1
|
Xu Y, Alves-Wagner AB, Inada H, Firouzjah SD, Osana S, Amir MS, Conlin RH, Hirshman MF, Nozik ES, Goodyear LJ, Nagatomi R, Kusuyama J. Placenta-derived SOD3 deletion impairs maternal behavior via alterations in FGF/FGFR-prolactin signaling axis. Cell Rep 2024; 43:114789. [PMID: 39325622 PMCID: PMC11639441 DOI: 10.1016/j.celrep.2024.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
Offspring growth requires establishing maternal behavior associated with the maternal endocrine profile. Placentae support the adaptations of the mother, producing bioactive molecules that affect maternal organs. We recently reported that placentae produce superoxide dismutase 3 (SOD3) that exerts sustained effects on the offspring liver via epigenetic modifications. Here, we demonstrate that placenta-specific Sod3 knockout (Sod3-/-) dams exhibited impaired maternal behavior and decreased prolactin levels. Most fibroblast growth factor (FGF)-regulated pathways were downregulated in the pituitary tissues from Sod3-/- dams. FGF1-, FGF2-, and FGF4-induced prolactin expression and signaling via the phosphoinositide 3-kinase (PI3K)-phospholipase C-γ1 (PLCγ1)-protein kinase-Cδ (PKC)δ axis were reduced in primary pituitary cells from Sod3-/- dams. Mechanistically, FGF1/FGF receptor (FGFR)2 expressions were inhibited by the suppression of the ten-eleven translocation (TET)/isocitrate dehydrogenase (IDH)/α-ketoglutarate pathway and DNA demethylation levels at the zinc finger and BTB domain containing 18 (ZBTB18)-targeted promoters of Fgf1/Fgfr2. Importantly, offspring from Sod3-/- dams also showed impaired nurturing behavior to their grandoffspring. Collectively, placenta-derived SOD3 promotes maternal behavior via epigenetic programming of the FGF/FGFR-prolactin axis.
Collapse
Affiliation(s)
- Yidan Xu
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan
| | - Ana B Alves-Wagner
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hitoshi Inada
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Sepideh D Firouzjah
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Shion Osana
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Muhammad Subhan Amir
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Airlangga University, Surabaya 60132, Indonesia; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Royce H Conlin
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael F Hirshman
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care, Department of Pediatrics, the University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ryoichi Nagatomi
- Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Joji Kusuyama
- Department of Biosignals and Inheritance, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Medicine and Science in Sports and Exercise, Tohoku University School of Medicine, Sendai 980-8575, Japan; Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan; Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
2
|
Gundacker A, Cuenca Rico L, Stoehrmann P, Tillmann KE, Weber-Stadlbauer U, Pollak DD. Interaction of the pre- and postnatal environment in the maternal immune activation model. DISCOVER MENTAL HEALTH 2023; 3:15. [PMID: 37622027 PMCID: PMC10444676 DOI: 10.1007/s44192-023-00042-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Adverse influences during pregnancy are associated with a range of unfavorable outcomes for the developing offspring. Maternal psychosocial stress, exposure to infections and nutritional imbalances are known risk factors for neurodevelopmental derangements and according psychiatric and neurological manifestations later in offspring life. In this context, the maternal immune activation (MIA) model has been extensively used in preclinical research to study how stimulation of the maternal immune system during gestation derails the tightly coordinated sequence of fetal neurodevelopment. The ensuing consequence of MIA for offspring brain structure and function are majorly manifested in behavioral and cognitive abnormalities, phenotypically presenting during the periods of adolescence and adulthood. These observations have been interpreted within the framework of the "double-hit-hypothesis" suggesting that an elevated risk for neurodevelopmental disorders results from an individual being subjected to two adverse environmental influences at distinct periods of life, jointly leading to the emergence of pathology. The early postnatal period, during which the caregiving parent is the major determinant of the newborn´s environment, constitutes a window of vulnerability to external stimuli. Considering that MIA not only affects the developing fetus, but also impinges on the mother´s brain, which is in a state of heightened malleability during pregnancy, the impact of MIA on maternal brain function and behavior postpartum may importantly contribute to the detrimental consequences for her progeny. Here we review current information on the interaction between the prenatal and postnatal maternal environments in the modulation of offspring development and their relevance for the pathophysiology of the MIA model.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Katharina E. Tillmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| | - Ulrike Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniela D. Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse, 17, 1090 Vienna, Austria
| |
Collapse
|
3
|
Gilday OD, Mizrahi A. Learning-Induced Odor Modulation of Neuronal Activity in Auditory Cortex. J Neurosci 2023; 43:1375-1386. [PMID: 36650061 PMCID: PMC9987573 DOI: 10.1523/jneurosci.1398-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Sensory cortices, even of primary regions, are not purely unisensory. Rather, cortical neurons in sensory cortex show various forms of multisensory interactions. While some multisensory interactions naturally co-occur, the combination of others will co-occur through experience. In real life, learning and experience will result in conjunction with seemingly disparate sensory information that ultimately becomes behaviorally relevant, impacting perception, cognition, and action. Here we describe a novel auditory discrimination task in mice, designed to manipulate the expectation of upcoming trials using olfactory cues. We show that, after learning, female mice display a transient period of several days during which they exploit odor-mediated expectations for making correct decisions. Using two-photon calcium imaging of single neurons in auditory cortex (ACx) during behavior, we found that the behavioral effects of odor-mediated expectations are accompanied by an odor-induced modulation of neuronal activity. Further, we find that these effects are manifested differentially, based on the response preference of individual cells. A significant portion of effects, but not all, are consistent with a predictive coding framework. Our data show that learning novel odor-sound associations evoke changes in ACx. We suggest that behaviorally relevant multisensory environments mediate contextual effects as early as ACx.SIGNIFICANCE STATEMENT Natural environments are composed of multisensory objects. It remains unclear whether and how animals learn the regularities of congruent multisensory associations and how these may impact behavior and neural activity. We tested how learned odor-sound associations affected single-neuron responses in auditory cortex. We introduce a novel auditory discrimination task for mice in which odors set different contexts of expectation to upcoming trials. We show that, although the task can be solved purely by sounds, odor-mediated expectation impacts performance. We further show that odors cause a modulation of neuronal activity in auditory cortex, which is correlated with behavior. These results suggest that learning prompts an interaction of odor and sound information as early as sensory cortex.
Collapse
Affiliation(s)
- Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
4
|
Naeem N, Zanca RM, Weinstein S, Urquieta A, Sosa A, Yu B, Sullivan RM. The Neurobiology of Infant Attachment-Trauma and Disruption of Parent-Infant Interactions. Front Behav Neurosci 2022; 16:882464. [PMID: 35935109 PMCID: PMC9352889 DOI: 10.3389/fnbeh.2022.882464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/13/2022] [Indexed: 12/24/2022] Open
Abstract
Current clinical literature and supporting animal literature have shown that repeated and profound early-life adversity, especially when experienced within the caregiver-infant dyad, disrupts the trajectory of brain development to induce later-life expression of maladaptive behavior and pathology. What is less well understood is the immediate impact of repeated adversity during early life with the caregiver, especially since attachment to the caregiver occurs regardless of the quality of care the infant received including experiences of trauma. The focus of the present manuscript is to review the current literature on infant trauma within attachment, with an emphasis on animal research to define mechanisms and translate developmental child research. Across species, the effects of repeated trauma with the attachment figure, are subtle in early life, but the presence of acute stress can uncover some pathology, as was highlighted by Bowlby and Ainsworth in the 1950s. Through rodent neurobehavioral literature we discuss the important role of repeated elevations in stress hormone corticosterone (CORT) in infancy, especially if paired with the mother (not when pups are alone) as targeting the amygdala and causal in infant pathology. We also show that following induced alterations, at baseline infants appear stable, although acute stress hormone elevation uncovers pathology in brain circuits important in emotion, social behavior, and fear. We suggest that a comprehensive understanding of the role of stress hormones during infant typical development and elevated CORT disruption of this typical development will provide insight into age-specific identification of trauma effects, as well as a better understanding of early markers of later-life pathology.
Collapse
Affiliation(s)
- Nimra Naeem
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Roseanna M. Zanca
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Sylvie Weinstein
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Alejandra Urquieta
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Anna Sosa
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Boyi Yu
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| | - Regina M. Sullivan
- Department of Psychology, Center for Neuroscience, New York University, New York, NY, United States
- Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
- Child and Adolescent Psychiatry, New York University Langone School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Carretero-Hernández M, Catalano-Iniesta L, Blanco EJ, García-Barrado MJ, Carretero J. Highlights regarding prolactin in the dentate gyrus and hippocampus. VITAMINS AND HORMONES 2022; 118:479-505. [PMID: 35180938 DOI: 10.1016/bs.vh.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prolactin (PRL) is a pituitary hormone that has been typically related to lactogenesis in mammals. However, it has been described over 300 roles in the organism of vertebrae and its relationship with the central nervous system (CNS) is yet to be clarified. Mainly secreted by the pituitary gland, the source of prolactin in the CNS remains unclear, where some experiments suggest active transport via an unknown carrier or, on the contrary, PRL being synthesized on the brain. So far, it seems to be involved with neurogenesis, neuroprotection, maternal behavior and cognitive processes in the hippocampus and dentate gyrus, among other regions.
Collapse
Affiliation(s)
- Marta Carretero-Hernández
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain.
| | - Leonardo Catalano-Iniesta
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - Enrique J Blanco
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| | - María José García-Barrado
- Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain; Department of Physiology and Pharmacology, Faculty of Medicine, University of Salamanca, Spain
| | - José Carretero
- Department of Human Anatomy and Histology, Faculty of Medicine, University of Salamanca, Spain; Laboratory of Neuroendocrinology, Institute of Neurosciences of Castilla y León (INCyL), and Laboratory of Neuroendocrinology and Obesity, Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, Spain
| |
Collapse
|
6
|
Pereira M, Smiley KO, Lonstein JS. Parental Behavior in Rodents. ADVANCES IN NEUROBIOLOGY 2022; 27:1-53. [PMID: 36169811 DOI: 10.1007/978-3-030-97762-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Members of the order Rodentia are among the best-studied mammals for understanding the patterns, outcomes, and biological determinants of maternal and paternal caregiving. This research has provided a wealth of information but has historically focused on just a few rodents, mostly members of the two Myomorpha families that easily breed and can be studied within a laboratory setting (including laboratory rats, mice, hamsters, voles, gerbils). It is unclear how well this small collection of animals represents the over 2000 species of extant rodents. This chapter provides an overview of the hormonal and neurobiological systems involved in parental care in rodents, with a purposeful eye on providing information known or could be gleaned about parenting in various less-traditional members of Rodentia. We conclude from this analysis that the few commonly studied rodents are not necessarily even representative of the highly diverse members of Myomorpha, let alone other rodent suborders, and that additional laboratory and field studies of members of this order more broadly would surely provide invaluable information toward revealing a more representative picture of the rich diversity in rodent parenting.
Collapse
Affiliation(s)
- Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kristina O Smiley
- Centre for Neuroendocrinology & Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
7
|
Trouillet AC, Moussu C, Poissenot K, Keller M, Birnbaumer L, Leinders-Zufall T, Zufall F, Chamero P. Sensory Detection by the Vomeronasal Organ Modulates Experience-Dependent Social Behaviors in Female Mice. Front Cell Neurosci 2021; 15:638800. [PMID: 33679330 PMCID: PMC7925392 DOI: 10.3389/fncel.2021.638800] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mice, social behaviors are largely controlled by the olfactory system. Pheromone detection induces naïve virgin females to retrieve isolated pups to the nest and to be sexually receptive to males, but social experience increases the performance of both types of innate behaviors. Whether animals are intrinsically sensitive to the smell of conspecifics, or the detection of olfactory cues modulates experience for the display of social responses is currently unclear. Here, we employed mice with an olfactory-specific deletion of the G protein Gαi2, which partially eliminates sensory function in the vomeronasal organ (VNO), to show that social behavior in female mice results from interactions between intrinsic mechanisms in the vomeronasal system and experience-dependent plasticity. In pup- and sexually-naïve females, Gαi2 deletion elicited a reduction in pup retrieval behavior, but not in sexual receptivity. By contrast, experienced animals showed normal maternal behavior, but the experience-dependent increase in sexual receptivity was incomplete. Further, lower receptivity was accompanied by reduced neuronal activity in the anterior accessory olfactory bulb and the rostral periventricular area of the third ventricle. Therefore, neural mechanisms utilize intrinsic sensitivity in the mouse vomeronasal system and enable plasticity to display consistent social behavior.
Collapse
Affiliation(s)
- Anne-Charlotte Trouillet
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Chantal Moussu
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Kevin Poissenot
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States.,School of Medical Sciences, Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Trese Leinders-Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Frank Zufall
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, UMR 0085 INRAE-CNRS-IFCE-University of Tours, Nouzilly, France
| |
Collapse
|
8
|
Innate and plastic mechanisms for maternal behaviour in auditory cortex. Nature 2020; 587:426-431. [PMID: 33029014 PMCID: PMC7677212 DOI: 10.1038/s41586-020-2807-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Infant cries evoke powerful responses in parents1–4. To what extent are parental animals intrinsically sensitive to neonatal vocalizations, or might instead learn about vocal cues for parenting responses? In mice, pup-naive virgins do not recognize the meaning of pup distress calls, but retrieve isolated pups to the nest following cohousing with a mother and litter5–9. Distress calls are variable, requiring co-caring virgins to generalize across calls for reliable retrieval10,11. Here we show that the onset of maternal behavior in mice results from interactions between intrinsic mechanisms and experience-dependent plasticity in auditory cortex. In maternal females, calls with inter-syllable intervals (ISIs) from 75:375 ms elicited pup retrieval, and cortical responses generalized across these ISIs. In contrast, naive virgins were behaviorally sensitive only to the most common (‘prototypical’) ISIs. Inhibitory and excitatory neural responses were initially mismatched in naive cortex, with untuned inhibition and overly-narrow excitation. During cohousing, excitatory responses broadened to represent a wider range of ISIs, while inhibitory tuning sharpened to form a perceptual boundary. We presented synthetic calls during cohousing and observed that neurobehavioral responses adjusted to match these statistics, a process requiring cortical activity and the hypothalamic oxytocin system. Neuroplastic mechanisms therefore build on an intrinsic sensitivity in mouse auditory cortex, enabling rapid plasticity for reliable parenting behavior.
Collapse
|
9
|
Adaptive Resetting of Tuberoinfundibular Dopamine (TIDA) Network Activity during Lactation in Mice. J Neurosci 2020; 40:3203-3216. [PMID: 32209609 DOI: 10.1523/jneurosci.1553-18.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 01/22/2023] Open
Abstract
Giving birth triggers a wide repertoire of physiological and behavioral changes in the mother to enable her to feed and care for her offspring. These changes require coordination and are often orchestrated from the CNS, through as of yet poorly understood mechanisms. A neuronal population with a central role in puerperal changes is the tuberoinfundibular dopamine (TIDA) neurons that control release of the pituitary hormone, prolactin, which triggers key maternal adaptations, including lactation and maternal care. Here, we used Ca2+ imaging on mice from both sexes and whole-cell recordings on female mouse TIDA neurons in vitro to examine whether they adapt their cellular and network activity according to reproductive state. In the high-prolactin state of lactation, TIDA neurons shift to faster membrane potential oscillations, a reconfiguration that reverses upon weaning. During the estrous cycle, however, which includes a brief, but pronounced, prolactin peak, oscillation frequency remains stable. An increase in the hyperpolarization-activated mixed cation current, Ih, possibly through unmasking as dopamine release drops during nursing, may partially explain the reconfiguration of TIDA rhythms. These findings identify a reversible plasticity in hypothalamic network activity that can serve to adapt the dam for motherhood.SIGNIFICANCE STATEMENT Motherhood requires profound behavioral and physiological adaptations to enable caring for offspring, but the underlying CNS changes are poorly understood. Here, we show that, during lactation, neuroendocrine dopamine neurons, the "TIDA" cells that control prolactin secretion, reorganize their trademark oscillations to discharge in faster frequencies. Unlike previous studies, which typically have focused on structural and transcriptional changes during pregnancy and lactation, we demonstrate a functional switch in activity and one that, distinct from previously described puerperal modifications, reverses fully on weaning. We further provide evidence that a specific conductance (Ih) contributes to the altered network rhythm. These findings identify a new facet of maternal brain plasticity at the level of membrane properties and consequent ensemble activity.
Collapse
|
10
|
Bouchet H, Plat A, Levréro F, Reby D, Patural H, Mathevon N. Baby cry recognition is independent of motherhood but improved by experience and exposure. Proc Biol Sci 2020; 287:20192499. [PMID: 32070250 PMCID: PMC7062011 DOI: 10.1098/rspb.2019.2499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/31/2020] [Indexed: 01/23/2023] Open
Abstract
Neurobiological changes affecting new mothers are known to support the development of the mother-infant relationship (the 'maternal brain'). However, which aspects of parenting are actually mother-specific and which rely on general cognitive abilities remains debated. For example, refuting earlier findings, a recent study demonstrated that fathers identify their own baby from their cries just as well as mothers. Here we show that this performance is independent not only of sex, but also of parenthood status. We found that mothers' ability to recognize their newborn from their cries increased rapidly within few days postpartum, with highly multiparous mothers performing better. However, both male and female non-parents could similarly recognize an assigned baby, even after a very short exposure. As in mothers, both the initial amount of experimental exposure to the baby's cries (learning opportunity) and prior experience of caring for infants (auditory expertise) affected participants' performance. We thus suggest that, rather than being female-specific or motherhood-dependent, the ability to recognize a baby from their cries derives from general auditory and learning skills. By being available to non-parents of both sexes, it may contribute to the caregiving flexibility required for efficient cooperative breeding in humans.
Collapse
Affiliation(s)
- Hélène Bouchet
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S1028, Saint-Etienne 42023, France
| | - Aurélie Plat
- SNA_EPIS, EA4607, Department of Pediatrics, CHU Saint-Etienne, University of Lyon/Saint-Etienne, Saint-Priest-en-Jarez 42270, France
| | - Florence Levréro
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S1028, Saint-Etienne 42023, France
| | - David Reby
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S1028, Saint-Etienne 42023, France
| | - Hugues Patural
- SNA_EPIS, EA4607, Department of Pediatrics, CHU Saint-Etienne, University of Lyon/Saint-Etienne, Saint-Priest-en-Jarez 42270, France
| | - Nicolas Mathevon
- Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S1028, Saint-Etienne 42023, France
| |
Collapse
|
11
|
Rosenbaum S, Gettler LT. With a little help from her friends (and family) part II: Non-maternal caregiving behavior and physiology in mammals. Physiol Behav 2019; 193:12-24. [PMID: 29933837 DOI: 10.1016/j.physbeh.2017.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022]
Abstract
The diversity of competing frameworks for explaining the evolution of non-maternal care in mammals (Part I, this issue) reflects the vast range of behaviors and associated outcomes these theories attempt to subsume. Caretaking comprises a wide variety of behavioral domains, and is mediated by an equally large range of physiological systems. In Part II, we provide an overview of how non-maternal care in mammals is expressed, the ways in which it is regulated, and the many effects such care has on both recipients and caretakers. We also discuss the two primary ways in which closer integration of ultimate and proximate levels of explanation can be useful when addressing questions about non-maternal caretaking. Specifically, proximate mechanisms provide important functional clues, and are key to testing theory concerning evolutionary tradeoffs. Finally, we highlight a number of methodological and publication biases that currently shape the literature, which provide opportunities for knowledge advancement in this domain going forward. In this conclusion to our two-part introduction, we provide a broad survey of the behavior and physiology that the contributions to this special issue represent.
Collapse
Affiliation(s)
- Stacy Rosenbaum
- Department of Anthropology, Northwestern University, Evanston, IL, United States; Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, IL, United States.
| | - Lee T Gettler
- Department of Anthropology, University of Notre Dame, Notre Dame, IN, United States; The Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Proteomic Analysis of the Maternal Preoptic Area in Rats. Neurochem Res 2019; 44:2314-2324. [PMID: 30847857 PMCID: PMC6776485 DOI: 10.1007/s11064-019-02755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 10/29/2022]
Abstract
The behavior of female rats changes profoundly as they become mothers. The brain region that plays a central role in this regulation is the preoptic area, and lesions in this area eliminates maternal behaviors in rodents. The molecular background of the behavioral changes has not been established yet; therefore, in the present study, we applied proteomics to compare protein level changes associated with maternal care in the rat preoptic area. Using 2-dimensional fluorescence gel electrophoresis followed by identification of altered spots with mass spectrometry, 12 proteins were found to be significantly increased, and 6 proteins showed a significantly reduced level in mothers. These results show some similarities with a previous proteomics study of the maternal medial prefrontal cortex and genomics approaches applied to the preoptic area. Gene ontological analysis suggested that most altered proteins are involved in glucose metabolism and neuroplasticity. These proteins may support the maintenance of increased neuronal activity in the preoptic area, and morphological changes in preoptic neuronal circuits are known to take place in mothers. An increase in the level of alpha-crystallin B chain (Cryab) was confirmed by Western blotting. This small heat shock protein may also contribute to maintaining the increased activity of preoptic neurons by stabilizing protein structures. Common regulator and target analysis of the altered proteins suggested a role of prolactin in the molecular changes in the preoptic area. These results first identified the protein level changes in the maternal preoptic area. The altered proteins contribute to the maintenance of maternal behaviors and may also be relevant to postpartum depression, which can occur as a molecular level maladaptation to motherhood.
Collapse
|
13
|
Behura SK, Kelleher AM, Spencer TE. Evidence for functional interactions between the placenta and brain in pregnant mice. FASEB J 2019; 33:4261-4272. [PMID: 30521381 PMCID: PMC6404589 DOI: 10.1096/fj.201802037r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/12/2018] [Indexed: 12/19/2022]
Abstract
The placenta plays a pivotal role in the development of the fetal brain and also influences maternal brain function, but our understanding of communication between the placenta and brain remains limited. Using a gene expression and network analysis approach, we provide evidence that the placenta transcriptome is tightly interconnected with the maternal brain and fetal brain in d 15 pregnant C57BL/6J mice. Activation of serotonergic synapse signaling and inhibition of neurotrophin signaling were identified as potential mediators of crosstalk between the placenta and maternal brain and fetal brain, respectively. Genes encoding specific receptors and ligands were predicted to affect functional interactions between the placenta and brain. Paralogous genes, such as sex comb on midleg homolog 1/scm-like with 4 mbt domains 2 and polycomb group ring finger (Pcgf) 2/ Pcgf5, displayed antagonistic regulation between the placenta and brain. Additionally, conditional ablation of forkhead box a2 ( Foxa2) in the glands of the uterus altered the transcriptome of the d 15 placenta, which provides novel evidence of crosstalk between the uterine glands and placenta. Furthermore, expression of cathepsin 6 and monocyte to macrophage differentiation associated 2 was significantly different in the fetal brain of Foxa2 conditional knockout mice compared with control mice. These findings provide a better understanding of the intricacies of uterus-placenta-brain interactions during pregnancy and provide a foundation and model system for their exploration.-Behura, S. K., Kelleher, A. M., Spencer, T. E. Evidence for functional interactions between the placenta and brain in pregnant mice.
Collapse
Affiliation(s)
- Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Informatics Institute, University of Missouri, Columbia, Missouri, USA; and
| | - Andrew M. Kelleher
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Thomas E. Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
- Department of Obstetrics, Gynecology, and Women’s Health, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
14
|
Dobolyi A, Lékó AH. The insulin-like growth factor-1 system in the adult mammalian brain and its implications in central maternal adaptation. Front Neuroendocrinol 2019; 52:181-194. [PMID: 30552909 DOI: 10.1016/j.yfrne.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/04/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022]
Abstract
Our knowledge on the bioavailability and actions of insulin-like growth factor-1 (IGF-1) has markedly expanded in recent years as novel mechanisms were discovered on IGF binding proteins (IGFBPs) and their ability to release IGF-1. The new discoveries allowed a better understanding of the endogenous physiological actions of IGF-1 and also its applicability in therapeutics. The focus of the present review is to summarize novel findings on the neuronal, neuroendocrine and neuroplastic actions of IGF-1 in the adult brain. As most of the new regulatory mechanisms were described in the periphery, their implications on brain IGF system will also be covered. In addition, novel findings on the effects of IGF-1 on lactation and maternal behavior are described. Based on the enormous neuroplastic changes related to the peripartum period, IGF-1 has great but largely unexplored potential in maternal adaptation of the brain, which is highlighted in the present review.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary.
| | - András H Lékó
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Vinograd A, Fuchs-Shlomai Y, Stern M, Mukherjee D, Gao Y, Citri A, Davison I, Mizrahi A. Functional Plasticity of Odor Representations during Motherhood. Cell Rep 2018; 21:351-365. [PMID: 29020623 PMCID: PMC5643523 DOI: 10.1016/j.celrep.2017.09.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 06/21/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
Motherhood is accompanied by new behaviors aimed at ensuring the wellbeing of the offspring. Olfaction plays a key role in guiding maternal behaviors during this transition. We studied functional changes in the main olfactory bulb (OB) of mothers in mice. Using in vivo two-photon calcium imaging, we studied the sensory representation of odors by mitral cells (MCs). We show that MC responses to monomolecular odors become sparser and weaker in mothers. In contrast, responses to biologically relevant odors are spared from sparsening or strengthen. MC responses to mixtures and to a range of concentrations suggest that these differences between odor responses cannot be accounted for by mixture suppressive effects or gain control mechanisms. In vitro whole-cell recordings show an increase in inhibitory synaptic drive onto MCs. The increase of inhibitory tone may contribute to the general decrease in responsiveness and concomitant enhanced representation of specific odors. MCs of mothers show sparser responses for pure odors MCs of mothers have stronger inhibitory drive onto MCs MCs of mothers show stronger responses to natural odors MC ensemble coding is improved for natural but not pure odors
Collapse
Affiliation(s)
- Amit Vinograd
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yael Fuchs-Shlomai
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Diptendu Mukherjee
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Yuan Gao
- Department of Biology, Boston University, Boston, MA, USA
| | - Ami Citri
- Department of Chemical Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ian Davison
- Department of Biology, Boston University, Boston, MA, USA
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel.
| |
Collapse
|
16
|
Abstract
Parenting is essential for the survival and wellbeing of mammalian offspring but we lack a circuit-level understanding of how distinct components of this behaviour are orchestrated. Here we investigate how Galanin-expressing neurons in the medial preoptic area (MPOAGal) coordinate motor, motivational, hormonal and social aspects of parenting. These neurons integrate inputs from a large number of brain areas, whose activation depends on the animal’s sex and reproductive state. Subsets of MPOAGal neurons form discrete pools defined by their projection sites. While the MPOAGal population is active during all episodes of parental behaviour, individual pools are tuned to characteristic aspects of parenting. Optogenetic manipulation of MPOAGal projections mirrors this specificity, affecting discrete parenting components. This functional organization, reminiscent of the control of motor sequences by pools of spinal cord neurons, provides a new model for how discrete elements of a social behaviour are generated at the circuit level.
Collapse
|
17
|
Tasaka GI, Guenthner CJ, Shalev A, Gilday O, Luo L, Mizrahi A. Genetic tagging of active neurons in auditory cortex reveals maternal plasticity of coding ultrasonic vocalizations. Nat Commun 2018; 9:871. [PMID: 29491360 PMCID: PMC5830453 DOI: 10.1038/s41467-018-03183-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
Cortical neurons are often functionally heterogeneous even for molecularly defined subtypes. In sensory cortices, physiological responses to natural stimuli can be sparse and vary widely even for neighboring neurons. It is thus difficult to parse out circuits that encode specific stimuli for further experimentation. Here, we report the development of a Cre-reporter mouse that allows recombination for cellular labeling and genetic manipulation, and use it with an activity-dependent Fos-CreERT2 driver to identify functionally active circuits in the auditory cortex. In vivo targeted patch recordings validate our method for neurons responding to physiologically relevant natural sounds such as pup wriggling calls and ultrasonic vocalizations (USVs). Using this system to investigate cortical responses in postpartum mothers, we find a transient recruitment of neurons highly responsive to USVs. This subpopulation of neurons has distinct physiological properties that improve the coding efficiency for pup USV calls, implicating it as a unique signature in parental plasticity.
Collapse
Affiliation(s)
- Gen-Ichi Tasaka
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Casey J Guenthner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA.,Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Amos Shalev
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Omri Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, 94305, USA. .,Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Adi Mizrahi
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. .,The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
18
|
Cabrera-Reyes EA, Limón-Morales O, Rivero-Segura NA, Camacho-Arroyo I, Cerbón M. Prolactin function and putative expression in the brain. Endocrine 2017. [PMID: 28634745 DOI: 10.1007/s12020-017-1346-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Prolactin is a peptide hormone mainly synthetized and secreted by the anterior pituitary gland, but also by extrapituitary tissues, such as mammary gland, decidua, prostate, skin, and possibly the brain. Similarly, prolactin receptor is expressed in the pituitary gland, many peripheral tissues, and in contrast to prolactin, its receptor has been consistently detected in several brain regions, such as cerebral cortex, olfactory bulb, hypothalamus, hippocampus, amygdala, among others. Classically, prolactin function has been related to the stimulation of lactogenesis and galactopoiesis, however, it is well known that prolactin induces a wide range of functions in different brain areas. PURPOSE The aim of this review is to summarize recent reports on prolactin and prolactin receptor synthesis and localization, as well as recapitulate both the classic functions attributed to this hormone in the brain and the recently described functions such as neurogenesis, neurodevelopment, sleep, learning and memory, and neuroprotection. CONCLUSION The distribution and putative expression of prolactin and its receptors in several neuronal tissues suggests that this hormone has pleiotropic functions in the brain.
Collapse
Affiliation(s)
- Erika Alejandra Cabrera-Reyes
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ofelia Limón-Morales
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Nadia Alejandra Rivero-Segura
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México. CDMX, Mexico, Mexico.
| |
Collapse
|
19
|
Abstract
New mothers undergo dynamic neural changes that support positive adaptation to parenting and the development of mother-infant relationships. In this article, I review important psychological adaptations that mothers experience during pregnancy and the early postpartum period. I then review evidence of structural and functional plasticity in human mothers' brains, and explore how such plasticity supports mothers' psychological adaptation to parenting and sensitive maternal behaviors. Last, I discuss pregnancy and the early postpartum period as a window of vulnerabilities and opportunities when the human maternal brain is influenced by stress and psychopathology, but also receptive to interventions.
Collapse
|
20
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
21
|
Tabler JM, Rigney MM, Berman GJ, Gopalakrishnan S, Heude E, Al-Lami HA, Yannakoudakis BZ, Fitch RD, Carter C, Vokes S, Liu KJ, Tajbakhsh S, Egnor SR, Wallingford JB. Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. eLife 2017; 6. [PMID: 28177282 PMCID: PMC5358977 DOI: 10.7554/elife.19153] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 02/06/2017] [Indexed: 12/30/2022] Open
Abstract
Acoustic communication is fundamental to social interactions among animals, including humans. In fact, deficits in voice impair the quality of life for a large and diverse population of patients. Understanding the molecular genetic mechanisms of development and function in the vocal apparatus is thus an important challenge with relevance both to the basic biology of animal communication and to biomedicine. However, surprisingly little is known about the developmental biology of the mammalian larynx. Here, we used genetic fate mapping to chart the embryological origins of the tissues in the mouse larynx, and we describe the developmental etiology of laryngeal defects in mice with disruptions in cilia-mediated Hedgehog signaling. In addition, we show that mild laryngeal defects correlate with changes in the acoustic structure of vocalizations. Together, these data provide key new insights into the molecular genetics of form and function in the mammalian vocal apparatus. DOI:http://dx.doi.org/10.7554/eLife.19153.001 Nearly all animals communicate using sound. In many cases these sounds are in the form of a voice, which in mammals is generated by a specialized organ in the throat called the larynx. Millions of people throughout the world have voice defects that make it difficult for them to communicate. Such defects are distinct from speech defects such as stuttering, and instead result from an inability to control the pitch or volume of the voice. This has a huge impact because our voice is so central to our quality of life. A wide range of human birth defects that are caused by genetic mutations are known to result in voice problems. These include disorders in which the Hedgehog signaling pathway, which allows cells to exchange information, is defective. Projections called cilia that are found on the outside of many cells transmit Hedgehog signals, and birth defects that affect the cilia (called ciliopathies) also often result in voice problems. Although the shape of the larynx has a crucial effect on voice, relatively little is known about how it develops in embryos. Mice are often studied to investigate how human embryos develop. By studying mouse embryos that had genetic mutations similar to those seen in humans with ciliopathies, Tabler, Rigney et al. now show that many different tissues interact in complex ways to form the larynx. A specific group of cells known as the neural crest was particularly important. The neural crest helps to form the face and skull and an excess of these cells causes face and skull defects in individuals with ciliopathies. Tabler, Rigney et al. show that having too many neural crest cells can also contribute towards defects in the larynx of mice with ciliopathies, despite the larynx being in the neck. Further investigation showed that the Hedgehog signaling pathway was required for the larynx to develop properly. Furthermore, recordings of the vocalizations of the mutant mice showed that they had defective voices, thus linking the defects in the shape of the larynx with changes in the vocalizations that the mice made. Overall, Tabler, Rigney et al. show that mice can be used to investigate how the genes that control the shape of the larynx affect the voice. The next step will be to use mice to investigate other genetic defects that cause voice defects in humans. Further research in other animals could also help us to understand how the larynx has evolved. DOI:http://dx.doi.org/10.7554/eLife.19153.002
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Maggie M Rigney
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Gordon J Berman
- Department of Biology, Emory University, Atlanta, United States
| | - Swetha Gopalakrishnan
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Eglantine Heude
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Hadeel Adel Al-Lami
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Basil Z Yannakoudakis
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Rebecca D Fitch
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Christopher Carter
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Steven Vokes
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Shahragim Tajbakhsh
- Stem Cells and Development, CNRS UMR3738, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Se Roian Egnor
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United states
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, United States
| |
Collapse
|
22
|
Contrast Enhancement without Transient Map Expansion for Species-Specific Vocalizations in Core Auditory Cortex during Learning. eNeuro 2016; 3:eN-NWR-0318-16. [PMID: 27957529 PMCID: PMC5128782 DOI: 10.1523/eneuro.0318-16.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/25/2022] Open
Abstract
Tonotopic map plasticity in the adult auditory cortex (AC) is a well established and oft-cited measure of auditory associative learning in classical conditioning paradigms. However, its necessity as an enduring memory trace has been debated, especially given a recent finding that the areal expansion of core AC tuned to a newly relevant frequency range may arise only transiently to support auditory learning. This has been reinforced by an ethological paradigm showing that map expansion is not observed for ultrasonic vocalizations (USVs) or for ultrasound frequencies in postweaning dams for whom USVs emitted by pups acquire behavioral relevance. However, whether transient expansion occurs during maternal experience is not known, and could help to reveal the generality of cortical map expansion as a correlate for auditory learning. We thus mapped the auditory cortices of maternal mice at postnatal time points surrounding the peak in pup USV emission, but found no evidence of frequency map expansion for the behaviorally relevant high ultrasound range in AC. Instead, regions tuned to low frequencies outside of the ultrasound range show progressively greater suppression of activity in response to the playback of ultrasounds or pup USVs for maternally experienced animals assessed at their pups’ postnatal day 9 (P9) to P10, or postweaning. This provides new evidence for a lateral-band suppression mechanism elicited by behaviorally meaningful USVs, likely enhancing their population-level signal-to-noise ratio. These results demonstrate that tonotopic map enlargement has limits as a construct for conceptualizing how experience leaves neural memory traces within sensory cortex in the context of ethological auditory learning.
Collapse
|
23
|
Maor I, Shalev A, Mizrahi A. Distinct Spatiotemporal Response Properties of Excitatory Versus Inhibitory Neurons in the Mouse Auditory Cortex. Cereb Cortex 2016; 26:4242-4252. [PMID: 27600839 PMCID: PMC5066836 DOI: 10.1093/cercor/bhw266] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 07/05/2016] [Accepted: 08/01/2016] [Indexed: 01/31/2023] Open
Abstract
In the auditory system, early neural stations such as brain stem are characterized by strict tonotopy, which is used to deconstruct sounds to their basic frequencies. But higher along the auditory hierarchy, as early as primary auditory cortex (A1), tonotopy starts breaking down at local circuits. Here, we studied the response properties of both excitatory and inhibitory neurons in the auditory cortex of anesthetized mice. We used in vivo two photon-targeted cell-attached recordings from identified parvalbumin-positive neurons (PVNs) and their excitatory pyramidal neighbors (PyrNs). We show that PyrNs are locally heterogeneous as characterized by diverse best frequencies, pairwise signal correlations, and response timing. In marked contrast, neighboring PVNs exhibited homogenous response properties in pairwise signal correlations and temporal responses. The distinct physiological microarchitecture of different cell types is maintained qualitatively in response to natural sounds. Excitatory heterogeneity and inhibitory homogeneity within the same circuit suggest different roles for each population in coding natural stimuli.
Collapse
Affiliation(s)
- Ido Maor
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - Amos Shalev
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - Adi Mizrahi
- Department of Neurobiology
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| |
Collapse
|
24
|
Leuner B, Sabihi S. The birth of new neurons in the maternal brain: Hormonal regulation and functional implications. Front Neuroendocrinol 2016; 41:99-113. [PMID: 26969795 PMCID: PMC4942360 DOI: 10.1016/j.yfrne.2016.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/21/2022]
Abstract
The maternal brain is remarkably plastic and exhibits multifaceted neural modifications. Neurogenesis has emerged as one of the mechanisms by which the maternal brain exhibits plasticity. This review highlights what is currently known about peripartum-associated changes in adult neurogenesis and the underlying hormonal mechanisms. We also consider the functional consequences of neurogenesis in the peripartum brain and extent to which this process may play a role in maternal care, cognitive function and postpartum mood. Finally, while most work investigating the effects of parenting on adult neurogenesis has focused on mothers, a few studies have examined fathers and these results are also discussed.
Collapse
Affiliation(s)
- Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA; The Ohio State University, Department of Neuroscience, Columbus, OH, USA; The Ohio State University, Behavioral Neuroendocrinology Group, Columbus, OH, USA.
| | - Sara Sabihi
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| |
Collapse
|
25
|
Geissler DB, Schmidt HS, Ehret G. Knowledge About Sounds-Context-Specific Meaning Differently Activates Cortical Hemispheres, Auditory Cortical Fields, and Layers in House Mice. Front Neurosci 2016; 10:98. [PMID: 27013959 PMCID: PMC4789409 DOI: 10.3389/fnins.2016.00098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
Activation of the auditory cortex (AC) by a given sound pattern is plastic, depending, in largely unknown ways, on the physiological state and the behavioral context of the receiving animal and on the receiver's experience with the sounds. Such plasticity can be inferred when house mouse mothers respond maternally to pup ultrasounds right after parturition and naïve females have to learn to respond. Here we use c-FOS immunocytochemistry to quantify highly activated neurons in the AC fields and layers of seven groups of mothers and naïve females who have different knowledge about and are differently motivated to respond to acoustic models of pup ultrasounds of different behavioral significance. Profiles of FOS-positive cells in the AC primary fields (AI, AAF), the ultrasonic field (UF), the secondary field (AII), and the dorsoposterior field (DP) suggest that activation reflects in AI, AAF, and UF the integration of sound properties with animal state-dependent factors, in the higher-order field AII the news value of a given sound in the behavioral context, and in the higher-order field DP the level of maternal motivation and, by left-hemisphere activation advantage, the recognition of the meaning of sounds in the given context. Anesthesia reduced activation in all fields, especially in cortical layers 2/3. Thus, plasticity in the AC is field-specific preparing different output of AC fields in the process of perception, recognition and responding to communication sounds. Further, the activation profiles of the auditory cortical fields suggest the differentiation between brains hormonally primed to know (mothers) and brains which acquired knowledge via implicit learning (naïve females). In this way, auditory cortical activation discriminates between instinctive (mothers) and learned (naïve females) cognition.
Collapse
Affiliation(s)
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm Ulm, Germany
| |
Collapse
|