1
|
Savage JT, Ramirez JJ, Risher WC, Wang Y, Irala D, Eroglu C. SynBot is an open-source image analysis software for automated quantification of synapses. CELL REPORTS METHODS 2024; 4:100861. [PMID: 39255792 PMCID: PMC11440803 DOI: 10.1016/j.crmeth.2024.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024]
Abstract
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low-throughput analysis methods that are challenging to learn, and the results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
Collapse
Affiliation(s)
- Justin T Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Juan J Ramirez
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| | - Cagla Eroglu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
2
|
Nowacka A, Getz AM, Bessa-Neto D, Choquet D. Activity-dependent diffusion trapping of AMPA receptors as a key step for expression of early LTP. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230220. [PMID: 38853553 PMCID: PMC11343219 DOI: 10.1098/rstb.2023.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/11/2024] Open
Abstract
This review focuses on the activity-dependent diffusion trapping of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as a crucial mechanism for the expression of early long-term potentiation (LTP), a process central to learning and memory. Despite decades of research, the precise mechanisms by which LTP induction leads to an increase in AMPAR responses at synapses have been elusive. We review the different hypotheses that have been put forward to explain the increased AMPAR responsiveness during LTP. We discuss the dynamic nature of AMPAR complexes, including their constant turnover and activity-dependent modifications that affect their synaptic accumulation. We highlight a hypothesis suggesting that AMPARs are diffusively trapped at synapses through activity-dependent interactions with protein-based binding slots in the post-synaptic density (PSD), offering a potential explanation for the increased synaptic strength during LTP. Furthermore, we outline the challenges still to be addressed before we fully understand the functional roles and molecular mechanisms of AMPAR dynamic nanoscale organization in LTP. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Agata Nowacka
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Angela M. Getz
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| | - Diogo Bessa-Neto
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
| | - Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, BordeauxF-33000, France
- University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, BordeauxF-33000, France
| |
Collapse
|
3
|
Harris KM, Kuwajima M, Flores JC, Zito K. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230224. [PMID: 38853547 PMCID: PMC11529630 DOI: 10.1098/rstb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kristen M. Harris
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Masaaki Kuwajima
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618, USA
| |
Collapse
|
4
|
Savage JT, Ramirez J, Risher WC, Wang Y, Irala D, Eroglu C. SynBot: An open-source image analysis software for automated quantification of synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546578. [PMID: 37425715 PMCID: PMC10327002 DOI: 10.1101/2023.06.26.546578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The formation of precise numbers of neuronal connections, known as synapses, is crucial for brain function. Therefore, synaptogenesis mechanisms have been one of the main focuses of neuroscience. Immunohistochemistry is a common tool for visualizing synapses. Thus, quantifying the numbers of synapses from light microscopy images enables screening the impacts of experimental manipulations on synapse development. Despite its utility, this approach is paired with low throughput analysis methods that are challenging to learn and results are variable between experimenters, especially when analyzing noisy images of brain tissue. We developed an open-source ImageJ-based software, SynBot, to address these technical bottlenecks by automating the analysis. SynBot incorporates the advanced algorithms ilastik and SynQuant for accurate thresholding for synaptic puncta identification, and the code can easily be modified by users. The use of this software will allow for rapid and reproducible screening of synaptic phenotypes in healthy and diseased nervous systems.
Collapse
Affiliation(s)
- Justin T. Savage
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Juan Ramirez
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - W. Christopher Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine at Marshall University,Huntington, WV 25755, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Dolores Irala
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Cagla Eroglu
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Lead contact
| |
Collapse
|
5
|
Cuhadar U, Calzado-Reyes L, Pascual-Caro C, Aberra AS, Ritzau-Jost A, Aggarwal A, Ibata K, Podgorski K, Yuzaki M, Geis C, Hallerman S, Hoppa MB, de Juan-Sanz J. Activity-driven synaptic translocation of LGI1 controls excitatory neurotransmission. Cell Rep 2024; 43:114186. [PMID: 38700985 PMCID: PMC11156761 DOI: 10.1016/j.celrep.2024.114186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/05/2024] Open
Abstract
The fine control of synaptic function requires robust trans-synaptic molecular interactions. However, it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here, we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins, LGI1 and ADAM23, and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly, synaptic LGI1 is primarily not secreted, as described elsewhere, but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse, adjusting excitatory transmission to synaptic firing rates. Accordingly, we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function.
Collapse
Affiliation(s)
- Ulku Cuhadar
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Lorenzo Calzado-Reyes
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Carlos Pascual-Caro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Aman S Aberra
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Andreas Ritzau-Jost
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Abhi Aggarwal
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Keiji Ibata
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | | | - Michisuke Yuzaki
- Department of Neurophysiology, Keio University, Tokyo 160-8582, Japan
| | - Christian Geis
- Department of Neurology, Section Translational Neuroimmunology, Jena University Hospital, 07747 Jena, Germany
| | - Stefan Hallerman
- Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Michael B Hoppa
- Department of Biology, Dartmouth College, Hanover, NH 03755, USA
| | - Jaime de Juan-Sanz
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| |
Collapse
|
6
|
Verpoort B, de Wit J. Cell Adhesion Molecule Signaling at the Synapse: Beyond the Scaffold. Cold Spring Harb Perspect Biol 2024; 16:a041501. [PMID: 38316556 PMCID: PMC11065171 DOI: 10.1101/cshperspect.a041501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Synapses are specialized intercellular junctions connecting pre- and postsynaptic neurons into functional neural circuits. Synaptic cell adhesion molecules (CAMs) constitute key players in synapse development that engage in homo- or heterophilic interactions across the synaptic cleft. Decades of research have identified numerous synaptic CAMs, mapped their trans-synaptic interactions, and determined their role in orchestrating synaptic connectivity. However, surprisingly little is known about the molecular mechanisms that translate trans-synaptic adhesion into the assembly of pre- and postsynaptic compartments. Here, we provide an overview of the intracellular signaling pathways that are engaged by synaptic CAMs and highlight outstanding issues to be addressed in future work.
Collapse
Affiliation(s)
- Ben Verpoort
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
7
|
Xu N, Cao R, Chen SY, Gou XZ, Wang B, Luo HM, Gao F, Tang AH. Structural and functional reorganization of inhibitory synapses by activity-dependent cleavage of neuroligin-2. Proc Natl Acad Sci U S A 2024; 121:e2314541121. [PMID: 38657049 PMCID: PMC11067042 DOI: 10.1073/pnas.2314541121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.
Collapse
Affiliation(s)
- Na Xu
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Ran Cao
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Si-Yu Chen
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Xu-Zhuo Gou
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| | - Bin Wang
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan450001, China
| | - Hong-Mei Luo
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
| | - Ai-Hui Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital, University of Science and Technology of China, Luyang District, Hefei, Anhui230001, China
- Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Gaoxin District, Hefei, Anhui230088, China
- Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Shushan District, Hefei, Anhui230027, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Baohe District, Hefei, Anhui230026, China
| |
Collapse
|
8
|
Dharmasri PA, Levy AD, Blanpied TA. Differential nanoscale organization of excitatory synapses onto excitatory vs. inhibitory neurons. Proc Natl Acad Sci U S A 2024; 121:e2315379121. [PMID: 38625946 PMCID: PMC11047112 DOI: 10.1073/pnas.2315379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters (NCs) whose precise alignment across the cleft in a transsynaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses-those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses, presynaptic Munc13-1 and postsynaptic PSD-95 both form NCs that demonstrate alignment, underscoring synaptic nanostructure and the transsynaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell was also represented in Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
- University of Maryland-Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
9
|
Zhang Y, Liu J, Mao X, Fan H, Li F, Wang S, Li J, Li M, Zuo X. Reconstruction of Vesicle Assemblies with DNA Nanorulers for Resolving Heterogeneity of Vesicles in Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308344. [PMID: 37921116 DOI: 10.1002/adma.202308344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Indexed: 11/04/2023]
Abstract
Nanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved. Here, this work uses synthetic vesicles and DNA nanorulers to reconstruct in vitro the vesicle assemblies that mimic vesicle clusters in living cells. DNA nanorulers program the lateral distance of vesicle assemblies from 3 to 10 nm. This work uses the carbon fiber nanoelectrode (CFNE) to amperometric monitor artificial vesicle assemblies with sub-10 nm interspaces, and obtain a larger proportion of complex events. This work resolves the heterogeneity of individual vesicle release kinetics in PC12 cells with the temporal resolution down to ≈0.1 ms. This work further analyzes the aggregation state of intracellular vesicles and the exocytosis of living cells with electrochemical vesicle cytometry. The results indicate that the exocytosis of vesicle clusters is critically dependent on the size of clusters. This technology has the potential as a tool to shed light on the heterogeneity analysis of vesicle populations.
Collapse
Affiliation(s)
- Yueyue Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiangbo Liu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongxuan Fan
- Shanghai Soong Ching Ling School, Shanghai, 201700, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiang Li
- Institute of Materials Biology, Shanghai University, Shanghai, 200444, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
10
|
Ogelman R, Gomez Wulschner LE, Hoelscher VM, Hwang IW, Chang VN, Oh WC. Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex. Nat Commun 2024; 15:1368. [PMID: 38365905 PMCID: PMC10873381 DOI: 10.1038/s41467-024-45734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.
Collapse
Affiliation(s)
- Roberto Ogelman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Luis E Gomez Wulschner
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria M Hoelscher
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - In-Wook Hwang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Victoria N Chang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Won Chan Oh
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Dharmasri PA, DeMarco EM, Anderson MC, Levy AD, Blanpied TA. Loss of postsynaptic NMDARs drives nanoscale reorganization of Munc13-1 and PSD-95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.574705. [PMID: 38260705 PMCID: PMC10802569 DOI: 10.1101/2024.01.12.574705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nanoscale protein organization within the active zone (AZ) and post-synaptic density (PSD) influences synaptic transmission. Nanoclusters of presynaptic Munc13-1 are associated with readily releasable pool size and neurotransmitter vesicle priming, while postsynaptic PSD-95 nanoclusters coordinate glutamate receptors across from release sites to control their opening probability. Nanocluster number, size, and protein density vary between synapse types and with development and plasticity, supporting a wide range of functional states at the synapse. Whether or how the receptors themselves control this critical architecture remains unclear. One prominent PSD molecular complex is the NMDA receptor (NMDAR). NMDARs coordinate several modes of signaling within synapses, giving them the potential to influence synaptic organization through direct protein interactions or through signaling. We found that loss of NMDARs results in larger synapses that contain smaller, denser, and more numerous PSD-95 nanoclusters. Intriguingly, NMDAR loss also generates retrograde reorganization of the active zone, resulting in denser, more numerous Munc13-1 nanoclusters, more of which are aligned with PSD-95 nanoclusters. Together, these changes to synaptic nanostructure predict stronger AMPA receptor-mediated transmission in the absence of NMDARs. Notably, while prolonged antagonism of NMDAR activity increases Munc13-1 density within nanoclusters, it does not fully recapitulate these trans-synaptic effects. Thus, our results confirm that NMDARs play an important role in maintaining pre- and postsynaptic nanostructure and suggest that both decreased NMDAR expression and suppressed NMDAR activity may exert distinct effects on synaptic function, yet through unique architectural mechanisms.
Collapse
Affiliation(s)
- Poorna A. Dharmasri
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
- Current address: Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Emily M. DeMarco
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Michael C. Anderson
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- University of Maryland Medicine Institute of Neuroscience Discovery, Baltimore, MD, USA
| |
Collapse
|
12
|
Sharma R, Neupane C, Pham TL, Lee M, Lee S, Lee SY, Nam MH, Kim CS, Park JB. Tonic Activation of NR2D-Containing NMDARs Exacerbates Dopaminergic Neuronal Loss in MPTP-Injected Parkinsonian Mice. J Neurosci 2023; 43:7730-7744. [PMID: 37726169 PMCID: PMC10648527 DOI: 10.1523/jneurosci.1955-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
NR2D subunit-containing NMDA receptors (NMDARs) gradually disappear during brain maturation but can be recruited by pathophysiological stimuli in the adult brain. Here, we report that 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication recruited NR2D subunit-containing NMDARs that generated an Mg2+-resistant tonic NMDA current (INMDA) in dopaminergic (DA) neurons in the midbrain of mature male mice. MPTP selectively generated an Mg2+-resistant tonic INMDA in DA neurons in the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA). Consistently, MPTP increased NR2D but not NR2B expression in the midbrain regions. Pharmacological or genetic NR2D interventions abolished the generation of Mg2+-resistant tonic INMDA in SNpc DA neurons, and thus attenuated subsequent DA neuronal loss and gait deficits in MPTP-treated mice. These results show that extrasynaptic NR2D recruitment generates Mg2+-resistant tonic INMDA and exacerbates DA neuronal loss, thus contributing to MPTP-induced Parkinsonism. The state-dependent NR2D recruitment could be a novel therapeutic target for mitigating cell type-specific neuronal death in neurodegenerative diseases.SIGNIFICANCE STATEMENT NR2D subunit-containing NMDA receptors (NMDARs) are widely expressed in the brain during late embryonic and early postnatal development, and then downregulated during brain maturation and preserved at low levels in a few regions of the adult brain. Certain stimuli can recruit NR2D subunits to generate tonic persistent NMDAR currents in nondepolarized neurons in the mature brain. Our results show that MPTP intoxication recruits NR2D subunits in midbrain dopaminergic (DA) neurons, which leads to tonic NMDAR current-promoting dopaminergic neuronal death and consequent abnormal gait behavior in the MPTP mouse model of Parkinson's disease (PD). This is the first study to indicate that extrasynaptic NR2D recruitment could be a target for preventing neuronal death in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramesh Sharma
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Chiranjivi Neupane
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Thuy Linh Pham
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Miae Lee
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Cuk-Seong Kim
- Department of Biomedicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Physiology, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin Bong Park
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08852, Republic of Korea
| |
Collapse
|
13
|
Tao-Cheng JH, Moreira SL, Winters CA, Reese TS, Dosemeci A. Modification of the synaptic cleft under excitatory conditions. Front Synaptic Neurosci 2023; 15:1239098. [PMID: 37840571 PMCID: PMC10568020 DOI: 10.3389/fnsyn.2023.1239098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
The synaptic cleft is the extracellular part of the synapse, bridging the pre- and postsynaptic membranes. The geometry and molecular organization of the cleft is gaining increased attention as an important determinant of synaptic efficacy. The present study by electron microscopy focuses on short-term morphological changes at the synaptic cleft under excitatory conditions. Depolarization of cultured hippocampal neurons with high K+ results in an increased frequency of synaptic profiles with clefts widened at the periphery (open clefts), typically exhibiting patches of membranes lined by postsynaptic density, but lacking associated presynaptic membranes (18.0% open clefts in high K+ compared to 1.8% in controls). Similarly, higher frequencies of open clefts were observed in adult brain upon a delay of perfusion fixation to promote excitatory/ischemic conditions. Inhibition of basal activity in cultured neurons through the application of TTX results in the disappearance of open clefts whereas application of NMDA increases their frequency (19.0% in NMDA vs. 5.3% in control and 2.6% in APV). Depletion of extracellular Ca2+ with EGTA also promotes an increase in the frequency of open clefts (16.6% in EGTA vs. 4.0% in controls), comparable to that by depolarization or NMDA, implicating dissociation of Ca2+-dependent trans-synaptic bridges. Dissociation of transsynaptic bridges under excitatory conditions may allow perisynaptic mobile elements, such as AMPA receptors to enter the cleft. In addition, peripheral opening of the cleft would facilitate neurotransmitter clearance and thus may have a homeostatic and/or protective function.
Collapse
Affiliation(s)
- Jung-Hwa Tao-Cheng
- NINDS Electron Microscopy Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra L. Moreira
- NINDS Electron Microscopy Facility, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Christine A. Winters
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas S. Reese
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Ayse Dosemeci
- Laboratory of Neurobiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
14
|
Dharmasri PA, Levy AD, Blanpied TA. Differential nanoscale organization of excitatory synapses onto excitatory vs inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.06.556279. [PMID: 37732271 PMCID: PMC10508768 DOI: 10.1101/2023.09.06.556279] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
A key feature of excitatory synapses is the existence of subsynaptic protein nanoclusters whose precise alignment across the cleft in a trans-synaptic nanocolumn influences the strength of synaptic transmission. However, whether nanocolumn properties vary between excitatory synapses functioning in different cellular contexts is unknown. We used a combination of confocal and DNA-PAINT super-resolution microscopy to directly compare the organization of shared scaffold proteins at two important excitatory synapses - those forming onto excitatory principal neurons (Ex→Ex synapses) and those forming onto parvalbumin-expressing interneurons (Ex→PV synapses). As in Ex→Ex synapses, we find that in Ex→PV synapses presynaptic Munc13-1 and postsynaptic PSD-95 both form nanoclusters that demonstrate alignment, underscoring synaptic nanostructure and the trans-synaptic nanocolumn as conserved organizational principles of excitatory synapses. Despite the general conservation of these features, we observed specific differences in the characteristics of pre- and postsynaptic Ex→PV nanostructure. Ex→PV synapses contained larger PSDs with fewer PSD-95 NCs when accounting for size than Ex→Ex synapses. Furthermore, the PSD-95 NCs were larger and denser. The identity of the postsynaptic cell also had a retrograde impact on Munc13-1 organization, as Ex→PV synapses hosted larger Munc13-1 puncta that contained less dense but larger and more numerous Munc13-1 NCs. Moreover, we measured the spatial variability of transsynaptic alignment in these synapse types, revealing protein alignment in Ex→PV synapses over a distinct range of distances compared to Ex→Ex synapses. We conclude that while general principles of nanostructure and alignment are shared, cell-specific elements of nanodomain organization likely contribute to functional diversity of excitatory synapses. Understanding the rules of synapse nanodomain assembly, which themselves are cell-type specific, will be essential for illuminating brain network dynamics.
Collapse
Affiliation(s)
- Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201
- University of Maryland Medicine Institute of Neuroscience Discovery, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
15
|
Ramsay HJ, Gookin SE, Ramsey AM, Kareemo DJ, Crosby KC, Stich DG, Olah SS, Actor-Engel HS, Smith KR, Kennedy MJ. AMPA and GABAA receptor nanodomains assemble in the absence of synaptic neurotransmitter release. Front Mol Neurosci 2023; 16:1232795. [PMID: 37602191 PMCID: PMC10435253 DOI: 10.3389/fnmol.2023.1232795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Postsynaptic neurotransmitter receptors and their associated scaffolding proteins assemble into discrete, nanometer-scale subsynaptic domains (SSDs) within the postsynaptic membrane at both excitatory and inhibitory synapses. Intriguingly, postsynaptic receptor SSDs are mirrored by closely apposed presynaptic active zones. These trans-synaptic molecular assemblies are thought to be important for efficient neurotransmission because they concentrate postsynaptic receptors near sites of presynaptic neurotransmitter release. While previous studies have characterized the role of synaptic activity in sculpting the number, size, and distribution of postsynaptic SSDs at established synapses, it remains unknown whether neurotransmitter signaling is required for their initial assembly during synapse development. Here, we evaluated synaptic nano-architecture under conditions where presynaptic neurotransmitter release was blocked prior to, and throughout synaptogenesis with tetanus neurotoxin (TeNT). In agreement with previous work, neurotransmitter release was not required for the formation of excitatory or inhibitory synapses. The overall size of the postsynaptic specialization at both excitatory and inhibitory synapses was reduced at chronically silenced synapses. However, both AMPARs and GABAARs still coalesced into SSDs, along with their respective scaffold proteins. Presynaptic active zone assemblies, defined by RIM1, were smaller and more numerous at silenced synapses, but maintained alignment with postsynaptic AMPAR SSDs. Thus, basic features of synaptic nano-architecture, including assembly of receptors and scaffolds into trans-synaptically aligned structures, are intrinsic properties that can be further regulated by subsequent activity-dependent mechanisms.
Collapse
Affiliation(s)
- Harrison J. Ramsay
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Sara E. Gookin
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Austin M. Ramsey
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Dean J. Kareemo
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Kevin C. Crosby
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Dominik G. Stich
- Anschutz Medical Campus, Advanced Light Microscopy Core, University of Colorado, Aurora, CO, United States
| | - Samantha S. Olah
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Hannah S. Actor-Engel
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Katharine R. Smith
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| | - Matthew J. Kennedy
- Anschutz Medical Campus, Department of Pharmacology, University of Colorado, Aurora, CO, United States
| |
Collapse
|
16
|
Papantoniou C, Laugks U, Betzin J, Capitanio C, Ferrero JJ, Sánchez-Prieto J, Schoch S, Brose N, Baumeister W, Cooper BH, Imig C, Lučić V. Munc13- and SNAP25-dependent molecular bridges play a key role in synaptic vesicle priming. SCIENCE ADVANCES 2023; 9:eadf6222. [PMID: 37343100 DOI: 10.1126/sciadv.adf6222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Synaptic vesicle tethering, priming, and neurotransmitter release require a coordinated action of multiple protein complexes. While physiological experiments, interaction data, and structural studies of purified systems were essential for our understanding of the function of the individual complexes involved, they cannot resolve how the actions of individual complexes integrate. We used cryo-electron tomography to simultaneously image multiple presynaptic protein complexes and lipids at molecular resolution in their native composition, conformation, and environment. Our detailed morphological characterization suggests that sequential synaptic vesicle states precede neurotransmitter release, where Munc13-comprising bridges localize vesicles <10 nanometers and soluble N-ethylmaleimide-sensitive factor attachment protein 25-comprising bridges <5 nanometers from the plasma membrane, the latter constituting a molecularly primed state. Munc13 activation supports the transition to the primed state via vesicle bridges to plasma membrane (tethers), while protein kinase C promotes the same transition by reducing vesicle interlinking. These findings exemplify a cellular function performed by an extended assembly comprising multiple molecularly diverse complexes.
Collapse
Affiliation(s)
- Christos Papantoniou
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ulrike Laugks
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Julia Betzin
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Cristina Capitanio
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - José Javier Ferrero
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, and Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Susanne Schoch
- Department of Neuropathology, University Hospital of Bonn, 53127 Bonn, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Multidisciplinary Sciences, City Campus, 37075 Göttingen, Germany
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vladan Lučić
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
17
|
Zhang C, Yadav S, Speer CM. The synaptic basis of activity-dependent eye-specific competition. Cell Rep 2023; 42:112085. [PMID: 36753422 PMCID: PMC10404640 DOI: 10.1016/j.celrep.2023.112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Binocular vision requires proper developmental wiring of eye-specific inputs to the brain. In the thalamus, axons from the two eyes initially overlap in the dorsal lateral geniculate nucleus and undergo activity-dependent competition to segregate into target domains. Here, we combine eye-specific tract tracing with volumetric super-resolution imaging to measure the nanoscale molecular reorganization of developing retinogeniculate eye-specific synapses in the mouse brain. We show there are eye-specific differences in presynaptic vesicle pool size and vesicle association with the active zone at the earliest stages of retinogeniculate refinement but find no evidence of eye-specific differences in subsynaptic domain number, size, or transsynaptic alignment across development. Genetic disruption of spontaneous retinal activity decreases retinogeniculate synapse density, delays the emergence eye-specific differences in vesicle organization, and disrupts subsynaptic domain maturation. These results suggest that activity-dependent eye-specific presynaptic maturation underlies synaptic competition in the mammalian visual system.
Collapse
Affiliation(s)
- Chenghang Zhang
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Swapnil Yadav
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Colenso M Speer
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Li WY, Deng LX, Zhai FG, Wang XY, Li ZG, Wang Y. Chx10+V2a interneurons in spinal motor regulation and spinal cord injury. Neural Regen Res 2022; 18:933-939. [PMID: 36254971 PMCID: PMC9827767 DOI: 10.4103/1673-5374.355746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Chx10-expressing V2a (Chx10+V2a) spinal interneurons play a large role in the excitatory drive of motoneurons. Chemogenetic ablation studies have demonstrated the essential nature of Chx10+V2a interneurons in the regulation of locomotor initiation, maintenance, alternation, speed, and rhythmicity. The role of Chx10+V2a interneurons in locomotion and autonomic nervous system regulation is thought to be robust, but their precise role in spinal motor regulation and spinal cord injury have not been fully explored. The present paper reviews the origin, characteristics, and functional roles of Chx10+V2a interneurons with an emphasis on their involvement in the pathogenesis of spinal cord injury. The diverse functional properties of these cells have only been substantiated by and are due in large part to their integration in a variety of diverse spinal circuits. Chx10+V2a interneurons play an integral role in conferring locomotion, which integrates various corticospinal, mechanosensory, and interneuron pathways. Moreover, accumulating evidence suggests that Chx10+V2a interneurons also play an important role in rhythmic patterning maintenance, left-right alternation of central pattern generation, and locomotor pattern generation in higher order mammals, likely conferring complex locomotion. Consequently, the latest research has focused on postinjury transplantation and noninvasive stimulation of Chx10+V2a interneurons as a therapeutic strategy, particularly in spinal cord injury. Finally, we review the latest preclinical study advances in laboratory derivation and stimulation/transplantation of these cells as a strategy for the treatment of spinal cord injury. The evidence supports that the Chx10+V2a interneurons act as a new therapeutic target for spinal cord injury. Future optimization strategies should focus on the viability, maturity, and functional integration of Chx10+V2a interneurons transplanted in spinal cord injury foci.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng-Guo Zhai
- Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China
| | - Zhi-Gang Li
- Department of General Surgery, Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China,Correspondence to: Ying Wang, ; Zhi-Gang Li, .
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang College of Medicine, Mudanjiang, Heilongjiang Province, China,Correspondence to: Ying Wang, ; Zhi-Gang Li, .
| |
Collapse
|
19
|
Li L, Liu H, Qian KY, Nurrish S, Zeng XT, Zeng WX, Wang J, Kaplan JM, Tong XJ, Hu Z. CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission. PLoS Genet 2022; 18:e1010211. [PMID: 36279278 PMCID: PMC9632837 DOI: 10.1371/journal.pgen.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Changes in neurotransmitter receptor abundance at post-synaptic elements play a pivotal role in regulating synaptic strength. For this reason, there is significant interest in identifying and characterizing the scaffolds required for receptor localization at different synapses. Here we analyze the role of two C. elegans post-synaptic scaffolding proteins (LIN-2/CASK and FRM-3/FARP) at cholinergic neuromuscular junctions. Constitutive knockouts or muscle specific inactivation of lin-2 and frm-3 dramatically reduced spontaneous and evoked post-synaptic currents. These synaptic defects resulted from the decreased abundance of two classes of post-synaptic ionotropic acetylcholine receptors (ACR-16/CHRNA7 and levamisole-activated AChRs). LIN-2's AChR scaffolding function is mediated by its SH3 and PDZ domains, which interact with AChRs and FRM-3/FARP, respectively. Thus, our findings show that post-synaptic LIN-2/FRM-3 complexes promote cholinergic synaptic transmission by recruiting AChRs to post-synaptic elements.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiafan Wang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| |
Collapse
|
20
|
Li X, Hémond G, Godin AG, Doyon N. Computational modeling of trans-synaptic nanocolumns, a modulator of synaptic transmission. Front Comput Neurosci 2022; 16:969119. [PMID: 36249484 PMCID: PMC9554614 DOI: 10.3389/fncom.2022.969119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022] Open
Abstract
Understanding synaptic transmission is of crucial importance in neuroscience. The spatial organization of receptors, vesicle release properties and neurotransmitter molecule diffusion can strongly influence features of synaptic currents. Newly discovered structures coined trans-synaptic nanocolumns were shown to align presynaptic vesicles release sites and postsynaptic receptors. However, how these structures, spanning a few tens of nanometers, shape synaptic signaling remains little understood. Given the difficulty to probe submicroscopic structures experimentally, computer modeling is a useful approach to investigate the possible functional impacts and role of nanocolumns. In our in silico model, as has been experimentally observed, a nanocolumn is characterized by a tight distribution of postsynaptic receptors aligned with the presynaptic vesicle release site and by the presence of trans-synaptic molecules which can modulate neurotransmitter molecule diffusion. In this work, we found that nanocolumns can play an important role in reinforcing synaptic current mostly when the presynaptic vesicle contains a small number of neurotransmitter molecules. Our work proposes a new methodology to investigate in silico how the existence of trans-synaptic nanocolumns, the nanometric organization of the synapse and the lateral diffusion of receptors shape the features of the synaptic current such as its amplitude and kinetics.
Collapse
Affiliation(s)
- Xiaoting Li
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
| | - Gabriel Hémond
- Department of Physics, Université Laval, Québec City, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- *Correspondence: Antoine G. Godin
| | - Nicolas Doyon
- Department of Mathematics and Statistics, Université Laval, Québec City, QC, Canada
- CERVO Brain Research Centre, Québec City, QC, Canada
- Nicolas Doyon
| |
Collapse
|
21
|
Computational methods for ultrastructural analysis of synaptic complexes. Curr Opin Neurobiol 2022; 76:102611. [PMID: 35952541 DOI: 10.1016/j.conb.2022.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/21/2022]
Abstract
Electron microscopy (EM) provided fundamental insights about the ultrastructure of neuronal synapses. The large amount of information present in the contemporary EM datasets precludes a thorough assessment by visual inspection alone, thus requiring computational methods for the analysis of the data. Here, I review image processing software methods ranging from membrane tracing in large volume datasets to high resolution structures of synaptic complexes. Particular attention is payed to molecular level analysis provided by recent cryo-electron microscopy and tomography methods.
Collapse
|
22
|
Heuser JE. The Structural Basis of Long-Term Potentiation in Hippocampal Synapses, Revealed by Electron Microscopy Imaging of Lanthanum-Induced Synaptic Vesicle Recycling. Front Cell Neurosci 2022; 16:920360. [PMID: 35978856 PMCID: PMC9376242 DOI: 10.3389/fncel.2022.920360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022] Open
Abstract
Hippocampal neurons in dissociated cell cultures were exposed to the trivalent cation lanthanum for short periods (15–30 min) and prepared for electron microscopy (EM), to evaluate the stimulatory effects of this cation on synaptic ultrastructure. Not only were characteristic ultrastructural changes of exaggerated synaptic vesicle turnover seen within the presynapses of these cultures—including synaptic vesicle depletion and proliferation of vesicle-recycling structures—but the overall architecture of a large proportion of the synapses in the cultures was dramatically altered, due to large postsynaptic “bulges” or herniations into the presynapses. Moreover, in most cases, these postsynaptic herniations or protrusions produced by lanthanum were seen by EM to distort or break or “perforate” the so-called postsynaptic densities (PSDs) that harbor receptors and recognition molecules essential for synaptic function. These dramatic EM observations lead us to postulate that such PSD breakages or “perforations” could very possibly create essential substrates or “tags” for synaptic growth, simply by creating fragmented free edges around the PSDs, into which new receptors and recognition molecules could be recruited more easily, and thus, they could represent the physical substrate for the important synaptic growth process known as “long-term potentiation” (LTP). All of this was created simply in hippocampal dissociated cell cultures, and simply by pushing synaptic vesicle recycling way beyond its normal limits with the trivalent cation lanthanum, but we argued in this report that such fundamental changes in synaptic architecture—given that they can occur at all—could also occur at the extremes of normal neuronal activity, which are presumed to lead to learning and memory.
Collapse
|
23
|
Kusick GF, Ogunmowo TH, Watanabe S. Transient docking of synaptic vesicles: Implications and mechanisms. Curr Opin Neurobiol 2022; 74:102535. [PMID: 35398664 PMCID: PMC9167714 DOI: 10.1016/j.conb.2022.102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/19/2022] [Accepted: 03/06/2022] [Indexed: 02/03/2023]
Abstract
As synaptic vesicles fuse, they must continually be replaced with new docked, fusion-competent vesicles to sustain neurotransmission. It has long been appreciated that vesicles are recruited to docking sites in an activity-dependent manner. However, once entering the sites, vesicles were thought to be stably docked, awaiting calcium signals. Based on recent data from electrophysiology, electron microscopy, biochemistry, and computer simulations, a picture emerges in which vesicles can rapidly and reversibly transit between docking and undocking during activity. This "transient docking" can account for many aspects of synaptic physiology. In this review, we cover recent evidence for transient docking, physiological processes at the synapse that it may support, and progress on the underlying mechanisms. We also discuss an open question: what determines for how long and whether vesicles stay docked, or eventually undock?
Collapse
Affiliation(s)
- Grant F Kusick
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@ultrafastgrant
| | - Tyler H Ogunmowo
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University, School of Medicine, 1830 E. Monument St., Baltimore, MD 21287, USA. https://twitter.com/@unculturedTy
| | - Shigeki Watanabe
- Department of Cell Biology, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| |
Collapse
|
24
|
Sun SY, Li XW, Cao R, Zhao Y, Sheng N, Tang AH. Correlative Assembly of Subsynaptic Nanoscale Organizations During Development. Front Synaptic Neurosci 2022; 14:748184. [PMID: 35685244 PMCID: PMC9171000 DOI: 10.3389/fnsyn.2022.748184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Nanoscale organization of presynaptic proteins determines the sites of transmitter release, and its alignment with assemblies of postsynaptic receptors through nanocolumns is suggested to optimize the efficiency of synaptic transmission. However, it remains unknown how these nano-organizations are formed during development. In this study, we used super-resolution stochastic optical reconstruction microscopy (STORM) imaging technique to systematically analyze the evolvement of subsynaptic organization of three key synaptic proteins, namely, RIM1/2, GluA1, and PSD-95, during synapse maturation in cultured hippocampal neurons. We found that volumes of synaptic clusters and their subsynaptic heterogeneity increase as synapses get matured. Synapse sizes of presynaptic and postsynaptic compartments correlated well at all stages, while only more mature synapses demonstrated a significant correlation between presynaptic and postsynaptic nano-organizations. After a long incubation with an inhibitor of action potentials or AMPA receptors, both presynaptic and postsynaptic compartments showed increased synaptic cluster volume and subsynaptic heterogeneity; however, the trans-synaptic alignment was intact. Together, our results characterize the evolvement of subsynaptic protein architectures during development and demonstrate that the nanocolumn is organized more likely by an intrinsic mechanism and independent of synaptic activities.
Collapse
Affiliation(s)
- Shi-Yan Sun
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Xiao-Wei Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Cao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yang Zhao
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Nengyin Sheng
- State Key Laboratory of Genetic Resources and Evolution in Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ai-Hui Tang
- Chinese Academy of Sciences (CAS) Key Laboratory of Brain Function and Disease, Ministry of Education Key Laboratory for Membrane-less Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
25
|
Müller JA, Betzin J, Santos-Tejedor J, Mayer A, Oprişoreanu AM, Engholm-Keller K, Paulußen I, Gulakova P, McGovern TD, Gschossman LJ, Schönhense E, Wark JR, Lamprecht A, Becker AJ, Waardenberg AJ, Graham ME, Dietrich D, Schoch S. A presynaptic phosphosignaling hub for lasting homeostatic plasticity. Cell Rep 2022; 39:110696. [PMID: 35443170 DOI: 10.1016/j.celrep.2022.110696] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Stable function of networks requires that synapses adapt their strength to levels of neuronal activity, and failure to do so results in cognitive disorders. How such homeostatic regulation may be implemented in mammalian synapses remains poorly understood. Here we show that the phosphorylation status of several positions of the active-zone (AZ) protein RIM1 are relevant for synaptic glutamate release. Position RIMS1045 is necessary and sufficient for expression of silencing-induced homeostatic plasticity and is kept phosphorylated by serine arginine protein kinase 2 (SRPK2). SRPK2-induced upscaling of synaptic release leads to additional RIM1 nanoclusters and docked vesicles at the AZ and is not observed in the absence of RIM1 and occluded by RIMS1045E. Our data suggest that SRPK2 and RIM1 represent a presynaptic phosphosignaling hub that is involved in the homeostatic balance of synaptic coupling of neuronal networks.
Collapse
Affiliation(s)
- Johannes Alexander Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Julia Betzin
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jorge Santos-Tejedor
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Annika Mayer
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ana-Maria Oprişoreanu
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Kasper Engholm-Keller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark; Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | | | - Polina Gulakova
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | | - Lena Johanna Gschossman
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany; Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Eva Schönhense
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Alf Lamprecht
- Department of Pharmaceutics, Bonn University, Bonn, Germany
| | - Albert J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Ashley J Waardenberg
- Australian Institute for Tropical Health and Medicine, James Cook University, Smithfield, QLD 4878, Australia; i-Synapse, Cairns, QLD, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute, The University of Sydney, Westmead, NSW, Australia
| | - Dirk Dietrich
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany.
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
26
|
A coordinate-based co-localization index to quantify and visualize spatial associations in single-molecule localization microscopy. Sci Rep 2022; 12:4676. [PMID: 35304545 PMCID: PMC8933590 DOI: 10.1038/s41598-022-08746-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Visualizing the subcellular distribution of proteins and determining whether specific proteins co-localize is one of the main strategies in determining the organization and potential interactions of protein complexes in biological samples. The development of super-resolution microscopy techniques such as single-molecule localization microscopy (SMLM) has tremendously increased the ability to resolve protein distribution at nanometer resolution. As super-resolution imaging techniques are becoming instrumental in revealing novel biological insights, new quantitative approaches that exploit the unique nature of SMLM datasets are required. Here, we present a new, local density-based algorithm to quantify co-localization in dual-color SMLM datasets. We show that this method is broadly applicable and only requires molecular coordinates and their localization precision as inputs. Using simulated point patterns, we show that this method robustly measures the co-localization in dual-color SMLM datasets, independent of localization density, but with high sensitivity towards local enrichments. We further validated our method using SMLM imaging of the microtubule network in epithelial cells and used it to study the spatial association between proteins at neuronal synapses. Together, we present a simple and easy-to-use, but powerful method to analyze the spatial association of molecules in dual-color SMLM datasets.
Collapse
|
27
|
Wegner W, Steffens H, Gregor C, Wolf F, Willig KI. Environmental enrichment enhances patterning and remodeling of synaptic nanoarchitecture as revealed by STED nanoscopy. eLife 2022; 11:73603. [PMID: 35195066 PMCID: PMC8903838 DOI: 10.7554/elife.73603] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic plasticity underlies long-lasting structural and functional changes to brain circuitry and its experience-dependent remodeling can be fundamentally enhanced by environmental enrichment. It is however unknown, whether and how the environmental enrichment alters the morphology and dynamics of individual synapses. Here, we present a virtually crosstalk-free two-color in vivo stimulated emission depletion (STED) microscope to simultaneously superresolve the dynamics of endogenous PSD95 of the post-synaptic density and spine geometry in the mouse cortex. In general, the spine head geometry and PSD95 assemblies were highly dynamic, their changes depended linearly on their original size but correlated only mildly. With environmental enrichment, the size distributions of PSD95 and spine head sizes were sharper than in controls, indicating that synaptic strength is set more uniformly. The topography of the PSD95 nanoorganization was more dynamic after environmental enrichment; changes in size were smaller but more correlated than in mice housed in standard cages. Thus, two-color in vivo time-lapse imaging of synaptic nanoorganization uncovers a unique synaptic nanoplasticity associated with the enhanced learning capabilities under environmental enrichment.
Collapse
Affiliation(s)
- Waja Wegner
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Heinz Steffens
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| | - Carola Gregor
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Fred Wolf
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Katrin I Willig
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
28
|
Zuber B, Lučić V. Neurons as a model system for cryo-electron tomography. J Struct Biol X 2022; 6:100067. [PMID: 35310407 PMCID: PMC8924422 DOI: 10.1016/j.yjsbx.2022.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cryo-ET imaging of neurons is a versatile system for cell biology in situ. Structural and spatial localization analysis yields new insights into synaptic transmission. The synapse provides a rich environment for the development of image processing tools.
Cryo-electron tomography (Cryo-ET) provides unique opportunities to image cellular components at high resolution in their native state and environment. While many different cell types were investigated by cryo-ET, here we review application to neurons. We show that neurons are a versatile system that can be used to investigate general cellular components such as the cytoskeleton and membrane-bound organelles, in addition to neuron-specific processes such as synaptic transmission. Furthermore, the synapse provides a rich environment for the development of cryo-ET image processing tools suitable to elucidate the functional and spatial organization of compositionally and morphologically heterogeneous macromolecular complexes involved in biochemical signaling cascades, within their native, crowded cellular environments.
Collapse
|
29
|
The glutamatergic synapse: a complex machinery for information processing. Cogn Neurodyn 2021; 15:757-781. [PMID: 34603541 DOI: 10.1007/s11571-021-09679-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022] Open
Abstract
Being the most abundant synaptic type, the glutamatergic synapse is responsible for the larger part of the brain's information processing. Despite the conceptual simplicity of the basic mechanism of synaptic transmission, the glutamatergic synapse shows a large variation in the response to the presynaptic release of the neurotransmitter. This variability is observed not only among different synapses but also in the same single synapse. The synaptic response variability is due to several mechanisms of control of the information transferred among the neurons and suggests that the glutamatergic synapse is not a simple bridge for the transfer of information but plays an important role in its elaboration and management. The control of the synaptic information is operated at pre, post, and extrasynaptic sites in a sort of cooperation between the pre and postsynaptic neurons which also involves the activity of other neurons. The interaction between the different mechanisms of control is extremely complicated and its complete functionality is far from being fully understood. The present review, although not exhaustively, is intended to outline the most important of these mechanisms and their complexity, the understanding of which will be among the most intriguing challenges of future neuroscience.
Collapse
|
30
|
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021; 197:108710. [PMID: 34271016 PMCID: PMC9122021 DOI: 10.1016/j.neuropharm.2021.108710] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Anatomy and Neurobiology, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, USA.
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology, USA; Physiology, University of California at San Francisco, USA.
| |
Collapse
|
31
|
Watson JF, Pinggera A, Ho H, Greger IH. AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions. Nat Commun 2021; 12:5083. [PMID: 34426577 PMCID: PMC8382838 DOI: 10.1038/s41467-021-25281-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
AMPA receptor (AMPAR) abundance and positioning at excitatory synapses regulates the strength of transmission. Changes in AMPAR localisation can enact synaptic plasticity, allowing long-term information storage, and is therefore tightly controlled. Multiple mechanisms regulating AMPAR synaptic anchoring have been described, but with limited coherence or comparison between reports, our understanding of this process is unclear. Here, combining synaptic recordings from mouse hippocampal slices and super-resolution imaging in dissociated cultures, we compare the contributions of three AMPAR interaction domains controlling transmission at hippocampal CA1 synapses. We show that the AMPAR C-termini play only a modulatory role, whereas the extracellular N-terminal domain (NTD) and PDZ interactions of the auxiliary subunit TARP γ8 are both crucial, and each is sufficient to maintain transmission. Our data support a model in which γ8 accumulates AMPARs at the postsynaptic density, where the NTD further tunes their positioning. This interplay between cytosolic (TARP γ8) and synaptic cleft (NTD) interactions provides versatility to regulate synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jake F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- IST Austria, Am Campus 1, Klosterneuburg, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Hinze Ho
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
33
|
Zieger HL, Choquet D. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders. Neurobiol Dis 2021; 158:105453. [PMID: 34314857 DOI: 10.1016/j.nbd.2021.105453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopmental disorders such as those linked to intellectual disabilities or autism spectrum disorder are thought to originate in part from genetic defects in synaptic proteins. Single gene mutations linked to synapse dysfunction can broadly be separated in three categories: disorders of transcriptional regulation, disorders of synaptic signaling and disorders of synaptic scaffolding and structures. The recent developments in super-resolution imaging technologies and their application to synapses have unraveled a complex nanoscale organization of synaptic components. On the one hand, part of receptors, adhesion proteins, ion channels, scaffold elements and the pre-synaptic release machinery are partitioned in subsynaptic nanodomains, and the respective organization of these nanodomains has tremendous impact on synaptic function. For example, pre-synaptic neurotransmitter release sites are partly aligned with nanometer precision to postsynaptic receptor clusters. On the other hand, a large fraction of synaptic components is extremely dynamic and constantly exchanges between synaptic domains and extrasynaptic or intracellular compartments. It is largely the combination of the exquisitely precise nanoscale synaptic organization of synaptic components and their high dynamic that allows the rapid and profound regulation of synaptic function during synaptic plasticity processes that underlie adaptability of brain function, learning and memory. It is very tempting to speculate that genetic defects that lead to neurodevelopmental disorders and target synaptic scaffolds and structures mediate their deleterious impact on brain function through perturbing synapse nanoscale dynamic organization. We discuss here how applying super-resolution imaging methods in models of neurodevelopmental disorders could help in addressing this question.
Collapse
Affiliation(s)
- Hanna L Zieger
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France.
| |
Collapse
|
34
|
Abstract
This study presents evidence that the MAGUK family of synaptic scaffolding proteins plays an essential, but redundant, role in long-term potentiation (LTP). The action of PSD-95, but not that of SAP102, requires the binding to the transsynaptic adhesion protein ADAM22, which is required for nanocolumn stabilization. Based on these and previous results, we propose a two-step process in the recruitment of AMPARs during LTP. First, AMPARs, via TARPs, bind to exposed PSD-95 in the PSD. This alone is not adequate to enhance synaptic transmission. Second, the AMPAR/TARP/PSD-95 complex is stabilized in the nanocolumn by binding to ADAM22. A second, ADAM22-independent pathway is proposed for SAP102.
Collapse
|
35
|
Willig KI, Wegner W, Müller A, Calvet-Fournier V, Steffens H. Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins. Cell Rep 2021; 35:109192. [PMID: 34077731 DOI: 10.1016/j.celrep.2021.109192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
Despite the tremendous success of super-resolution microscopy, multi-color in vivo applications are still rare. Here we present live-cell multi-label STED microscopy in vivo and in vitro by combining spectrally separated excitation and detection with temporal sequential imaging of reversibly switchable fluorescent proteins (RSFPs). Triple-label STED microscopy resolves pre- and postsynaptic nano-organizations in vivo in mouse visual cortex employing EGFP, Citrine, and the RSFP rsEGP2. Combining the positive and negative switching RSFPs Padron and Dronpa-M159T enables dual-label STED microscopy. All labels are recorded quasi-simultaneously by parallelized on- and off-switching of the RSFPs within the fast-scanning axis. Depletion is performed by a single STED beam so that all channels automatically co-align. Such an addition of a second or third marker merely requires a switching laser, minimizing setup complexity. Our technique enhances in vivo STED microscopy, making it a powerful tool for studying multiple synaptic nano-organizations or the tripartite synapse in vivo.
Collapse
Affiliation(s)
- Katrin I Willig
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Waja Wegner
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Antonia Müller
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, Göttingen, Germany
| | - Valérie Calvet-Fournier
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Göttingen, Germany; Göttingen Graduate Center for Neurosciences, Biophysics, und Molecular Biosciences (GGNB), Göttingen, Germany
| | - Heinz Steffens
- Optical Nanoscopy in Neuroscience, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
36
|
Obashi K, Taraska JW, Okabe S. The role of molecular diffusion within dendritic spines in synaptic function. J Gen Physiol 2021; 153:e202012814. [PMID: 33720306 PMCID: PMC7967910 DOI: 10.1085/jgp.202012814] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Spines are tiny nanoscale protrusions from dendrites of neurons. In the cortex and hippocampus, most of the excitatory postsynaptic sites reside in spines. The bulbous spine head is connected to the dendritic shaft by a thin membranous neck. Because the neck is narrow, spine heads are thought to function as biochemically independent signaling compartments. Thus, dynamic changes in the composition, distribution, mobility, conformations, and signaling properties of molecules contained within spines can account for much of the molecular basis of postsynaptic function and regulation. A major factor in controlling these changes is the diffusional properties of proteins within this small compartment. Advances in measurement techniques using fluorescence microscopy now make it possible to measure molecular diffusion within single dendritic spines directly. Here, we review the regulatory mechanisms of diffusion in spines by local intra-spine architecture and discuss their implications for neuronal signaling and synaptic plasticity.
Collapse
Affiliation(s)
- Kazuki Obashi
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Justin W. Taraska
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
37
|
Choquet D, Sainlos M, Sibarita JB. Advanced imaging and labelling methods to decipher brain cell organization and function. Nat Rev Neurosci 2021; 22:237-255. [PMID: 33712727 DOI: 10.1038/s41583-021-00441-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
The brain is arguably the most complex organ. The branched and extended morphology of nerve cells, their subcellular complexity, the multiplicity of brain cell types as well as their intricate connectivity and the scattering properties of brain tissue present formidable challenges to the understanding of brain function. Neuroscientists have often been at the forefront of technological and methodological developments to overcome these hurdles to visualize, quantify and modify cell and network properties. Over the last few decades, the development of advanced imaging methods has revolutionized our approach to explore the brain. Super-resolution microscopy and tissue imaging approaches have recently exploded. These instrumentation-based innovations have occurred in parallel with the development of new molecular approaches to label protein targets, to evolve new biosensors and to target them to appropriate cell types or subcellular compartments. We review the latest developments for labelling and functionalizing proteins with small localization and functionalized reporters. We present how these molecular tools are combined with the development of a wide variety of imaging methods that break either the diffraction barrier or the tissue penetration depth limits. We put these developments in perspective to emphasize how they will enable step changes in our understanding of the brain.
Collapse
Affiliation(s)
- Daniel Choquet
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France. .,University of Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, Bordeaux, France.
| | - Matthieu Sainlos
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| | - Jean-Baptiste Sibarita
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
38
|
Yang X, Annaert W. The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. MEMBRANES 2021; 11:248. [PMID: 33808285 PMCID: PMC8065904 DOI: 10.3390/membranes11040248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
Collapse
Affiliation(s)
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium;
| |
Collapse
|
39
|
Okabe S. Recent advances in computational methods for measurement of dendritic spines imaged by light microscopy. Microscopy (Oxf) 2021; 69:196-213. [PMID: 32244257 DOI: 10.1093/jmicro/dfaa016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Dendritic spines are small protrusions that receive most of the excitatory inputs to the pyramidal neurons in the neocortex and the hippocampus. Excitatory neural circuits in the neocortex and hippocampus are important for experience-dependent changes in brain functions, including postnatal sensory refinement and memory formation. Several lines of evidence indicate that synaptic efficacy is correlated with spine size and structure. Hence, precise and accurate measurement of spine morphology is important for evaluation of neural circuit function and plasticity. Recent advances in light microscopy and image analysis techniques have opened the way toward a full description of spine nanostructure. In addition, large datasets of spine nanostructure can be effectively analyzed using machine learning techniques and other mathematical approaches, and recent advances in super-resolution imaging allow researchers to analyze spine structure at an unprecedented level of precision. This review summarizes computational methods that can effectively identify, segment and quantitate dendritic spines in either 2D or 3D imaging. Nanoscale analysis of spine structure and dynamics, combined with new mathematical approaches, will facilitate our understanding of spine functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
40
|
Local Protein Translation and RNA Processing of Synaptic Proteins in Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22062811. [PMID: 33802132 PMCID: PMC8001067 DOI: 10.3390/ijms22062811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heritable neurodevelopmental condition associated with impairments in social interaction, communication and repetitive behaviors. While the underlying disease mechanisms remain to be fully elucidated, dysfunction of neuronal plasticity and local translation control have emerged as key points of interest. Translation of mRNAs for critical synaptic proteins are negatively regulated by Fragile X mental retardation protein (FMRP), which is lost in the most common single-gene disorder associated with ASD. Numerous studies have shown that mRNA transport, RNA metabolism, and translation of synaptic proteins are important for neuronal health, synaptic plasticity, and learning and memory. Accordingly, dysfunction of these mechanisms may contribute to the abnormal brain function observed in individuals with autism spectrum disorder (ASD). In this review, we summarize recent studies about local translation and mRNA processing of synaptic proteins and discuss how perturbations of these processes may be related to the pathophysiology of ASD.
Collapse
|
41
|
Young SM, Veeraraghavan P. Presynaptic voltage-gated calcium channels in the auditory brainstem. Mol Cell Neurosci 2021; 112:103609. [PMID: 33662542 DOI: 10.1016/j.mcn.2021.103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022] Open
Abstract
Sound information encoding within the initial synapses in the auditory brainstem requires reliable and precise synaptic transmission in response to rapid and large fluctuations in action potential (AP) firing rates. The magnitude and location of Ca2+ entry through voltage-gated Ca2+ channels (CaV) in the presynaptic terminal are key determinants in triggering AP-mediated release. In the mammalian central nervous system (CNS), the CaV2.1 subtype is the critical subtype for CNS function, since it is the most efficient CaV2 subtype in triggering AP-mediated synaptic vesicle (SV) release. Auditory brainstem synapses utilize CaV2.1 to sustain fast and repetitive SV release to encode sound information. Therefore, understanding the presynaptic mechanisms that control CaV2.1 localization, organization and biophysical properties are integral to understanding auditory processing. Here, we review our current knowledge about the control of presynaptic CaV2 abundance and organization in the auditory brainstem and impact on the regulation of auditory processing.
Collapse
Affiliation(s)
- Samuel M Young
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Department of Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | |
Collapse
|
42
|
Ramesh N, Escher MJF, Mampell MM, Böhme MA, Götz TWB, Goel P, Matkovic T, Petzoldt AG, Dickman D, Sigrist SJ. Antagonistic interactions between two Neuroligins coordinate pre- and postsynaptic assembly. Curr Biol 2021; 31:1711-1725.e5. [PMID: 33651992 DOI: 10.1016/j.cub.2021.01.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/18/2020] [Accepted: 01/26/2021] [Indexed: 12/17/2022]
Abstract
As a result of developmental synapse formation, the presynaptic neurotransmitter release machinery becomes accurately matched with postsynaptic neurotransmitter receptors. Trans-synaptic signaling is executed through cell adhesion proteins such as Neurexin::Neuroligin pairs but also through diffusible and cytoplasmic signals. How exactly pre-post coordination is ensured in vivo remains largely enigmatic. Here, we identified a "molecular choreography" coordinating pre- with postsynaptic assembly during the developmental formation of Drosophila neuromuscular synapses. Two presynaptic Neurexin-binding scaffold proteins, Syd-1 and Spinophilin (Spn), spatio-temporally coordinated pre-post assembly in conjunction with two postsynaptically operating, antagonistic Neuroligin species: Nlg1 and Nlg2. The Spn/Nlg2 module promoted active zone (AZ) maturation by driving the accumulation of AZ scaffold proteins critical for synaptic vesicle release. Simultaneously, these regulators restricted postsynaptic glutamate receptor incorporation. Both functions of the Spn/Nlg2 module were directly antagonized by Syd-1/Nlg1. Nlg1 and Nlg2 also had divergent effects on Nrx-1 in vivo motility. Concerning diffusible signals, Spn and Syd-1 antagonistically controlled the levels of Munc13-family protein Unc13B at nascent AZs, whose release function facilitated glutamate receptor incorporation at assembling postsynaptic specializations. As a result, we here provide direct in vivo evidence illustrating how a highly regulative and interleaved communication between cell adhesion protein signaling complexes and diffusible signals allows for a precise coordination of pre- with postsynaptic assembly. It will be interesting to analyze whether this logic also transfers to plasticity processes.
Collapse
Affiliation(s)
- Niraja Ramesh
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marc J F Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Malou M Mampell
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Mathias A Böhme
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany; Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Torsten W B Götz
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Tanja Matkovic
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Stephan J Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
43
|
Imaging of spine synapses using super-resolution microscopy. Anat Sci Int 2021; 96:343-358. [PMID: 33459976 DOI: 10.1007/s12565-021-00603-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022]
Abstract
Neuronal circuits in the neocortex and hippocampus are essential for higher brain functions such as motor learning and spatial memory. In the mammalian forebrain, most excitatory synapses of pyramidal neurons are formed on spines, which are tiny protrusions extending from the dendritic shaft. The spine contains specialized molecular machinery that regulates synaptic transmission and plasticity. Spine size correlates with the efficacy of synaptic transmission, and spine morphology affects signal transduction at the post-synaptic compartment. Plasticity-related changes in the structural and molecular organization of spine synapses are thought to underlie the cellular basis of learning and memory. Recent advances in super-resolution microscopy have revealed the molecular mechanisms of the nanoscale synaptic structures regulating synaptic transmission and plasticity in living neurons, which are difficult to investigate using electron microscopy alone. In this review, we summarize recent advances in super-resolution imaging of spine synapses and discuss the implications of nanoscale structures in the regulation of synaptic function, learning, and memory.
Collapse
|
44
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|
45
|
Kedia S, Ramakrishna P, Netrakanti PR, Singh N, Sisodia SS, Jose M, Kumar S, Mahadevan A, Ramanan N, Nadkarni S, Nair D. Alteration in synaptic nanoscale organization dictates amyloidogenic processing in Alzheimer's disease. iScience 2020; 24:101924. [PMID: 33409475 PMCID: PMC7773964 DOI: 10.1016/j.isci.2020.101924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/22/2020] [Accepted: 12/07/2020] [Indexed: 01/08/2023] Open
Abstract
Despite intuitive insights into differential proteolysis of amyloid precursor protein (APP), the stochasticity behind local product formation through amyloidogenic pathway at individual synapses remain unclear. Here, we show that the major components of amyloidogenic machinery namely, APP and secretases are discretely organized into nanodomains of high local concentration compared to their immediate environment in functional zones of the synapse. Additionally, with the aid of multiple models of Alzheimer's disease (AD), we confirm that this discrete nanoscale chemical map of amyloidogenic machinery is altered at excitatory synapses. Furthermore, we provide realistic models of amyloidogenic processing in unitary vesicles originating from the endocytic zone of excitatory synapses. Thus, we show how an alteration in the stochasticity of synaptic nanoscale organization contributes to the dynamic range of C-terminal fragments β (CTFβ) production, defining the heterogeneity of amyloidogenic processing at individual synapses, leading to long-term synaptic deficits as seen in AD. Components of amyloidogenic machinery are organized into nanodomains Assembly of nanodomains differs between functional zones of the synapse Stochasticity of nanoscale organization dictates dynamic range of APP proteolysis Variability in composition of amyloidogenic machinery is associated with AD
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | | | | | - Nivedita Singh
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sangram S Sisodia
- Center for Molecular Neurobiology, Department of Neurobiology, The University of Chicago, IL 60637, USA
| | - Mini Jose
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| | - Sathish Kumar
- Department of Neurology, University of Bonn, Bonn 53127, Germany
| | - Anita Mahadevan
- Department of Neuropathology, NIMHANS, Bangalore 560029, India
| | | | - Suhita Nadkarni
- Indian Institute of Science Education and Research, Pune 411008, India
| | - Deepak Nair
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
46
|
Monday HR, Bourdenx M, Jordan BA, Castillo PE. CB 1-receptor-mediated inhibitory LTD triggers presynaptic remodeling via protein synthesis and ubiquitination. eLife 2020; 9:54812. [PMID: 32902378 PMCID: PMC7521925 DOI: 10.7554/elife.54812] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Long-lasting forms of postsynaptic plasticity commonly involve protein synthesis-dependent structural changes of dendritic spines. However, the relationship between protein synthesis and presynaptic structural plasticity remains unclear. Here, we investigated structural changes in cannabinoid-receptor 1 (CB1)-mediated long-term depression of inhibitory transmission (iLTD), a form of presynaptic plasticity that involves a protein-synthesis-dependent long-lasting reduction in GABA release. We found that CB1-iLTD in acute rat hippocampal slices was associated with protein synthesis-dependent presynaptic structural changes. Using proteomics, we determined that CB1 activation in hippocampal neurons resulted in increased ribosomal proteins and initiation factors, but decreased levels of proteins involved in regulation of the actin cytoskeleton, such as ARPC2 and WASF1/WAVE1, and presynaptic release. Moreover, while CB1-iLTD increased ubiquitin/proteasome activity, ubiquitination but not proteasomal degradation was critical for structural and functional presynaptic CB1-iLTD. Thus, CB1-iLTD relies on both protein synthesis and ubiquitination to elicit structural changes that underlie long-term reduction of GABA release.
Collapse
Affiliation(s)
- Hannah R Monday
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Mathieu Bourdenx
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, United States.,Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, United States
| | - Bryen A Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
47
|
Abstract
Many biomolecular condensates appear to form via spontaneous or driven processes that have the hallmarks of intracellular phase transitions. This suggests that a common underlying physical framework might govern the formation of functionally and compositionally unrelated biomolecular condensates. In this review, we summarize recent work that leverages a stickers-and-spacers framework adapted from the field of associative polymers for understanding how multivalent protein and RNA molecules drive phase transitions that give rise to biomolecular condensates. We discuss how the valence of stickers impacts the driving forces for condensate formation and elaborate on how stickers can be distinguished from spacers in different contexts. We touch on the impact of sticker- and spacer-mediated interactions on the rheological properties of condensates and show how the model can be mapped to known drivers of different types of biomolecular condensates.
Collapse
Affiliation(s)
- Jeong-Mo Choi
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Natural Science Research Institute, Korea Advanced Institute of Science and Technology (KAIST), Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA; , ,
- Center for Science & Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| |
Collapse
|
48
|
Crosby KC, Gookin SE, Garcia JD, Hahm KM, Dell'Acqua ML, Smith KR. Nanoscale Subsynaptic Domains Underlie the Organization of the Inhibitory Synapse. Cell Rep 2020; 26:3284-3297.e3. [PMID: 30893601 DOI: 10.1016/j.celrep.2019.02.070] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/03/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
Inhibitory synapses mediate the majority of synaptic inhibition in the brain, thereby controlling neuronal excitability, firing, and plasticity. Although essential for neuronal function, the central question of how these synapses are organized at the subsynaptic level remains unanswered. Here, we use three-dimensional (3D) super-resolution microscopy to image key components of the inhibitory postsynaptic domain and presynaptic terminal, revealing that inhibitory synapses are organized into nanoscale subsynaptic domains (SSDs) of the gephyrin scaffold, GABAARs and the active-zone protein Rab3-interacting molecule (RIM). Gephyrin SSDs cluster GABAAR SSDs, demonstrating nanoscale architectural interdependence between scaffold and receptor. GABAAR SSDs strongly associate with active-zone RIM SSDs, indicating an important role for GABAAR nanoscale organization near sites of GABA release. Finally, we find that in response to elevated activity, synapse growth is mediated by an increase in the number of postsynaptic SSDs, suggesting a modular mechanism for increasing inhibitory synaptic strength.
Collapse
Affiliation(s)
- Kevin C Crosby
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Sara E Gookin
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katlin M Hahm
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mark L Dell'Acqua
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
49
|
Differential Scaling of Synaptic Molecules within Functional Zones of an Excitatory Synapse during Homeostatic Plasticity. eNeuro 2020; 7:ENEURO.0407-19.2020. [PMID: 32184300 PMCID: PMC7189482 DOI: 10.1523/eneuro.0407-19.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 11/29/2022] Open
Abstract
Homeostatic scaling is a form of synaptic plasticity where individual synapses scale their strengths to compensate for global suppression or elevation of neuronal activity. This process can be studied by measuring miniature EPSP (mEPSP) amplitudes and frequencies following the regulation of activity in neuronal cultures. Here, we demonstrate a quantitative approach to characterize multiplicative synaptic scaling using immunolabelling of hippocampal neuronal cultures treated with tetrodotoxin (TTX) or bicuculline to extract scaling factors for various synaptic proteins. This approach allowed us to directly examine the scaling of presynaptic and postsynaptic scaffolding molecules along with neurotransmitter receptors in primary cultures from mouse and rat hippocampal neurons. We show robust multiplicative scaling of synaptic scaffolding molecules namely, Shank2, PSD95, Bassoon, and AMPA receptor subunits and quantify their scaling factors. We use super-resolution microscopy to calculate scaling factors of surface expressed GluA2 within functional zones of the synapse and show that there is differential and correlated scaling of GluA2 levels within the spine, the postsynaptic density (PSD), and the perisynaptic regions. Our method opens a novel paradigm to quantify relative molecular changes of synaptic proteins within distinct subsynaptic compartments from a large number of synapses in response to alteration of neuronal activity, providing anatomic insights into the intricacies of variability in strength of individual synapses.
Collapse
|
50
|
Kedia S, Ramakrishna P, Netrakanti PR, Jose M, Sibarita JB, Nadkarni S, Nair D. Real-time nanoscale organization of amyloid precursor protein. NANOSCALE 2020; 12:8200-8215. [PMID: 32255447 DOI: 10.1039/d0nr00052c] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite an intuitive understanding of the role of APP in health and disease, there exist few attempts to dissect its molecular localization at excitatory synapses. Though the biochemistry involved in the enzymatic processing of APP is well understood, there is a void in understanding the nonuniformity of the product formation in vivo. Here, we employed multiple paradigms of single molecules and ensemble based nanoscopic imaging to reveal that APP molecules are organized into regulatory nanodomains that are differentially compartmentalized in the functional zones of an excitatory synapse. Furthermore, with the aid of high density single particle tracking, we show that the lateral diffusion of APP in live cells dictates an equilibrium between these nanodomains and their nano-environment, which is affected in a detrimental variant of APP. Additionally, we incorporate this spatio-temporal detail 'in silico' to generate a realistic nanoscale topography of APP in dendrites and synapses. This approach uncovers a nanoscale heterogeneity in the molecular organization of APP, depicting a locus for differential APP processing. This holistic paradigm, to decipher the real-time heterogeneity of the substrate molecules on the nanoscale, could enable us to better evaluate the molecular constraints overcoming the ensemble approaches used traditionally to understand the kinetics of product formation.
Collapse
Affiliation(s)
- Shekhar Kedia
- Centre for Neuroscience, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | | | | | | | |
Collapse
|