1
|
Abstract
South America is a vast continent endowed with extraordinary biodiversity that offers abundant opportunities for neuroethological research. Although neuroethology is still emerging in the region, the number of research groups studying South American species to unveil the neural organization of natural behaviors has grown considerably during the last decade. In this Perspective, we provide an account of the roots and strategies that led to the present state of neuroethology in the Southern Cone of America, with a forward-looking vision of its role in education and its international recognition. Hopefully, our Perspective will serve to further promote the study of natural behaviors across South America, as well as in other scarcely explored regions of the world.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular. CONICET, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Ana C Silva
- Universidad de la República, Facultad de Ciencias, Laboratorio de Neurociencias, Iguá 4225, 11400 Montevideo, Uruguay
| |
Collapse
|
2
|
Contextual memory reactivation modulates Ca2+-activity network state in a mushroom body-like center of the crab N. granulata. Sci Rep 2022; 12:11408. [PMID: 35794138 PMCID: PMC9259570 DOI: 10.1038/s41598-022-15502-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
High-order brain centers play key roles in sensory integration and cognition. In arthropods, much is known about the insect high-order centers that support associative memory processes, the mushroom bodies. The hypothesis that crustaceans possess structures equivalent to the mushroom bodies -traditionally called hemiellipsoid body- has been receiving neuroanatomical endorsement. The recent functional support is limited to the short term: in a structure of the true crab Neohelice granulata that has many insect-like mushroom bodies traits, the plastic learning changes express the context attribute of an associative memory trace. Here, we used in vivo calcium imaging to test whether neuronal activity in this structure is associated with memory reactivation in the long-term (i.e., 24 h after training). Long-term training effects were tested by presenting the training-context alone, a reminder known to trigger memory reconsolidation. We found similar spontaneous activity between trained and naïve animals. However, after training-context presentation, trained animals showed increased calcium events rate, suggesting that memory reactivation induced a change in the underlying physiological state of this center. Reflecting the change in the escape response observed in the paradigm, animals trained with a visual danger stimulus showed significantly lower calcium-evoked transients in the insect-like mushroom body. Protein synthesis inhibitor cycloheximide administered during consolidation prevented calcium mediated changes. Moreover, we found the presence of distinct calcium activity spatial patterns. Results suggest that intrinsic neurons of this crustacean mushroom body-like center are involved in contextual associative long-term memory processes.
Collapse
|
3
|
Bagheri ZM, Donohue CG, Partridge JC, Hemmi JM. Behavioural and neural responses of crabs show evidence for selective attention in predator avoidance. Sci Rep 2022; 12:10022. [PMID: 35705656 PMCID: PMC9200765 DOI: 10.1038/s41598-022-14113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Selective attention, the ability to focus on a specific stimulus and suppress distractions, plays a fundamental role for animals in many contexts, such as mating, feeding, and predation. Within natural environments, animals are often confronted with multiple stimuli of potential importance. Such a situation significantly complicates the decision-making process and imposes conflicting information on neural systems. In the context of predation, selectively attending to one of multiple threats is one possible solution. However, how animals make such escape decisions is rarely studied. A previous field study on the fiddler crab, Gelasimus dampieri, provided evidence of selective attention in the context of escape decisions. To identify the underlying mechanisms that guide their escape decisions, we measured the crabs' behavioural and neural responses to either a single, or two simultaneously approaching looming stimuli. The two stimuli were either identical or differed in contrast to represent different levels of threat certainty. Although our behavioural data provides some evidence that crabs perceive signals from both stimuli, we show that both the crabs and their looming-sensitive neurons almost exclusively respond to only one of two simultaneous threats. The crabs' body orientation played an important role in their decision about which stimulus to run away from. When faced with two stimuli of differing contrasts, both neurons and crabs were much more likely to respond to the stimulus with the higher contrast. Our data provides evidence that the crabs' looming-sensitive neurons play an important part in the mechanism that drives their selective attention in the context of predation. Our results support previous suggestions that the crabs' escape direction is calculated downstream of their looming-sensitive neurons by means of a population vector of the looming sensitive neuronal ensemble.
Collapse
Affiliation(s)
- Zahra M Bagheri
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| | - Callum G Donohue
- School of Biological Sciences, The University of Western Australia, Perth, Australia.,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.,Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Julian C Partridge
- The UWA Oceans Institute, The University of Western Australia, Perth, Australia
| | - Jan M Hemmi
- School of Biological Sciences, The University of Western Australia, Perth, Australia. .,The UWA Oceans Institute, The University of Western Australia, Perth, Australia.
| |
Collapse
|
4
|
Luan H, Fu Q, Zhang Y, Hua M, Chen S, Yue S. A Looming Spatial Localization Neural Network Inspired by MLG1 Neurons in the Crab Neohelice. Front Neurosci 2022; 15:787256. [PMID: 35126038 PMCID: PMC8814358 DOI: 10.3389/fnins.2021.787256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Similar to most visual animals, the crab Neohelice granulata relies predominantly on visual information to escape from predators, to track prey and for selecting mates. It, therefore, needs specialized neurons to process visual information and determine the spatial location of looming objects. In the crab Neohelice granulata, the Monostratified Lobula Giant type1 (MLG1) neurons have been found to manifest looming sensitivity with finely tuned capabilities of encoding spatial location information. MLG1s neuronal ensemble can not only perceive the location of a looming stimulus, but are also thought to be able to influence the direction of movement continuously, for example, escaping from a threatening, looming target in relation to its position. Such specific characteristics make the MLG1s unique compared to normal looming detection neurons in invertebrates which can not localize spatial looming. Modeling the MLG1s ensemble is not only critical for elucidating the mechanisms underlying the functionality of such neural circuits, but also important for developing new autonomous, efficient, directionally reactive collision avoidance systems for robots and vehicles. However, little computational modeling has been done for implementing looming spatial localization analogous to the specific functionality of MLG1s ensemble. To bridge this gap, we propose a model of MLG1s and their pre-synaptic visual neural network to detect the spatial location of looming objects. The model consists of 16 homogeneous sectors arranged in a circular field inspired by the natural arrangement of 16 MLG1s' receptive fields to encode and convey spatial information concerning looming objects with dynamic expanding edges in different locations of the visual field. Responses of the proposed model to systematic real-world visual stimuli match many of the biological characteristics of MLG1 neurons. The systematic experiments demonstrate that our proposed MLG1s model works effectively and robustly to perceive and localize looming information, which could be a promising candidate for intelligent machines interacting within dynamic environments free of collision. This study also sheds light upon a new type of neuromorphic visual sensor strategy that can extract looming objects with locational information in a quick and reliable manner.
Collapse
Affiliation(s)
- Hao Luan
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Qinbing Fu
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- Computational Intelligence Laboratory (CIL), School of Computer Science, University of Lincoln, Lincoln, United Kingdom
| | - Yicheng Zhang
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Mu Hua
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Shengyong Chen
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin, China
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- Computational Intelligence Laboratory (CIL), School of Computer Science, University of Lincoln, Lincoln, United Kingdom
- *Correspondence: Shigang Yue
| |
Collapse
|
5
|
Lepore MG, Tomsic D, Sztarker J. Neural organization of the third optic neuropil, the lobula, in the highly visual semiterrestrial crab Neohelice granulata. J Comp Neurol 2022; 530:1533-1550. [PMID: 34985823 DOI: 10.1002/cne.25295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
The visual neuropils (lamina, medulla and lobula complex), of malacostracan crustaceans and hexapods have many organizational principles, cell types and functional properties in common. Information about the cellular elements that compose the crustacean lobula is scarce especially when focusing on small columnar cells. Semiterrestrial crabs possess a highly developed visual system and display conspicuous visually guided behaviors. In particular, Neohelice granulata has been previously used to describe the cellular components of the first two optic neuropils using Golgi impregnation technique. Here, we present a comprehensive description of individual elements composing the third optic neuropil, the lobula, of that same species. We characterized a wide variety of elements (140 types) including input terminals and lobula columnar, centrifugal and input columnar elements. Results reveal a very dense and complex neuropil. We found a frequently impregnated input element (suggesting a supernumerary cartridge representation) that arborizes in the third layer of the lobula and that presents four variants each with ramifications organized following one of the four cardinal axes suggesting a role in directional processing. We also describe input elements with two neurites branching in the third layer, probably connecting with the medulla and lobula plate. These facts suggest that this layer is involved in the directional motion detection pathway in crabs. We analyze and discuss our findings considering the similarities and differences found between the layered organization and components of this crustacean lobula and the lobula of insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- María Grazia Lepore
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
6
|
Lin C, Hoving HJT, Cronin TW, Osborn KJ. Strange eyes, stranger brains: exceptional diversity of optic lobe organization in midwater crustaceans. Proc Biol Sci 2021; 288:20210216. [PMID: 33823669 DOI: 10.1098/rspb.2021.0216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nervous systems across Animalia not only share a common blueprint at the biophysical and molecular level, but even between diverse groups of animals the structure and neuronal organization of several brain regions are strikingly conserved. Despite variation in the morphology and complexity of eyes across malacostracan crustaceans, many studies have shown that the organization of malacostracan optic lobes is highly conserved. Here, we report results of divergent evolution to this 'neural ground pattern' discovered in hyperiid amphipods, a relatively small group of holopelagic malacostracan crustaceans that possess an unusually wide diversity of compound eyes. We show that the structure and organization of hyperiid optic lobes has not only diverged from the malacostracan ground pattern, but is also highly variable between closely related genera. Our findings demonstrate a variety of trade-offs between sensory systems of hyperiids and even within the visual system alone, thus providing evidence that selection has modified individual components of the central nervous system to generate distinct combinations of visual centres in the hyperiid optic lobes. Our results provide new insights into the patterns of brain evolution among animals that live under extreme conditions.
Collapse
Affiliation(s)
- Chan Lin
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC 20013, USA
| | - Henk-Jan T Hoving
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Karen J Osborn
- Department of Invertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC 20013, USA.,Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| |
Collapse
|
7
|
Cámera A, Belluscio MA, Tomsic D. Multielectrode Recordings From Identified Neurons Involved in Visually Elicited Escape Behavior. Front Behav Neurosci 2020; 14:592309. [PMID: 33240056 PMCID: PMC7680727 DOI: 10.3389/fnbeh.2020.592309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
A major challenge in current neuroscience is to understand the concerted functioning of distinct neurons involved in a particular behavior. This goal first requires achieving an adequate characterization of the behavior as well as an identification of the key neuronal elements associated with that action. Such conditions have been considerably attained for the escape response to visual stimuli in the crab Neohelice. During the last two decades a combination of in vivo intracellular recordings and staining with behavioral experiments and modeling, led us to postulate that a microcircuit formed by four classes of identified lobula giant (LG) neurons operates as a decision-making node for several important visually-guided components of the crab's escape behavior. However, these studies were done by recording LG neurons individually. To investigate the combined operations performed by the group of LG neurons, we began to use multielectrode recordings. Here we describe the methodology and show results of simultaneously recorded activity from different lobula elements. The different LG classes can be distinguished by their differential responses to particular visual stimuli. By comparing the response profiles of extracellular recorded units with intracellular recorded responses to the same stimuli, two of the four LG classes could be faithfully recognized. Additionally, we recorded units with stimulus preferences different from those exhibited by the LG neurons. Among these, we found units sensitive to optic flow with marked directional preference. Units classified within a single group according to their response profiles exhibited similar spike waveforms and similar auto-correlograms, but which, on the other hand, differed from those of groups with different response profiles. Additionally, cross-correlograms revealed excitatory as well as inhibitory relationships between recognizable units. Thus, the extracellular multielectrode methodology allowed us to stably record from previously identified neurons as well as from undescribed elements of the brain of the crab. Moreover, simultaneous multiunit recording allowed beginning to disclose the connections between central elements of the visual circuits. This work provides an entry point into studying the neural networks underlying the control of visually guided behaviors in the crab brain.
Collapse
Affiliation(s)
- Alejandro Cámera
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina
| | - Mariano Andres Belluscio
- Instituto de Fisiología y Biofísica Bernardo Houssay, National Council for Scientific and Technical Research (CONICET), Buenos Aires, Argentina.,Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Tomsic
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), UBA-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular Dr. Héctor Maldonado, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
8
|
Gancedo B, Salido C, Tomsic D. Visual determinants of prey chasing behavior in a mudflat crab. J Exp Biol 2020; 223:jeb217299. [PMID: 32098883 DOI: 10.1242/jeb.217299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/14/2020] [Indexed: 12/22/2022]
Abstract
The crab Neohelice granulata inhabits mudflats where it is preyed upon by gulls and, conversely, preys on smaller crabs. Therefore, on seeing moving stimuli, this crab can behave as prey or predator. The crab escape response to visual stimuli has been extensively investigated from the behavioral to the neuronal level. The predatory response (PR), however, has not yet been explored. Here, we show that this response can be reliably elicited and investigated in a laboratory arena. By using dummies of three different sizes moved on the ground at three different velocities over multiple trials, we identified important stimulation conditions that boost the occurrence of PR and its chances of ending in successful prey capture. PR probability was sustained during the first 10 trials of our experiments but then declined. PR was elicited with high probability by the medium size dummy, less effectively by the small dummy, and hardly brought about by the large dummy, which mostly elicited avoidance responses. A GLMM analysis indicated that the dummy size and the tracking line distance were two strong determinants for eliciting PR. The rate of successful captures, however, mainly depended on the dummy velocity. Our results suggest that crabs are capable of assessing the distance to the dummy and its absolute size. The PR characterized here, in connection with the substantial knowledge of the visual processing associated with the escape response, provides excellent opportunities for comparative analyses of the organization of two distinct visually guided behaviors in a single animal.
Collapse
Affiliation(s)
- Brian Gancedo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Carla Salido
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
9
|
Nicholas S, Leibbrandt R, Nordström K. Visual motion sensitivity in descending neurons in the hoverfly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:149-163. [PMID: 31989217 PMCID: PMC7069906 DOI: 10.1007/s00359-020-01402-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 01/11/2023]
Abstract
Many animals use motion vision information to control dynamic behaviors. For example, flying insects must decide whether to pursue a prey or not, to avoid a predator, to maintain their current flight trajectory, or to land. The neural mechanisms underlying the computation of visual motion have been particularly well investigated in the fly optic lobes. However, the descending neurons, which connect the optic lobes with the motor command centers of the ventral nerve cord, remain less studied. To address this deficiency, we describe motion vision sensitive descending neurons in the hoverfly Eristalis tenax. We describe how the neurons can be identified based on their receptive field properties, and how they respond to moving targets, looming stimuli and to widefield optic flow. We discuss their similarities with previously published visual neurons, in the optic lobes and ventral nerve cord, and suggest that they can be classified as target-selective, looming sensitive and optic flow sensitive, based on these similarities. Our results highlight the importance of using several visual stimuli as the neurons can rarely be identified based on only one response characteristic. In addition, they provide an understanding of the neurophysiology of visual neurons that are likely to affect behavior.
Collapse
Affiliation(s)
- Sarah Nicholas
- Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Richard Leibbrandt
- Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Karin Nordström
- Centre for Neuroscience, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia. .,Department of Neuroscience, Uppsala University, Box 593, 751 24 , Uppsala, Sweden.
| |
Collapse
|
10
|
Higham TE, Schmitz L. A Hierarchical View of Gecko Locomotion: Photic Environment, Physiological Optics, and Locomotor Performance. Integr Comp Biol 2019; 59:443-455. [DOI: 10.1093/icb/icz092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Terrestrial animals move in complex habitats that vary over space and time. The characteristics of these habitats are not only defined by the physical environment, but also by the photic environment, even though the latter has largely been overlooked. For example, numerous studies of have examined the role of habitat structure, such as incline, perch diameter, and compliance, on running performance. However, running performance likely depends heavily on light level. Geckos are an exceptional group for analyzing the role of the photic environment on locomotion as they exhibit several independent shifts to diurnality from a nocturnal ancestor, they are visually-guided predators, and they are extremely diverse. Our initial goal is to discuss the range of photic environments that can be encountered in terrestrial habitats, such as day versus night, canopy cover in a forest, fog, and clouds. We then review the physiological optics of gecko vision with some new information about retina structures, the role of vision in motor-driven behaviors, and what is known about gecko locomotion under different light conditions, before demonstrating the effect of light levels on gecko locomotor performance. Overall, we highlight the importance of integrating sensory and motor information and establish a conceptual framework as guide for future research. Several future directions, such as understanding the role of pupil dynamics, are dependent on an integrative framework. This general framework can be extended to any motor system that relies on sensory information, and can be used to explore the impact of performance features on diversification and evolution.
Collapse
Affiliation(s)
- Timothy E Higham
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - Lars Schmitz
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| |
Collapse
|
11
|
Walters ET. Nociceptive Biology of Molluscs and Arthropods: Evolutionary Clues About Functions and Mechanisms Potentially Related to Pain. Front Physiol 2018; 9:1049. [PMID: 30123137 PMCID: PMC6085516 DOI: 10.3389/fphys.2018.01049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/16/2018] [Indexed: 01/15/2023] Open
Abstract
Important insights into the selection pressures and core molecular modules contributing to the evolution of pain-related processes have come from studies of nociceptive systems in several molluscan and arthropod species. These phyla, and the chordates that include humans, last shared a common ancestor approximately 550 million years ago. Since then, animals in these phyla have continued to be subject to traumatic injury, often from predators, which has led to similar adaptive behaviors (e.g., withdrawal, escape, recuperative behavior) and physiological responses to injury in each group. Comparisons across these taxa provide clues about the contributions of convergent evolution and of conservation of ancient adaptive mechanisms to general nociceptive and pain-related functions. Primary nociceptors have been investigated extensively in a few molluscan and arthropod species, with studies of long-lasting nociceptive sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent, and axotomy-induced plasticity mechanisms have been defined in synapses, cell bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in Drosophila larvae have revealed numerous molecular contributors in primary nociceptors and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia and Drosophila are largely different, but both sets overlap extensively with those in mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila, nociceptive sensitization examined in moth larvae (Manduca) disclosed central hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid (Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity to tactile and especially visual stimuli, and as hypersensitivity and spontaneous activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury subsequently increased mortality when injured squid were exposed to fish predators, providing the first demonstration in any animal of the adaptiveness of nociceptive sensitization. Immediate responses to noxious stimulation and nociceptive sensitization have also been examined behaviorally and physiologically in a snail (Helix), octopus (Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus). Molluscs and arthropods have systems that suppress nociceptive responses, but whether opioid systems play antinociceptive roles in these phyla is uncertain.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
12
|
Binocular Neuronal Processing of Object Motion in an Arthropod. J Neurosci 2018; 38:6933-6948. [PMID: 30012687 DOI: 10.1523/jneurosci.3641-17.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/02/2018] [Accepted: 06/05/2018] [Indexed: 11/21/2022] Open
Abstract
Animals use binocular information to guide many behaviors. In highly visual arthropods, complex binocular computations involved in processing panoramic optic flow generated during self-motion occur in the optic neuropils. However, the extent to which binocular processing of object motion occurs in these neuropils remains unknown. We investigated this in a crab, where the distance between the eyes and the extensive overlapping of their visual fields advocate for the use of binocular processing. By performing in vivo intracellular recordings from the lobula (third optic neuropil) of male crabs, we assessed responses of object-motion-sensitive neurons to ipsilateral or contralateral moving objects under binocular and monocular conditions. Most recorded neurons responded to stimuli seen independently with either eye, proving that each lobula receives profuse visual information from both eyes. The contribution of each eye to the binocular response varies among neurons, from those receiving comparable inputs from both eyes to those with mainly ipsilateral or contralateral components, some including contralateral inhibition. Electrophysiological profiles indicated that a similar number of neurons were recorded from their input or their output side. In monocular conditions, the first group showed shorter response delays to ipsilateral than to contralateral stimulation, whereas the second group showed the opposite. These results fit well with neurons conveying centripetal and centrifugal information from and toward the lobula, respectively. Intracellular and massive stainings provided anatomical support for this and for direct connections between the two lobulae, but simultaneous recordings failed to reveal such connections. Simplified model circuits of interocular connections are discussed.SIGNIFICANCE STATEMENT Most active animals became equipped with two eyes, which contributes to functions like depth perception, objects spatial location, and motion processing, all used for guiding behaviors. In visually active arthropods, binocular neural processing of the panoramic optic flow generated during self-motion happens already in the optic neuropils. However, whether binocular processing of single-object motion occurs in these neuropils remained unknown. We investigated this in a crab, where motion-sensitive neurons from the lobula can be recorded in the intact animal. Here we demonstrate that different classes of neurons from the lobula compute binocular information. Our results provide new insight into where and how the visual information acquired by the two eyes is first combined in the brain of an arthropod.
Collapse
|
13
|
Wilby D, Riches S, Daly IM, Bird A, Wheelwright M, Foster JJ. Hermit crabs (Pagurus bernhardus) use visual contrast in self-assessment of camouflage. J Exp Biol 2018; 221:221/13/jeb173831. [DOI: 10.1242/jeb.173831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/15/2018] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Animals can make use of camouflage to reduce the likelihood of visual detection or recognition and thus improve their chances of survival. Background matching, where body colouration is closely matched to the surrounding substrate, is one form of camouflage. Hermit crabs have the opportunity to choose their camouflage independently of body colouration as they inhabit empty gastropod shells, making them ideal to study their choice of camouflage. We used 3D-printed artificial shells of varying contrasts against a grey substrate to test whether hermit crabs prefer shells that they perceive as less conspicuous. Contrast-minimising shells were chosen for Weber contrasts stronger than −0.5. However, in looming experiments, animals responded to contrasts as weak as −0.2, indicating that while they can detect differences between shells and the background, they are only motivated to move into those shells when the alternatives contrast strongly. This suggests a trade-off between camouflage and vulnerability introduced by switching shells.
Collapse
Affiliation(s)
- David Wilby
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel Riches
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Ilse M. Daly
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Andrew Bird
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | | |
Collapse
|
14
|
Tomsic D, Sztarker J, Berón de Astrada M, Oliva D, Lanza E. The predator and prey behaviors of crabs: from ecology to neural adaptations. J Exp Biol 2017; 220:2318-2327. [DOI: 10.1242/jeb.143222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Predator avoidance and prey capture are among the most vital of animal behaviors. They require fast reactions controlled by comparatively straightforward neural circuits often containing giant neurons, which facilitates their study with electrophysiological techniques. Naturally occurring avoidance behaviors, in particular, can be easily and reliably evoked in the laboratory, enabling their neurophysiological investigation. Studies in the laboratory alone, however, can lead to a biased interpretation of an animal's behavior in its natural environment. In this Review, we describe current knowledge – acquired through both laboratory and field studies – on the visually guided escape behavior of the crab Neohelice granulata. Analyses of the behavioral responses to visual stimuli in the laboratory have revealed the main characteristics of the crab's performance, such as the continuous regulation of the speed and direction of the escape run, or the enduring changes in the strength of escape induced by learning and memory. This work, in combination with neuroanatomical and electrophysiological studies, has allowed the identification of various giant neurons, the activity of which reflects most essential aspects of the crabs' avoidance performance. In addition, behavioral analyses performed in the natural environment reveal a more complex picture: crabs make use of much more information than is usually available in laboratory studies. Moreover, field studies have led to the discovery of a robust visually guided chasing behavior in Neohelice. Here, we describe similarities and differences in the results obtained between the field and the laboratory, discuss the sources of any differences and highlight the importance of combining the two approaches.
Collapse
Affiliation(s)
- Daniel Tomsic
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Julieta Sztarker
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Martín Berón de Astrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| | - Damián Oliva
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, CP1878, CONICET, Argentina
| | - Estela Lanza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular, Pabellón 2, Ciudad Universitaria, CP1428, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Ciudad Universitaria, CP1428, Buenos Aires, Argentina
| |
Collapse
|
15
|
Brain architecture of the Pacific White Shrimp Penaeus vannamei Boone, 1931 (Malacostraca, Dendrobranchiata): correspondence of brain structure and sensory input? Cell Tissue Res 2017; 369:255-271. [PMID: 28389816 DOI: 10.1007/s00441-017-2607-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 02/20/2017] [Indexed: 10/19/2022]
Abstract
Penaeus vannamei (Dendrobranchiata, Decapoda) is best known as the "Pacific White Shrimp" and is currently the most important crustacean in commercial aquaculture worldwide. Although the neuroanatomy of crustaceans has been well examined in representatives of reptant decapods ("ground-dwelling decapods"), there are only a few studies focusing on shrimps and prawns. In order to obtain insights into the architecture of the brain of P. vannamei, we use neuroanatomical methods including X-ray micro-computed tomography, 3D reconstruction and immunohistochemical staining combined with confocal laser-scanning microscopy and serial sectioning. The brain of P. vannamei exhibits all the prominent neuropils and tracts that characterize the ground pattern of decapod crustaceans. However, the size proportion of some neuropils is salient. The large lateral protocerebrum that comprises the visual neuropils as well as the hemiellipsoid body and medulla terminalis is remarkable. This observation corresponds with the large size of the compound eyes of these animals. In contrast, the remaining median part of the brain is relatively small. It is dominated by the paired antenna 2 neuropils, while the deutocerebral chemosensory lobes play a minor role. Our findings suggest that visual input from the compound eyes and mechanosensory input from the second pair of antennae are major sensory modalities, which this brain processes.
Collapse
|
16
|
Huang L, Yuan T, Tan M, Xi Y, Hu Y, Tao Q, Zhao Z, Zheng J, Han Y, Xu F, Luo M, Sollars PJ, Pu M, Pickard GE, So KF, Ren C. A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nat Commun 2017; 8:14908. [PMID: 28361990 PMCID: PMC5381010 DOI: 10.1038/ncomms14908] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/13/2017] [Indexed: 01/19/2023] Open
Abstract
Animals promote their survival by avoiding rapidly approaching objects that indicate threats. In mice, looming-evoked defensive responses are triggered by the superior colliculus (SC) which receives direct retinal inputs. However, the specific neural circuits that begin in the retina and mediate this important behaviour remain unclear. Here we identify a subset of retinal ganglion cells (RGCs) that controls mouse looming-evoked defensive responses through axonal collaterals to the dorsal raphe nucleus (DRN) and SC. Looming signals transmitted by DRN-projecting RGCs activate DRN GABAergic neurons that in turn inhibit serotoninergic neurons. Moreover, activation of DRN serotoninergic neurons reduces looming-evoked defensive behaviours. Thus, a dedicated population of RGCs signals rapidly approaching visual threats and their input to the DRN controls a serotonergic self-gating mechanism that regulates innate defensive responses. Our study provides new insights into how the DRN and SC work in concert to extract and translate visual threats into defensive behavioural responses.
Collapse
Affiliation(s)
- Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Tifei Yuan
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Minjie Tan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yu Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Qian Tao
- Psychology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Zhikai Zhao
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Yushui Han
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Minmin Luo
- National Institute of Biological Sciences, Zhongguancun Life Science, Park 7 Science Park Road, Beijing 102206, China
| | - Patricia J Sollars
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA
| | - Mingliang Pu
- Department of Anatomy, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Gary E Pickard
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska 68583, USA.,Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China.,Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chaoran Ren
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou 510632, China.,Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|