that the function of different SK channel subtypes is to optimize the processing of independent but behaviorally relevant stimulus attributes. Indeed, natural sensory stimuli frequently consist of a fast time-varying waveform (i.e., the carrier) whose amplitude (i.e., the envelope) varies slowly and independently. We first review evidence showing how somatic SK2 channels mediate tuning and responses to carrier waveforms. We then review evidence showing how dendritic SK1 channels instead determine tuning and optimize responses to envelope waveforms based on their statistics as found in the organism's natural environment in an independent fashion. The high degree of functional homology between SK channels in electric fish and their mammalian orthologs, as well as the many important parallels between the electrosensory system and the mammalian visual, auditory, and vestibular systems, suggest that these functional roles are conserved across systems and species.
Collapse
Affiliation(s)
- Chengjie G Huang
- a Department of Physiology , McGill University , Montreal , QC , Canada
| | - Maurice J Chacron
- a Department of Physiology , McGill University , Montreal , QC , Canada
| |
Collapse
|
47
|
Rodríguez-Cattaneo A, Aguilera PA, Caputi AA. Waveform sensitivity of electroreceptors in the pulse-type weakly electric fish Gymnotus omarorum. ACTA ACUST UNITED AC 2017; 220:1663-1673. [PMID: 28202586 DOI: 10.1242/jeb.153379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022]
Abstract
As in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish Gymnotus omarorum We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge. They also show high sensitivity to phase-frequency distortions of the self-generated local electric field. We explored this sensitivity by manipulating the longitudinal impedance of a probe cylinder to modulate the stimulus waveform, while extracellularly recording isolated primary afferents. Resistive loads only affect the amplitude of the re-afferent signals without distorting the waveform. Capacitive loads cause large waveform distortions aside from amplitude changes. Stepping from a resistive to a capacitive load in such a way that the stimulus waveform was distorted, without changing its total energy, caused strong changes in latency, inter-spike interval and number of spikes of primary afferent responses. These burst parameters are well correlated suggesting that they may contribute synergistically in driving downstream neurons. This correlation also suggests that each receptor encodes a single parameter in the stimulus waveform. The finding of waveform distortion sensitivity is relevant because it may contribute to: (a) enhance electroreceptive range in the peripheral 'electrosensory field', (b) a better identification of living prey at the 'foveal electrosensory field' and (c) detect the presence and orientation of conspecifics. Our results also suggest a revision of the classical view of amplitude and time encoding by fast and slow pathways in pulse-type electric fish.
Collapse
Affiliation(s)
- Alejo Rodríguez-Cattaneo
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Pedro A Aguilera
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| | - Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, C.P 11600, Montevideo, Uruguay
| |
Collapse
|
48
|
Synchronous spikes are necessary but not sufficient for a synchrony code in populations of spiking neurons. Proc Natl Acad Sci U S A 2017; 114:E1977-E1985. [PMID: 28202729 DOI: 10.1073/pnas.1615561114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes. Here we experimentally test the theoretical predictions by quantifying and comparing neuronal response properties in tuberous and ampullary electroreceptor afferents of the weakly electric fish Apteronotus leptorhynchus These related systems show similar levels of synchronous activity, but only in the more irregularly firing tuberous afferents a synchrony code is established, whereas in the more regularly firing ampullary afferents it is not. The mere existence of synchronous activity is thus not sufficient for a synchrony code. Single-cell features such as the irregularity of spiking and the frequency dependence of the neuron's transfer function determine whether synchronous spikes possess a distinct meaning for the encoding of time-dependent signals.
Collapse
|
49
|
Abstract
Electric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy. This ensemble of four sensory modalities is present in African mormyriformes and American gymnotiformes. The convergent evolution of similar imaging, peripheral encoding, and central processing mechanisms suggests that these mechanisms may be the most suitable for dealing with electric images in the context of the other and self generated actions. This review deals with the way in which biological organisms address three of the problems that are faced when designing a bioinspired electroreceptive agent: (a) body shape, material and mobility, (b) peripheral encoding of electric images, and (c) early processing of electrosensory signals. Taking into account biological solutions I propose that the new generation of underwater agents should have electroreceptive arms, use complex peripheral sensors for encoding the images and cerebellum like architecture for image feature extraction and implementing sensory-motor transformations.
Collapse
Affiliation(s)
- Angel Ariel Caputi
- Departamento de Neurociencias Integrativas y Computacionales Instituto de Investigaciones Biológicas Clemente Estable. Av. Italia 3318 Montevideo, Uruguay
| |
Collapse
|
50
|
Martinez D, Metzen MG, Chacron MJ. Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species. J Neurophysiol 2016; 116:2909-2921. [PMID: 27683890 PMCID: PMC5224934 DOI: 10.1152/jn.00594.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022] Open
Abstract
Understanding how the brain processes sensory input to generate behavior remains an important problem in neuroscience. Towards this end, it is useful to compare results obtained across multiple species to gain understanding as to the general principles of neural coding. Here we investigated hindbrain pyramidal cell activity in the weakly electric fish Apteronotus albifrons We found strong heterogeneities when looking at baseline activity. Additionally, ON- and OFF-type cells responded to increases and decreases of sinusoidal and noise stimuli, respectively. While both cell types displayed band-pass tuning, OFF-type cells were more broadly tuned than their ON-type counterparts. The observed heterogeneities in baseline activity as well as the greater broadband tuning of OFF-type cells were both similar to those previously reported in other weakly electric fish species, suggesting that they constitute general features of sensory processing. However, we found that peak tuning occurred at frequencies ∼15 Hz in A. albifrons, which is much lower than values reported in the closely related species Apteronotus leptorhynchus and the more distantly related species Eigenmannia virescens In response to stimuli with time-varying amplitude (i.e., envelope), ON- and OFF-type cells displayed similar high-pass tuning curves characteristic of fractional differentiation and possibly indicate optimized coding. These tuning curves were qualitatively similar to those of pyramidal cells in the closely related species A. leptorhynchus In conclusion, comparison between our and previous results reveals general and species-specific neural coding strategies. We hypothesize that differences in coding strategies, when observed, result from different stimulus distributions in the natural/social environment.
Collapse
Affiliation(s)
- Diana Martinez
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Michael G Metzen
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Maurice J Chacron
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|