1
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
2
|
Ito H, Fukatsu N, Rahaman SM, Mukai Y, Izawa S, Ono D, Kilduff TS, Yamanaka A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. Proc Natl Acad Sci U S A 2023; 120:e2301951120. [PMID: 37796986 PMCID: PMC10576136 DOI: 10.1073/pnas.2301951120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/10/2023] [Indexed: 10/07/2023] Open
Abstract
Narcolepsy is a sleep disorder caused by deficiency of orexin signaling. However, the neural mechanisms by which deficient orexin signaling causes the abnormal rapid eye movement (REM) sleep characteristics of narcolepsy, such as cataplexy and frequent transitions to REM states, are not fully understood. Here, we determined the activity dynamics of orexin neurons during sleep that suppress the abnormal REM sleep architecture of narcolepsy. Orexin neurons were highly active during wakefulness, showed intermittent synchronous activity during non-REM (NREM) sleep, were quiescent prior to the transition from NREM to REM sleep, and a small subpopulation of these cells was active during REM sleep. Orexin neurons that lacked orexin peptides were less active during REM sleep and were mostly silent during cataplexy. Optogenetic inhibition of orexin neurons established that the activity dynamics of these cells during NREM sleep regulate NREM-REM sleep transitions. Inhibition of orexin neurons during REM sleep increased subsequent REM sleep in "orexin intact" mice and subsequent cataplexy in mice lacking orexin peptides, indicating that the activity of a subpopulation of orexin neurons during the preceding REM sleep suppresses subsequent REM sleep and cataplexy. Thus, these results identify how deficient orexin signaling during sleep results in the abnormal REM sleep architecture characteristic of narcolepsy.
Collapse
Affiliation(s)
- Hiroto Ito
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Japan Society for the Promotion of Science Research Fellowship for Young Scientists, Tokyo102-0083, Japan
| | - Noriaki Fukatsu
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Sheikh Mizanur Rahaman
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Shuntaro Izawa
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
| | - Thomas S. Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA94025
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya466-8550, Japan
- Chinese Institute for Brain Research, Beijing102206, China
- National Institute for Physiological Sciences, Aichi444-8585, Japan
- National Institutes of Natural Sciences, Aichi444-8585, Japan
- Division of Brain Sciences Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo160-8582, Japan
| |
Collapse
|
3
|
Qiao QC, Wen SY, Jiang YB, Feng H, Xu R, Huang YJ, Chen BY, Chen WH, Niu JH, Hu R, Yang N, Zhang J. Orexin recruits non-selective cationic conductance and endocannabinoid to dynamically modulate firing of caudal pontine reticular nuclear neurones. J Physiol 2023; 601:3585-3604. [PMID: 37421377 DOI: 10.1113/jp284602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
The neuropeptide orexin is involved in motor circuit function. However, its modulation on neuronal activities of motor structures, integrating orexin's diverse downstream molecular cascades, remains elusive. By combining whole-cell patch-clamp recordings and neuropharmacological methods, we revealed that both non-selective cationic conductance (NSCC) and endocannabinoids (eCBs) are recruited by orexin signalling on reticulospinal neurones in the caudal pontine reticular nucleus (PnC). The orexin-NSCC cascade provides a depolarizing force that proportionally enhances the firing-responsive gain of these neurones. Meanwhile, the orexin-eCB cascade selectively attenuates excitatory synaptic strength in these neurones by activating presynaptic cannabinoid receptor type 1. This cascade restrains the firing response of the PnC reticulospinal neurones to excitatory inputs. Intriguingly, non-linear or linear interactions between orexin postsynaptic excitation and presynaptic inhibition can influence the firing responses of PnC reticulospinal neurones in different directions. When presynaptic inhibition is in the lead, non-linear interactions can prominently downregulate or even gate the firing response. Conversely, linear interactions occur to promote the firing response, and these linear interactions can be considered a proportional reduction in the contribution of depolarization to firing by presynaptic inhibition. Through the dynamic employment of these interactions, adaptive modulation may be achieved by orexin to restrain or even gate the firing output of the PnC to weak/irrelevant input signals and facilitate those to salient signals. KEY POINTS: This study investigated the effects of orexin on the firing activity of PnC reticulospinal neurones, a key element of central motor control. We found that orexin recruited both the non-selective cationic conductances (NSCCs) and endocannabinoid (eCB)-cannabinoid receptor type 1 (CB1R) system to pontine reticular nucleus (PnC) reticulospinal neurones. The orexin-NSCC cascade exerts a postsynaptic excitation that enhances the firing response, whereas the orexin-eCB-CB1R cascade selectively attenuates excitatory synaptic strength that restrains the firing response. The postsynaptic and presynaptic actions of orexins occur in an overlapping time window and interact to dynamically modulate firings in PnC reticulospinal neurones. Non-linear interactions occur when presynaptic inhibition of orexin is in the lead, and these interactions can prominently downregulate or even gate firing responses in PnC reticulospinal neurones. Linear interactions occur when postsynaptic excitation of orexin is in the lead, and these interactions can promote the firing response. These linear interactions can be considered a proportional reduction of the contribution of depolarization to firing by presynaptic inhibition.
Collapse
Affiliation(s)
- Qi-Cheng Qiao
- Department of Physiology, Army Medical University, Chongqing, China
| | - Si-Yi Wen
- Department of Physiology, Army Medical University, Chongqing, China
| | - Yi-Bin Jiang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hui Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Army Medical University, Chongqing, China
| | - Rui Xu
- Department of Physiology, Army Medical University, Chongqing, China
| | - Yan-Jia Huang
- Department of Physiology, Army Medical University, Chongqing, China
| | - Bang-Yun Chen
- Department of Physiology, Army Medical University, Chongqing, China
| | - Wen-Hao Chen
- Department of Physiology, Army Medical University, Chongqing, China
| | - Jia-Hui Niu
- Department of Physiology, Army Medical University, Chongqing, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Army Medical University, Chongqing, China
| | - Nian Yang
- Department of Physiology, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Physiology, Army Medical University, Chongqing, China
- Department of Neurobiology, Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Ouyang H, Zhou Z, Dai X, Zhang J. Circadian rhythm of daytime sleepiness in pediatric narcolepsy: A pilot study. Brain Behav 2023; 13:e3109. [PMID: 37287413 PMCID: PMC10454348 DOI: 10.1002/brb3.3109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Excessive daytime sleepiness (EDS) has been far back reported as the most disabling symptom in the pediatric narcoleptic patients. However, there is a lack of studies to examine the circadian rhythms of EDS in pediatric narcoleptic population. Therefore, we aim to investigate the circadian rhythm of EDS in pediatric narcolepsy patients. METHODS We identified 50 pediatric narcoleptic patients (36 males and 14 females, mean age 13.68 ± 2.75 years). Data were collected through interviews and the relevant questionnaires (children depression inventory [CDI] and the pediatric quality of life inventory [PedsQL]). RESULT The frequencies of sleep attacks during different intervals of the day differed significantly, with higher frequency in the morning (p < .001). The times of sleep attacks in the morning and in the afternoon were significantly associated with the degree of impairment on class and the severity of worry about sleepiness, with spearman correlation coefficient ranging from .289 to .496 (p < .05). The total scores of PedsQL and CDI differed significantly among morning sleepiness dominant, afternoon sleepiness dominant, and evening sleepiness dominant groups (p = .042, p = .040). The severity scores of the narcoleptic patients' sleepiness had two peaks, one of which occurred at 16:00, and the other peaks occurred at about 11:00. CONCLUSION These results suggest that changes based on the circadian rhythm of sleepiness of the pediatric narcoleptic patients should be made in the treatment strategy. In addition, regulating the secretion of melatonin could serve as a promising treatment to relieve sleepiness in the future.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Clinical NeurologyPeople's Hospital of Peking UniversityBeijingChina
| | - Zechen Zhou
- Department of Peking UniversityHealth Science CenterBeijingChina
| | - Xiaotong Dai
- Department of Peking UniversityHealth Science CenterBeijingChina
| | - Jun Zhang
- Department of Clinical NeurologyPeople's Hospital of Peking UniversityBeijingChina
| |
Collapse
|
5
|
Fraigne JJ, Wang J, Lee H, Luke R, Pintwala SK, Peever JH. A novel machine learning system for identifying sleep-wake states in mice. Sleep 2023; 46:zsad101. [PMID: 37021715 PMCID: PMC10262194 DOI: 10.1093/sleep/zsad101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/23/2023] [Indexed: 04/07/2023] Open
Abstract
Research into sleep-wake behaviors relies on scoring sleep states, normally done by manual inspection of electroencephalogram (EEG) and electromyogram (EMG) recordings. This is a highly time-consuming process prone to inter-rater variability. When studying relationships between sleep and motor function, analyzing arousal states under a four-state system of active wake (AW), quiet wake (QW), nonrapid-eye-movement (NREM) sleep, and rapid-eye-movement (REM) sleep provides greater precision in behavioral analysis but is a more complex model for classification than the traditional three-state identification (wake, NREM, and REM sleep) usually used in rodent models. Characteristic features between sleep-wake states provide potential for the use of machine learning to automate classification. Here, we devised SleepEns, which uses a novel ensemble architecture, the time-series ensemble. SleepEns achieved 90% accuracy to the source expert, which was statistically similar to the performance of two other human experts. Considering the capacity for classification disagreements that are still physiologically reasonable, SleepEns had an acceptable performance of 99% accuracy, as determined blindly by the source expert. Classifications given by SleepEns also maintained similar sleep-wake characteristics compared to expert classifications, some of which were essential for sleep-wake identification. Hence, our approach achieves results comparable to human ability in a fraction of the time. This new machine-learning ensemble will significantly impact the ability of sleep researcher to detect and study sleep-wake behaviors in mice and potentially in humans.
Collapse
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jeffrey Wang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Hanhee Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Russell Luke
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Sara K Pintwala
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - John H Peever
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Meskill GJ, Kallweit U, Zarycranski D, Caussé C, Finance O, Ligneau X, Davis CW. Pitolisant for the treatment of cataplexy in adults with narcolepsy. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2021.2022472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Gerard J. Meskill
- Tricoastal Narcolepsy and Sleep Disorders Center, Sugar Land, Texas, USA
| | - Ulf Kallweit
- Center for Narcolepsy, Hypersomnias and Daytime Sleepiness, Universität Witten/Herdecke, Witten, Germany
| | | | | | | | | | - Craig W. Davis
- Harmony Biosciences, Plymouth Meeting, Pennsylvania, USA
| |
Collapse
|
7
|
Taksokhan A, Fraigne J, Peever J. Neuroscience: Glutamate neurons in the medial septum control wakefulness. Curr Biol 2021; 31:R340-R342. [PMID: 33848488 DOI: 10.1016/j.cub.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite intensive research efforts, biologists still do not have a clear picture of the brain circuitry that controls behavioural arousal. However, new research has identified a novel septo-hypothalamic circuit that functions to promote wakefulness.
Collapse
Affiliation(s)
- Anita Taksokhan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jimmy Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
8
|
Gool JK, Cross N, Fronczek R, Lammers GJ, van der Werf YD, Dang-Vu TT. Neuroimaging in Narcolepsy and Idiopathic Hypersomnia: from Neural Correlates to Clinical Practice. CURRENT SLEEP MEDICINE REPORTS 2020. [DOI: 10.1007/s40675-020-00185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Bandaru SS, Khanday MA, Ibrahim N, Naganuma F, Vetrivelan R. Sleep-Wake Control by Melanin-Concentrating Hormone (MCH) Neurons: a Review of Recent Findings. Curr Neurol Neurosci Rep 2020; 20:55. [PMID: 33006677 PMCID: PMC11891936 DOI: 10.1007/s11910-020-01075-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE OF THE REVIEW Melanin-concentrating hormone (MCH)-expressing neurons located in the lateral hypothalamus are considered as an integral component of sleep-wake circuitry. However, the precise role of MCH neurons in sleep-wake regulation has remained unclear, despite several years of research employing a wide range of techniques. We review recent data on this aspect, which are mostly inconsistent, and propose a novel role for MCH neurons in sleep regulation. RECENT FINDINGS While almost all studies using "gain-of-function" approaches show an increase in rapid eye movement sleep (or paradoxical sleep; PS), loss-of-function approaches have not shown reductions in PS. Similarly, the reported changes in wakefulness or non-rapid eye movement sleep (slow-wave sleep; SWS) with manipulation of the MCH system using conditional genetic methods are inconsistent. Currently available data do not support a role for MCH neurons in spontaneous sleep-wake but imply a crucial role for them in orchestrating sleep-wake responses to changes in external and internal environments.
Collapse
Affiliation(s)
- Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
| | - Mudasir A Khanday
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Nazifa Ibrahim
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Department of Public Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA
- Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center, 3 Blackfan Circle, Center for Life Science # 711, Boston, MA, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Feng H, Wen SY, Qiao QC, Pang YJ, Wang SY, Li HY, Cai J, Zhang KX, Chen J, Hu ZA, Luo FL, Wang GZ, Yang N, Zhang J. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep. Nat Commun 2020; 11:3661. [PMID: 32694504 PMCID: PMC7374574 DOI: 10.1038/s41467-020-17401-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/24/2020] [Indexed: 11/30/2022] Open
Abstract
The relationship between orexin/hypocretin and rapid eye movement (REM) sleep remains elusive. Here, we find that a proportion of orexin neurons project to the sublaterodorsal tegmental nucleus (SLD) and exhibit REM sleep-related activation. In SLD, orexin directly excites orexin receptor-positive neurons (occupying ~3/4 of total-population) and increases gap junction conductance among neurons. Their interaction spreads the orexin-elicited partial-excitation to activate SLD network globally. Besides, the activated SLD network exhibits increased probability of synchronized firings. This synchronized excitation promotes the correspondence between SLD and its downstream target to enhance SLD output. Using optogenetics and fiber-photometry, we consequently find that orexin-enhanced SLD output prolongs REM sleep episodes through consolidating brain state activation/muscle tone inhibition. After chemogenetic silencing of SLD orexin signaling, a ~17% reduction of REM sleep amounts and disruptions of REM sleep muscle atonia are observed. These findings reveal a stabilization role of orexin in REM sleep. Orexin signaling is provided by diffusely distributed fibers and involved in different brain circuits that orchestrate sleep and wakefulness states. Here, the authors show that a proportion of orexin neurons project to the sublaterodorsal tegmental nucleus and exhibit rapid eye movement (REM) sleep-related actions.
Collapse
Affiliation(s)
- Hui Feng
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Si-Yi Wen
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Qi-Cheng Qiao
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Yu-Jie Pang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Sheng-Yun Wang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Hao-Yi Li
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Jiao Cai
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Kai-Xuan Zhang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Jing Chen
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Zhi-An Hu
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Fen-Lan Luo
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Guan-Zhong Wang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China
| | - Nian Yang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China.
| | - Jun Zhang
- Department of Physiology, Third Military Medical University, 400038, Chongqing, P.R. China.
| |
Collapse
|
11
|
Naganuma F, Bandaru SS, Absi G, Mahoney CE, Scammell TE, Vetrivelan R. Melanin-concentrating hormone neurons contribute to dysregulation of rapid eye movement sleep in narcolepsy. Neurobiol Dis 2018; 120:12-20. [PMID: 30149182 PMCID: PMC6195361 DOI: 10.1016/j.nbd.2018.08.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/02/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022] Open
Abstract
The lateral hypothalamus contains neurons producing orexins that promote wakefulness and suppress REM sleep as well as neurons producing melanin-concentrating hormone (MCH) that likely promote REM sleep. Narcolepsy with cataplexy is caused by selective loss of the orexin neurons, and the MCH neurons appear unaffected. As the orexin and MCH systems exert opposing effects on REM sleep, we hypothesized that imbalance in this REM sleep-regulating system due to activity in the MCH neurons may contribute to the striking REM sleep dysfunction characteristic of narcolepsy. To test this hypothesis, we chemogenetically activated the MCH neurons and pharmacologically blocked MCH signaling in a murine model of narcolepsy and studied the effects on sleep-wake behavior and cataplexy. To chemoactivate MCH neurons, we injected an adeno-associated viral vector containing the hM3Dq stimulatory DREADD into the lateral hypothalamus of orexin null mice that also express Cre recombinase in the MCH neurons (MCH-Cre::OX-KO mice) and into control MCH-Cre mice with normal orexin expression. In both lines of mice, activation of MCH neurons by clozapine-N-oxide (CNO) increased rapid eye movement (REM) sleep without altering other states. In mice lacking orexins, activation of the MCH neurons also increased abnormal intrusions of REM sleep manifest as cataplexy and short latency transitions into REM sleep (SLREM). Conversely, a MCH receptor 1 antagonist, SNAP 94847, almost completely eliminated SLREM and cataplexy in OX-KO mice. These findings affirm that MCH neurons promote REM sleep under normal circumstances, and their activity in mice lacking orexins likely triggers abnormal intrusions of REM sleep into non-REM sleep and wake, resulting in the SLREM and cataplexy characteristic of narcolepsy.
Collapse
Affiliation(s)
- Fumito Naganuma
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA; Division of Pharmacology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai 983-8536, Japan
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Gianna Absi
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA
| | - Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston MA-02215, USA.
| |
Collapse
|
12
|
Héricé C, Patel AA, Sakata S. Circuit mechanisms and computational models of REM sleep. Neurosci Res 2018; 140:77-92. [PMID: 30118737 PMCID: PMC6403104 DOI: 10.1016/j.neures.2018.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/03/2018] [Accepted: 07/10/2018] [Indexed: 01/31/2023]
Abstract
REM sleep was discovered in the 1950s. Many hypothalamic and brainstem areas have been found to contribute to REM sleep. An up-to-date picture of REM-sleep-regulating circuits is reviewed. A brief overview of computational models for REM sleep regulation is provided. Outstanding issues for future studies are discussed.
Rapid eye movement (REM) sleep or paradoxical sleep is an elusive behavioral state. Since its discovery in the 1950s, our knowledge of the neuroanatomy, neurotransmitters and neuropeptides underlying REM sleep regulation has continually evolved in parallel with the development of novel technologies. Although the pons was initially discovered to be responsible for REM sleep, it has since been revealed that many components in the hypothalamus, midbrain, pons, and medulla also contribute to REM sleep. In this review, we first provide an up-to-date overview of REM sleep-regulating circuits in the brainstem and hypothalamus by summarizing experimental evidence from neuroanatomical, neurophysiological and gain- and loss-of-function studies. Second, because quantitative approaches are essential for understanding the complexity of REM sleep-regulating circuits and because mathematical models have provided valuable insights into the dynamics underlying REM sleep genesis and maintenance, we summarize computational studies of the sleep-wake cycle, with an emphasis on REM sleep regulation. Finally, we discuss outstanding issues for future studies.
Collapse
Affiliation(s)
- Charlotte Héricé
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Amisha A Patel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Shuzo Sakata
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
13
|
Tsuneki H, Wada T, Sasaoka T. Chronopathophysiological implications of orexin in sleep disturbances and lifestyle-related disorders. Pharmacol Ther 2018; 186:25-44. [PMID: 29289556 DOI: 10.1016/j.pharmthera.2017.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
|
15
|
Chauhan R, Chen KF, Kent BA, Crowther DC. Central and peripheral circadian clocks and their role in Alzheimer's disease. Dis Model Mech 2017; 10:1187-1199. [PMID: 28993311 PMCID: PMC5665458 DOI: 10.1242/dmm.030627] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Molecular and cellular oscillations constitute an internal clock that tracks the time of day and permits organisms to optimize their behaviour and metabolism to suit the daily demands they face. The workings of this internal clock become impaired with age. In this review, we discuss whether such age-related impairments in the circadian clock interact with age-related neurodegenerative disorders, such as Alzheimer's disease. Findings from mouse and fly models of Alzheimer's disease have accelerated our understanding of the interaction between neurodegeneration and circadian biology. These models show that neurodegeneration likely impairs circadian rhythms either by damaging the central clock or by blocking its communication with other brain areas and with peripheral tissues. The consequent sleep and metabolic deficits could enhance the susceptibility of the brain to further degenerative processes. Thus, circadian dysfunction might be both a cause and an effect of neurodegeneration. We also discuss the primary role of light in the entrainment of the central clock and describe important, alternative time signals, such as food, that play a role in entraining central and peripheral circadian clocks. Finally, we propose how these recent insights could inform efforts to develop novel therapeutic approaches to re-entrain arrhythmic individuals with neurodegenerative disease.
Collapse
Affiliation(s)
- Ruchi Chauhan
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Ko-Fan Chen
- Institute of Neurology, UCL, London, WC1N 3BG, UK
| | - Brianne A Kent
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, V6T 1Z3, Canada
| | - Damian C Crowther
- Neuroscience, Innovative Medicines and Early Development, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| |
Collapse
|
16
|
Ramm M, Jafarpour A, Boentert M, Lojewsky N, Young P, Heidbreder A. The Perception and Attention Functions test battery as a measure of neurocognitive impairment in patients with suspected central disorders of hypersomnolence. J Sleep Res 2017; 27:273-280. [DOI: 10.1111/jsr.12587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Markus Ramm
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| | - Arsalan Jafarpour
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| | - Matthias Boentert
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| | - Nelly Lojewsky
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| | - Peter Young
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| | - Anna Heidbreder
- Department of Sleep Medicine and Neuromuscular Disorders; University Hospital Muenster; Muenster Germany
| |
Collapse
|
17
|
Abstract
How does the brain control dreams? New science shows that a small node of cells in the medulla - the most primitive part of the brain - may function to control REM sleep, the brain state that underlies dreaming.
Collapse
Affiliation(s)
- John Peever
- Departments of Cell and Systems Biology and Physiology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|