1
|
Lenz M, Turko P, Kruse P, Eichler A, Chen ZA, Rappsilber J, Vida I, Vlachos A. Transcriptomic and de novo proteomic analyses of organotypic entorhino-hippocampal tissue cultures reveal changes in metabolic and signaling regulators in TTX-induced synaptic plasticity. Mol Brain 2024; 17:78. [PMID: 39511688 PMCID: PMC11542228 DOI: 10.1186/s13041-024-01153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge. This study investigated the effects of tetrodotoxin (TTX)-induced synaptic plasticity within organotypic entorhino-hippocampal tissue cultures, offering insights into the functional, transcriptomic, and proteomic changes associated with network inhibition via voltage-gated sodium channel blockade. Our experiments demonstrate that TTX treatment induces substantial functional plasticity of excitatory synapses, as evidenced by increased miniature excitatory postsynaptic current (mEPSC) amplitudes and frequencies in both dentate granule cells and CA1 pyramidal neurons. Correlating transcriptomic and proteomic data, we identified novel targets for future research into homeostatic plasticity, including cytoglobin, SLIT-ROBO Rho GTPase Activating Protein 3, Transferrin receptor, and 3-Hydroxy-3-Methylglutaryl-CoA Synthase 1. These data provide a valuable resource for future studies aiming to understand the orchestration of homeostatic plasticity by metabolic pathways in distinct cell types of the central nervous system.
Collapse
Affiliation(s)
- Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany.
| | - Paul Turko
- Institute of Integrative Neuroanatomy and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10116, Berlin, Germany
| | - Pia Kruse
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Amelie Eichler
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Zhuo Angel Chen
- Chair of Bioanalytics, Technische Universität Berlin, 10623, Berlin, Germany
| | - Juri Rappsilber
- Chair of Bioanalytics, Technische Universität Berlin, 10623, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
- Si-M/"Der Simulierte Mensch", a Science Framework of Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Imre Vida
- Institute of Integrative Neuroanatomy and NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, 10116, Berlin, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, Center for Basics in Neuromodulation (NeuroModulBasics) University of Freiburg,, Freiburg, Germany.
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Hwang EK, Wunsch AM, Wolf ME. Retinoic acid-mediated homeostatic plasticity drives cell type-specific CP-AMPAR accumulation in nucleus accumbens core and incubation of cocaine craving. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.611703. [PMID: 39314388 PMCID: PMC11419102 DOI: 10.1101/2024.09.12.611703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Incubation of cocaine craving, a translationally relevant model for the persistence of drug craving during abstinence, ultimately depends on strengthening of nucleus accumbens core (NAcc) synapses through synaptic insertion of homomeric GluA1 Ca2+-permeable AMPA receptors (CP-AMPARs). Here we tested the hypothesis that CP-AMPAR upregulation results from a form of homeostatic plasticity, previously characterized in vitro and in other brain regions, that depends on retinoic acid (RA) signaling in dendrites. Under normal conditions, ongoing synaptic transmission maintains intracellular Ca2+ at levels sufficient to suppress RA synthesis. Prolonged blockade of neuronal activity results in disinhibition of RA synthesis, leading to increased GluA1 translation and synaptic insertion of homomeric GluA1 CP-AMPARs. Using slice recordings, we found that increasing RA signaling in NAcc medium spiny neurons (MSN) from drug-naïve rats rapidly upregulates CP-AMPARs, and that this pathway is operative only in MSN expressing the D1 dopamine receptor. In MSN recorded from rats that have undergone incubation of craving, this effect of RA is occluded; instead, interruption of RA signaling in the slice normalizes the incubation-associated elevation of synaptic CP-AMPARs. Paralleling this in vitro finding, interruption of RA signaling in the NAcc of 'incubated rats' normalizes the incubation-associated elevation of cue-induced cocaine seeking. These results suggest that RA signaling becomes tonically active in the NAcc during cocaine withdrawal and, by maintaining elevated CP-AMPAR levels, contributes to the incubation of cocaine craving.
Collapse
Affiliation(s)
- Eun-Kyung Hwang
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Amanda M Wunsch
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| | - Marina E Wolf
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, U.S.A. 97212
| |
Collapse
|
3
|
Chien C, He K, Perry S, Tchitchkan E, Han Y, Li X, Dickman D. Distinct input-specific mechanisms enable presynaptic homeostatic plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612361. [PMID: 39314403 PMCID: PMC11419068 DOI: 10.1101/2024.09.10.612361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synapses are endowed with the flexibility to change through experience, but must be sufficiently stable to last a lifetime. This tension is illustrated at the Drosophila neuromuscular junction (NMJ), where two motor inputs that differ in structural and functional properties co-innervate most muscles to coordinate locomotion. To stabilize NMJ activity, motor neurons augment neurotransmitter release following diminished postsynaptic glutamate receptor functionality, termed presynaptic homeostatic potentiation (PHP). How these distinct inputs contribute to PHP plasticity remains enigmatic. We have used a botulinum neurotoxin to selectively silence each input and resolve their roles in PHP, demonstrating that PHP is input-specific: Chronic (genetic) PHP selectively targets the tonic MN-Ib, where active zone remodeling enhances Ca2+ influx to promote increased glutamate release. In contrast, acute (pharmacological) PHP selectively increases vesicle pools to potentiate phasic MN-Is. Thus, distinct homeostatic modulations in active zone nanoarchitecture, vesicle pools, and Ca2+ influx collaborate to enable input-specific PHP expression.
Collapse
Affiliation(s)
- Chun Chien
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Kaikai He
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Sarah Perry
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Elizabeth Tchitchkan
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| | - Yifu Han
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Xiling Li
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
- USC Neuroscience Graduate Program
| | - Dion Dickman
- University of Southern California, Department of Neurobiology, Los Angeles, CA USA
| |
Collapse
|
4
|
Yaeger CE, Vardalaki D, Zhang Q, Pham TLD, Brown NJ, Ji N, Harnett MT. A dendritic mechanism for balancing synaptic flexibility and stability. Cell Rep 2024; 43:114638. [PMID: 39167486 PMCID: PMC11403626 DOI: 10.1016/j.celrep.2024.114638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Biological and artificial neural networks learn by modifying synaptic weights, but it is unclear how these systems retain previous knowledge and also acquire new information. Here, we show that cortical pyramidal neurons can solve this plasticity-versus-stability dilemma by differentially regulating synaptic plasticity at distinct dendritic compartments. Oblique dendrites of adult mouse layer 5 cortical pyramidal neurons selectively receive monosynaptic thalamic input, integrate linearly, and lack burst-timing synaptic potentiation. In contrast, basal dendrites, which do not receive thalamic input, exhibit conventional NMDA receptor (NMDAR)-mediated supralinear integration and synaptic potentiation. Congruently, spiny synapses on oblique branches show decreased structural plasticity in vivo. The selective decline in NMDAR activity and expression at synapses on oblique dendrites is controlled by a critical period of visual experience. Our results demonstrate a biological mechanism for how single neurons can safeguard a set of inputs from ongoing plasticity by altering synaptic properties at distinct dendritic domains.
Collapse
Affiliation(s)
- Courtney E Yaeger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dimitra Vardalaki
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Trang L D Pham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Norma J Brown
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mark T Harnett
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Lin J, Li J, Huang J, Li S, Sun J, Liu J. Enhancement of Motor Learning and Corticospinal Excitability: The Role of Electroacupuncture and Motor Training in Healthy Volunteers. Med Sci Monit 2024; 30:e943748. [PMID: 38853414 PMCID: PMC11177720 DOI: 10.12659/msm.943748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND This study embarked on an innovative exploration to elucidate the effects of integrating electroacupuncture (EA) with motor training (MT) on enhancing corticospinal excitability and motor learning. Central to this investigation is the interplay between homeostatic and non-homeostatic metaplasticity processes, providing insights into how these combined interventions may influence neural plasticity and motor skill acquisition. MATERIAL AND METHODS The investigation enrolled 20 healthy volunteers, subjecting them to 4 distinct interventions to parse out the individual and combined effects of EA and MT. These interventions were EA alone, MT alone, EA-priming followed by MT, and MT-priming followed by EA. The assessment of changes in primary motor cortex (M1) excitability was conducted through motor-evoked potentials (MEPs), while the grooved pegboard test (GPT) was used to evaluate alterations in motor performance. RESULTS The findings revealed that EA and MT independently contributed to enhanced M1 excitability and motor performance. However, the additional priming with EA or MT did not yield further modulation in MEPs amplitudes. Notably, EA-priming was associated with improved GPT completion times, underscoring its potential in facilitating motor learning. CONCLUSIONS The study underscores that while EA and MT individually augment motor cortex excitability and performance, their synergistic application does not further enhance or inhibit cortical excitability. This points to the involvement of non-homeostatic metaplasticity mechanisms. Nonetheless, EA emerges as a critical tool in preventing M1 overstimulation, thereby continuously fostering motor learning. The findings call for further research into the strategic application of EA, whether in isolation or with MT, within clinical settings to optimize rehabilitation outcomes.
Collapse
Affiliation(s)
- Jiahui Lin
- Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jiemei Li
- Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
- Guangzhou Zengcheng District Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jianpeng Huang
- Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Sheng Li
- Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jian Sun
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Jianhua Liu
- Group for Acupuncture Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| |
Collapse
|
6
|
Ren L, Yu J, Chen H, Luo J, Lv F, Min S. Alteration of hyperpolarization-activated cation current-mediated metaplasticity contributes to electroconvulsive shock-induced learning and memory impairment in depressed rats. Front Psychiatry 2024; 15:1365119. [PMID: 38911706 PMCID: PMC11190359 DOI: 10.3389/fpsyt.2024.1365119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Background Accompanied by a rapid and effective antidepressant effect, electroconvulsive shock (ECS) can also induce learning and memory impairment. Our previous research reported that metaplasticity is involved in this process. However, the mechanisms still remain unclear. This study investigated the role of I h current in the metaplastic changes and learning and memory impairment induced by ECS in depressive rats. Methods Depressive rats received ECS after modelling using chronic unpredictable. ZD7288, a type of I h current inhibitor was used to verify the effect of I h current. The sucrose preference test and Morris water maze were used for behavior testing. Changes in metaplasticity was assessed with the LTD/LTP threshold by stimulation at different frequencies. Spontaneous and evoked action potentials (APs) were measured to confirm difference of neuronal excitability. Additionally, the amplitude of I h current was analyzed. Results ECS exerts antidepressant effect, but also induce spatial learning and memory dysfunction. ECS up-regulates the LTD/LTP threshold. In rats treated with ECS, the frequency of spontaneous and evoked APs is significantly reduced. In addition, ECS induces changes in the intrinsic properties of AP, including a decrease of AP-half width and peak amplitude, and an increase in AP time to peak and post-hyperpolarization potential amplitude. In particular, ECS increases both instantaneous and steady-state I h currents. However, Inhibition of I h current with ZD7288 results in a relief of learning and memory impairment and a decrease in threshold, as well as a significant reversal of whole-cell electrophysiological changes. Conclusion ECS-induced learning and memory impairment is caused by neuronal hypoexcitability mediated metaplasticity, and upregulation of LTD/LTP threshold by an increase in I h current.
Collapse
Affiliation(s)
- Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yu
- Department of Psychiatry, Shanghai 10th People’s Hospital, Anesthesia and Brain Research Institute, Tongji University, Shanghai, China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Sun SED, Levenstein D, Li B, Mandelberg N, Chenouard N, Suutari BS, Sanchez S, Tian G, Rinzel J, Buzsáki G, Tsien RW. Synaptic homeostasis transiently leverages Hebbian mechanisms for a multiphasic response to inactivity. Cell Rep 2024; 43:113839. [PMID: 38507409 DOI: 10.1016/j.celrep.2024.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/19/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Homeostatic regulation of synapses is vital for nervous system function and key to understanding a range of neurological conditions. Synaptic homeostasis is proposed to operate over hours to counteract the destabilizing influence of long-term potentiation (LTP) and long-term depression (LTD). The prevailing view holds that synaptic scaling is a slow first-order process that regulates postsynaptic glutamate receptors and fundamentally differs from LTP or LTD. Surprisingly, we find that the dynamics of scaling induced by neuronal inactivity are not exponential or monotonic, and the mechanism requires calcineurin and CaMKII, molecules dominant in LTD and LTP. Our quantitative model of these enzymes reconstructs the unexpected dynamics of homeostatic scaling and reveals how synapses can efficiently safeguard future capacity for synaptic plasticity. This mechanism of synaptic adaptation supports a broader set of homeostatic changes, including action potential autoregulation, and invites further inquiry into how such a mechanism varies in health and disease.
Collapse
Affiliation(s)
- Simón E D Sun
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Daniel Levenstein
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, 3810 University Street, Montreal, QC, Canada
| | - Boxing Li
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Neuroscience Program, Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine and the Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510810, China
| | - Nataniel Mandelberg
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Nicolas Chenouard
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Sorbonne Université, INSERM U1127, UMR CNRS 7225, Institut du Cerveau (ICM), 47 bld de l'hôpital, 75013 Paris, France
| | - Benjamin S Suutari
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Guoling Tian
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - John Rinzel
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - György Buzsáki
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Richard W Tsien
- Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neuroscience and Physiology, Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
8
|
Jiang M, Zeng Z. Memristive Bionic Memory Circuit Implementation and Its Application in Multisensory Mutual Associative Learning Networks. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:308-321. [PMID: 37831580 DOI: 10.1109/tbcas.2023.3324574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Memory is vital and indispensable for organisms and brain-inspired intelligence to gain complete sensation and cognition of the environment. In this work, a memristive bionic memory circuit inspired by human memory model is proposed, which includes 1) receptor and sensory neuron (SN), 2) short-term memory (STM) module, and 3) long-term memory (LTM) module. By leveraging the in-memory computing characteristic of memristors, various functions such as sensation, learning, forgetting, recall, consolidation, reconsolidation, retrieval, and reset are realized. Besides, a multisensory mutual associative learning network is constructed with several bionic memory units to memorize and associate sensory information of different modalities bidirectionally. Except for association establishment, enhancement, and extinction, we also mimicked multisensory integration to manifest the synthetic process of information from different sensory channels. According to the simulation results in PSPICE, the proposed circuit performs high robustness, low area overhead, and low power consumption. Combining associative memory with human memory model, this work provides a possible idea for further research in associative learning networks.
Collapse
|
9
|
Zhang Y, Lv J, Zeng Z. The Framework and Memristive Circuit Design for Multisensory Mutual Associative Memory Networks. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:7844-7857. [PMID: 37015462 DOI: 10.1109/tcyb.2022.3227161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In this work, we propose a multisensory mutual associative memory networks framework and memristive circuit to mimic the ability of the biological brain to make associations of information received simultaneously. The circuit inspired by neural mechanisms of associative memory cells mainly consists of three modules: 1) the storage neurons module, which encodes external multimodal information into the firing rate of spikes; 2) the synapse module, which uses the nonvolatility memristor to achieve weight adjustment and associative learning; and 3) the retrieval neuron module, which feeds the retrieval signal output from each sensory pathway to other sensory pathways, so that achieve mutual association and retrieval between multiple modalities. Different from other one-to-one or many-to-one unidirectional associative memory work, this circuit achieves bidirectional association from multiple modalities to multiple modalities. In addition, we simulate the acquisition, extinction, recovery, transmission, and consolidation properties of associative memory. The circuit is applied to cross-modal association of image and audio recognition results, and episodic memory is simulated, where multiple images in a scene are intramodal associated. With power and area analysis, the circuit is validated as hardware-friendly. Further research to extend this work into large-scale associative memory networks, combined with visual-auditory-tactile-gustatory sensory sensors, is promising for application in intelligent robotic platforms to facilitate the development of neuromorphic systems and brain-like intelligence.
Collapse
|
10
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Darvishmolla M, Saeedi N, Tavassoli Z, Heysieattalab S, Janahmadi M, Hosseinmardi N. Maladaptive plasticity induced by morphine is mediated by hippocampal astrocytic Connexin-43. Life Sci 2023; 330:121969. [PMID: 37541575 DOI: 10.1016/j.lfs.2023.121969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
AIMS Drug addiction is an aberrant learning process that involves the recruitment of memory systems. We have previously demonstrated that morphine exposure causes maladaptive synaptic plasticity which involved hippocampal glial cells, especially astrocytes. Morphine addiction has been associated with astrocytic connexin 43 (Cx43), which plays a role in synaptic homeostasis. This study aimed to examine the role of hippocampal astrocytic Cx43 in morphine-induced maladaptive plasticity as a mechanism of addiction. MAIN METHODS Male rats were injected with morphine (10 mg/kg) subcutaneously every 12 h for nine days to induce dependence. Cx43 was inhibited by TAT-Gap19 (1 μl/1 nmol) microinjection in the CA1 region of the hippocampus 30 min before each morning morphine injection. Field potential recordings were used to assess synaptic plasticity. fEPSP was recorded from the CA1 area following CA3 stimulation. KEY FINDINGS Electrophysiological results showed that morphine treatment altered baseline synaptic responses. It also appears that morphine treatment augmented long-term potentiation (LTP) compared with the control group. Hippocampal astrocytic Cx43 inhibition, with the TAT-Gap19, undermines these effects of morphine on baseline synaptic responses and LTP. Despite this, long-term depression (LTD) did not differ significantly between the groups. Additionally, in the morphine-receiving group, inhibition of Cx43 significantly reduced the paired-pulse index at an 80-millisecond inter-pulse interval when assessing short-term plasticity. SIGNIFICANCE The results of this study demonstrated that inhibiting Cx43 reduced synaptic plasticity induced by morphine. It can be concluded that hippocampal astrocytes through Cx43 are involved in morphine-induced metaplasticity.
Collapse
Affiliation(s)
- Mahgol Darvishmolla
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Saeedi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tavassoli
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mahyar Janahmadi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted excitation-inhibition balance in cognitively normal individuals at risk of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554061. [PMID: 37662359 PMCID: PMC10473582 DOI: 10.1101/2023.08.21.554061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. Objective Examine how AD risk factors (age, APOE-ɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. Methods Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). Results In absence of AD risk factors (APOE-ɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β = -0.007). Regression modeling including APOE-ɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β = 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β = 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the trail-making test (p < 0.05). Conclusion Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOE-ɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOE-ɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL
| | - Scott Mackin
- Department of Psychiatry, University of California - San Francisco, San Francisco, CA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
13
|
Han Y, Goel P, Chen J, Perry S, Tran N, Nishimura S, Sanjani M, Chien C, Dickman D. Excess glutamate release triggers subunit-specific homeostatic receptor scaling. Cell Rep 2023; 42:112775. [PMID: 37436892 PMCID: PMC10529671 DOI: 10.1016/j.celrep.2023.112775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/06/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023] Open
Abstract
Ionotropic glutamate receptors (GluRs) are targets for modulation in Hebbian and homeostatic synaptic plasticity and are remodeled by development, experience, and disease. We have probed the impact of synaptic glutamate levels on the two postsynaptic GluR subtypes at the Drosophila neuromuscular junction, GluRA and GluRB. We first demonstrate that GluRA and GluRB compete to establish postsynaptic receptive fields, and that proper GluR abundance and composition can be orchestrated in the absence of any synaptic glutamate release. However, excess glutamate adaptively tunes postsynaptic GluR abundance, echoing GluR scaling observed in mammalian systems. Furthermore, when GluRA vs. GluRB competition is eliminated, GluRB becomes insensitive to glutamate modulation. In contrast, GluRA is now homeostatically regulated by excess glutamate to maintain stable miniature activity, where Ca2+ permeability through GluRA receptors is required. Thus, excess glutamate, GluR competition, and Ca2+ signaling collaborate to selectively target GluR subtypes for homeostatic regulation at postsynaptic compartments.
Collapse
Affiliation(s)
- Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jiawen Chen
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Nancy Tran
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Manisha Sanjani
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Liu X, Sui X, Zhang Y, Yue R, Yin S. Efficacy of puerarin in rats with focal cerebral ischemia through modulation of the SIRT1/HIF-1α/VEGF signaling pathway and its effect on synaptic plasticity. Heliyon 2023; 9:e15872. [PMID: 37223716 PMCID: PMC10200855 DOI: 10.1016/j.heliyon.2023.e15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/25/2023] Open
Abstract
This study aimed to evaluate the efficacy of puerarin and its effect on synaptic plasticity in rats with focal cerebral ischemia (FCI) by modulating the silent mating type information regulation 2 homolog (SIRT1)/hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway. Fifty specific pathogen-free-grade healthy male rats were randomly divided into sham operation group (SOG), model group, low-dose group, medium-dose group, and high-dose group, with 10 rats in each group. The SOG group received sham operation and saline treatment, while the other four groups received the same amount of saline, 25 mg/kg, 50 mg/kg, and 100 mg/kg of puerarin injection, respectively. After modeling, the rats exhibited higher neurological deficit, inflammation, cerebral infarction rate, and lower forelimb motor function as well as lower protein expressions of SIRT1, HIF-1α, VEGF, synaptophysin (SYN), and postsynaptic density protein (PSD)-95. With the treatment of different doses of puerarin, the degree of neurological impairment, impaired motor function, cerebral infarction rate, and the levels of inflammatory factors (interleukin [IL]-1β, IL-6, and intercellular adhesion molecule 1) in brain tissues were reduced; the protein expressions of SIRT1, HIF-1α, VEGF, SYN, and PSD-95 in brain tissues were enhanced, and the synaptic volume density, numerical density, surface density, width of synaptic cleft, and curvature of the synaptic interface in the cerebral cortex were also improved. Notably, the effects of puerarin on the above-mentioned indicators were dose-dependent. Puerarin can improve neurological impairment and forelimb motor function, reduce inflammatory response, inhibit brain edema, regulate synaptic plasticity, and restore the curvature of synaptic interface in rats with FCI, and its mechanism of action may be related to the activation of SIRT1/HIF-1α/VEGF signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- Department of Internal Medicine of Traditional Chinese Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Xiwen Sui
- Department of Traditional Chinese Medicine, The Second People's Hospital of Dongying, Dongying, Shandong, China
| | - Yuqin Zhang
- Department of Nursing, Binzhou Hospital of Traditional Chinese Medicine, Binzhou, Shandong, China
| | - Rongchao Yue
- The Second Department of Acupuncture and Moxibustion, Tai'an Hospital of Traditional Chinese Medicine, Taian, Shandong, China
| | - Shifu Yin
- Department of Neurology, The People's Hospital of Gaomi, Gaomi, Shandong, China
| |
Collapse
|
15
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
16
|
Ghelani T, Escher M, Thomas U, Esch K, Lützkendorf J, Depner H, Maglione M, Parutto P, Gratz S, Matkovic-Rachid T, Ryglewski S, Walter AM, Holcman D, O‘Connor Giles K, Heine M, Sigrist SJ. Interactive nanocluster compaction of the ELKS scaffold and Cacophony Ca 2+ channels drives sustained active zone potentiation. SCIENCE ADVANCES 2023; 9:eade7804. [PMID: 36800417 PMCID: PMC9937578 DOI: 10.1126/sciadv.ade7804] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/17/2023] [Indexed: 06/01/2023]
Abstract
At presynaptic active zones (AZs), conserved scaffold protein architectures control synaptic vesicle (SV) release by defining the nanoscale distribution and density of voltage-gated Ca2+ channels (VGCCs). While AZs can potentiate SV release in the minutes range, we lack an understanding of how AZ scaffold components and VGCCs engage into potentiation. We here establish dynamic, intravital single-molecule imaging of endogenously tagged proteins at Drosophila AZs undergoing presynaptic homeostatic potentiation. During potentiation, the numbers of α1 VGCC subunit Cacophony (Cac) increased per AZ, while their mobility decreased and nanoscale distribution compacted. These dynamic Cac changes depended on the interaction between Cac channel's intracellular carboxyl terminus and the membrane-close amino-terminal region of the ELKS-family protein Bruchpilot, whose distribution compacted drastically. The Cac-ELKS/Bruchpilot interaction was also needed for sustained AZ potentiation. Our single-molecule analysis illustrates how the AZ scaffold couples to VGCC nanoscale distribution and dynamics to establish a state of sustained potentiation.
Collapse
Affiliation(s)
- Tina Ghelani
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| | - Marc Escher
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Ulrich Thomas
- Department of Cellular Neurobiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Klara Esch
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Janine Lützkendorf
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Harald Depner
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Marta Maglione
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
- Institute for Chemistry and Biochemistry, SupraFAB, Freie Universität Berlin, Altensteinstr. 23a, 14195 Berlin, Germany
| | - Pierre Parutto
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Dementia Research Institute at University of Cambridge, Department of Clinical Neurosciences, Cambridge CB2 0AH, UK
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Scott Gratz
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Tanja Matkovic-Rachid
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
| | - Stefanie Ryglewski
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander M. Walter
- Molecular and Theoretical Neuroscience Leibniz-Forschungs Institut für Molekulare Pharmakologie (FMP) im CharitéCrossOver (CCO) Charité–University Medicine Berlin Charité Campus Mitte, Charité Platz, 110117 Berlin, Germany
- Department of Neuroscience, University of Copenhagen, Copenhagen 2200, Denmark
| | - David Holcman
- Group of Applied Mathematics and Computational Biology, IBENS, Ecole Normale Superieure, Paris, France
- Churchill College, University of Cambridge, Cambridge CB3 0DS, UK
| | - Kate O‘Connor Giles
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Martin Heine
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, 39118 Magdeburg, Germany
| | - Stephan J. Sigrist
- Institute for Biology and Genetics, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
17
|
Arc-Mediated Synaptic Plasticity Regulates Cognitive Function in a Migraine Mouse Model. Brain Sci 2023; 13:brainsci13020331. [PMID: 36831874 PMCID: PMC9954307 DOI: 10.3390/brainsci13020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Previous clinical and basic studies have shown that migraine is associated with cognitive impairment, anxiety, and depression. It severely affects the quality of life. In this study, C57BL/6 mice were randomly divided into four groups: IS group, IS+M group, and IS+S group with repeated application of dural inflammatory soup (IS) stimulation to establish a migraine model, followed by PBS, memantine, and sumatriptan interventions, respectively; the blank control group underwent the same treatment procedure but with PBS instead of IS and intervention drugs. The cognitive function of the mice was used as the main outcome indicator. After application of the IS, mice showed reduced pain threshold for mechanical stimulation, decreased learning memory capacity, attention deficit, a reduced number of dendritic spines in hippocampal neurons, and altered synaptic ultrastructure. The cognitive function indexes of mice in the IS+M group recovered with changes in Arc protein expression to a level not statistically different from that of the Control group, while the IS and IS+S groups remained at lower levels. The present results suggest that Arc-mediated synaptic plasticity may be an essential mechanism of cognitive dysfunction in migraine.
Collapse
|
18
|
Neuronal membrane proteasomes regulate neuronal circuit activity in vivo and are required for learning-induced behavioral plasticity. Proc Natl Acad Sci U S A 2023; 120:e2216537120. [PMID: 36630455 PMCID: PMC9934054 DOI: 10.1073/pnas.2216537120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein degradation is critical for brain function through processes that remain incompletely understood. Here, we investigated the in vivo function of the 20S neuronal membrane proteasome (NMP) in the brain of Xenopus laevis tadpoles. With biochemistry, immunohistochemistry, and electron microscopy, we demonstrated that NMPs are conserved in the tadpole brain and preferentially degrade neuronal activity-induced newly synthesized proteins in vivo. Using in vivo calcium imaging in the optic tectum, we showed that acute NMP inhibition rapidly increased spontaneous neuronal activity, resulting in hypersynchronization across tectal neurons. At the circuit level, inhibiting NMPs abolished learning-dependent improvement in visuomotor behavior in live animals and caused a significant deterioration in basal behavioral performance following visual training with enhanced visual experience. Our data provide in vivo characterization of NMP functions in the vertebrate nervous system and suggest that NMP-mediated degradation of activity-induced nascent proteins may serve as a homeostatic modulatory mechanism in neurons that is critical for regulating neuronal activity and experience-dependent circuit plasticity.
Collapse
|
19
|
Fortel I, Zhan L, Ajilore O, Wu Y, Mackin S, Leow A. Disrupted Excitation-Inhibition Balance in Cognitively Normal Individuals at Risk of Alzheimer's Disease. J Alzheimers Dis 2023; 95:1449-1467. [PMID: 37718795 PMCID: PMC11260287 DOI: 10.3233/jad-230035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
BACKGROUND Sex differences impact Alzheimer's disease (AD) neuropathology, but cell-to-network level dysfunctions in the prodromal phase are unclear. Alterations in hippocampal excitation-inhibition balance (EIB) have recently been linked to early AD pathology. OBJECTIVE Examine how AD risk factors (age, APOEɛ4, amyloid-β) relate to hippocampal EIB in cognitively normal males and females using connectome-level measures. METHODS Individuals from the OASIS-3 cohort (age 42-95) were studied (N = 437), with a subset aged 65+ undergoing neuropsychological testing (N = 231). RESULTS In absence of AD risk factors (APOEɛ4/Aβ+), whole-brain EIB decreases with age more significantly in males than females (p = 0.021, β= -0.007). Regression modeling including APOEɛ4 allele carriers (Aβ-) yielded a significant positive AGE-by-APOE interaction in the right hippocampus for females only (p = 0.013, β= 0.014), persisting with inclusion of Aβ+ individuals (p = 0.012, β= 0.014). Partial correlation analyses of neuropsychological testing showed significant associations with EIB in females: positive correlations between right hippocampal EIB with categorical fluency and whole-brain EIB with the Trail Making Test (p < 0.05). CONCLUSIONS Sex differences in EIB emerge during normal aging and progresses differently with AD risk. Results suggest APOEɛ4 disrupts hippocampal balance more than amyloid in females. Increased excitation correlates positively with neuropsychological performance in the female group, suggesting a duality in terms of potential beneficial effects prior to cognitive impairment. This underscores the translational relevance of APOEɛ4 related hyperexcitation in females, potentially informing therapeutic targets or early interventions to mitigate AD progression in this vulnerable population.
Collapse
Affiliation(s)
- Igor Fortel
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yichao Wu
- Department of Math, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Scott Mackin
- Department of Psychiatry, University of California – San Francisco, San Francisco, CA, USA
| | - Alex Leow
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Perry S, Han Y, Qiu C, Chien C, Goel P, Nishimura S, Sajnani M, Schmid A, Sigrist SJ, Dickman D. A glutamate receptor C-tail recruits CaMKII to suppress retrograde homeostatic signaling. Nat Commun 2022; 13:7656. [PMID: 36496500 PMCID: PMC9741633 DOI: 10.1038/s41467-022-35417-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Presynaptic homeostatic plasticity (PHP) adaptively enhances neurotransmitter release following diminished postsynaptic glutamate receptor (GluR) functionality to maintain synaptic strength. While much is known about PHP expression mechanisms, postsynaptic induction remains enigmatic. For over 20 years, diminished postsynaptic Ca2+ influx was hypothesized to reduce CaMKII activity and enable retrograde PHP signaling at the Drosophila neuromuscular junction. Here, we have interrogated inductive signaling and find that active CaMKII colocalizes with and requires the GluRIIA receptor subunit. Next, we generated Ca2+-impermeable GluRs to reveal that both CaMKII activity and PHP induction are Ca2+-insensitive. Rather, a GluRIIA C-tail domain is necessary and sufficient to recruit active CaMKII. Finally, chimeric receptors demonstrate that the GluRIIA tail constitutively occludes retrograde homeostatic signaling by stabilizing active CaMKII. Thus, the physical loss of the GluRIIA tail is sensed, rather than reduced Ca2+, to enable retrograde PHP signaling, highlighting a unique, Ca2+-independent control mechanism for CaMKII in gating homeostatic plasticity.
Collapse
Affiliation(s)
- Sarah Perry
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Yifu Han
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chengjie Qiu
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Chun Chien
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Pragya Goel
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Samantha Nishimura
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Manisha Sajnani
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA
| | - Andreas Schmid
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - Stephan J Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Takustraße 6, 14195, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dion Dickman
- Department of Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Besing GLK, St. John EK, Potesta CV, Gallagher MJ, Zhou C. Artificial sleep-like up/down-states induce synaptic plasticity in cortical neurons from mouse brain slices. Front Cell Neurosci 2022; 16:948327. [PMID: 36313618 PMCID: PMC9615418 DOI: 10.3389/fncel.2022.948327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 02/02/2023] Open
Abstract
During non-rapid eye movement (NREM) sleep, cortical neuron activity alternates between a depolarized (firing, up-state) and a hyperpolarized state (down-state) coinciding with delta electroencephalogram (EEG) slow-wave oscillation (SWO, 0. 5-4 Hz) in vivo. Recently, we have found that artificial sleep-like up/down-states can potentiate synaptic strength in layer V cortical neurons ex vivo. Using mouse coronal brain slices, whole cell voltage-clamp recordings were made from layer V cortical pyramidal neurons to record spontaneous excitatory synaptic currents (sEPSCs) and inhibitory synaptic currents (sIPSCs). Artificial sleep-like up/down-states (as SWOs, 0.5 Hz, 10 min, current clamp mode) were induced by injecting sinusoidal currents into layer V cortical neurons. Baseline pre-SWO recordings were recorded for 5 min and post-SWO recordings for at least 25-30 min. Compared to pre-SWO sEPSCs or sIPSCs, post-SWO sEPSCs or sIPSCs in layer V cortical neurons exhibited significantly larger amplitudes and a higher frequency for 30 min. This finding suggests that both sEPSCs and sIPSCs could be potentiated in layer V cortical neurons by the low-level activity of SWOs, and sEPSCs and sIPSCs maintained a balance in layer V cortical neurons during pre- and post-SWO periods. Overall, this study presents an ex vivo method to show SWO's ability to induce synaptic plasticity in layer V cortical neurons, which may underlie sleep-related synaptic potentiation for sleep-related memory consolidation in vivo.
Collapse
Affiliation(s)
- Gai-Linn Kay Besing
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Emily Kate St. John
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cobie Victoria Potesta
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Martin J. Gallagher
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Chengwen Zhou
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
22
|
Bakulin IS, Poydasheva AG, Zabirova AH, Suponeva NA, Piradov MA. Metaplasticity and non-invasive brain stimulation: the search for new biomarkers and directions for therapeutic neuromodulation. ANNALS OF CLINICAL AND EXPERIMENTAL NEUROLOGY 2022; 16:74-82. [DOI: 10.54101/acen.2022.3.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metaplasticity (plasticity of synaptic plasticity) is defined as a change in the direction or degree of synaptic plasticity in response to preceding neuronal activity. Recent advances in brain stimulation methods have enabled us to non-invasively examine cortical metaplasticity, including research in a clinical setting. According to current knowledge, non-invasive neuromodulation affects synaptic plasticity by inducing cortical processes that are similar to long-term potentiation and depression. Two stimulation blocks are usually used to assess metaplasticity priming and testing blocks. The technology of studying metaplasticity involves assessing the influence of priming on the testing protocol effect.
Several dozen studies have examined the effects of different stimulation protocols in healthy persons. They found that priming can both enhance and weaken, or even change the direction of the testing protocol effect. The interaction between priming and testing stimulation depends on many factors: the direction of their effect, duration of the stimulation blocks, and the interval between them.
Non-invasive brain stimulation can be used to assess aberrant metaplasticity in nervous system diseases, in order to develop new biomarkers. Metaplasticity disorders are found in focal hand dystonia, migraine with aura, multiple sclerosis, chronic disorders of consciousness, and age-related cognitive changes.
The development of new, metaplasticity-based, optimized, combined stimulation protocols appears to be highly promising for use in therapeutic neuromodulation in clinical practice.
Collapse
|
23
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. Neurologia 2022; 37:682-690. [PMID: 31780319 DOI: 10.1016/j.nrl.2019.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address two factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, México
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México.
| |
Collapse
|
24
|
Raghuraman R, Manakkadan A, Richter-Levin G, Sajikumar S. Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. Int J Neuropsychopharmacol 2022; 25:576-589. [PMID: 35089327 PMCID: PMC9352179 DOI: 10.1093/ijnp/pyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anoop Manakkadan
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gal Richter-Levin
- Sagol department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
25
|
Dubes S, Soula A, Benquet S, Tessier B, Poujol C, Favereaux A, Thoumine O, Letellier M. miR
‐124‐dependent tagging of synapses by synaptopodin enables input‐specific homeostatic plasticity. EMBO J 2022; 41:e109012. [PMID: 35875872 PMCID: PMC9574720 DOI: 10.15252/embj.2021109012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/26/2022] Open
Abstract
Homeostatic synaptic plasticity is a process by which neurons adjust their synaptic strength to compensate for perturbations in neuronal activity. Whether the highly diverse synapses on a neuron respond uniformly to the same perturbation remains unclear. Moreover, the molecular determinants that underlie synapse‐specific homeostatic synaptic plasticity are unknown. Here, we report a synaptic tagging mechanism in which the ability of individual synapses to increase their strength in response to activity deprivation depends on the local expression of the spine‐apparatus protein synaptopodin under the regulation of miR‐124. Using genetic manipulations to alter synaptopodin expression or regulation by miR‐124, we show that synaptopodin behaves as a “postsynaptic tag” whose translation is derepressed in a subpopulation of synapses and allows for nonuniform homeostatic strengthening and synaptic AMPA receptor stabilization. By genetically silencing individual connections in pairs of neurons, we demonstrate that this process operates in an input‐specific manner. Overall, our study shifts the current view that homeostatic synaptic plasticity affects all synapses uniformly to a more complex paradigm where the ability of individual synapses to undergo homeostatic changes depends on their own functional and biochemical state.
Collapse
Affiliation(s)
- Sandra Dubes
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Anaïs Soula
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Sébastien Benquet
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Béatrice Tessier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Christel Poujol
- University of Bordeaux CNRS INSERM Bordeaux Imaging Center BIC UMS 3420, US 4 Bordeaux France
| | - Alexandre Favereaux
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Olivier Thoumine
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| | - Mathieu Letellier
- University of Bordeaux CNRS Interdisciplinary Institute for Neuroscience UMR 5297 Bordeaux France
| |
Collapse
|
26
|
Rajagopal L, Huang M, He W, Ryan C, Elzokaky A, Banerjee P, Meltzer HY. Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behav Brain Res 2022; 432:113964. [PMID: 35718230 DOI: 10.1016/j.bbr.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
27
|
Sivasangari K, Rajan KE. Prenatal exposure to valproic acid alters Reelin, NGF expressing neuron architecture and impairs social interaction in their autistic-like phenotype male offspring. Exp Brain Res 2022; 240:2005-2016. [PMID: 35648200 DOI: 10.1007/s00221-022-06386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022]
Abstract
Maternal exposure to anti-epileptic drug Valproic acid (VPA) during pregnancy increases the risk for the development of autism spectrum disorders (ASD). In this study, we have examined whether prenatal exposure to VPA will alter expression of key genes, synaptic morphology of nerve growth factor (NGF) and Reelin expressing neurons in the cortex of male offspring. To characterize in animal models, rat fetuses were exposed to VPA on 12.5 gestational day. The offspring of the VPA-exposed individuals (42%) resembles ASD-related phenotype (facial malformation, crooked-like tail, flattened paw, toenails and in-turning-ankles). Furthermore, we have observed deficit in social interaction accompanied by deregulation in expression of genes such as Caspase-3, focal adhesion kinase (FAK), Reelin, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA) and NGF. Subsequently, immunohistochemistry analysis revealed that exposure to VPA alters the cytoarchitecture (area, diameter) and reduced the dendritic arborization of Reelin, NGF expressing neurons in cortex. The compromised neurodevelopment by altered expression of Caspase-3, FAK, Reelin, GFAP, PCNA and NGF may cause defects in neuronal architecture, synaptic formation, synaptic plasticity and neuronal communication which could be linked with observed ASD-like phenotype and deficit social interaction.
Collapse
Affiliation(s)
- Karunanithi Sivasangari
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
28
|
Homeostatic plasticity and excitation-inhibition balance: The good, the bad, and the ugly. Curr Opin Neurobiol 2022; 75:102553. [PMID: 35594578 DOI: 10.1016/j.conb.2022.102553] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/15/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
In this review, we discuss the significance of the synaptic excitation/inhibition (E/I) balance in the context of homeostatic plasticity, whose primary goal is thought to maintain neuronal firing rates at a set point. We first provide an overview of the processes through which patterned input activity drives synaptic E/I tuning and maturation of circuits during development. Next, we emphasize the importance of the E/I balance at the synaptic level (homeostatic control of message reception) as a means to achieve the goal (homeostatic control of information transmission) at the network level and consider how compromised homeostatic plasticity associated with neurological diseases leads to hyperactivity, network instability, and ultimately improper information processing. Lastly, we highlight several pathological conditions related to sensory deafferentation and describe how, in some cases, homeostatic compensation without appropriate sensory inputs can result in phantom perceptions.
Collapse
|
29
|
Liu Z, Jiang M, Liakath-Ali K, Sclip A, Ko J, Zhang RS, Südhof TC. Deletion of Calsyntenin-3, an atypical cadherin, suppresses inhibitory synapses but increases excitatory parallel-fiber synapses in cerebellum. eLife 2022; 11:e70664. [PMID: 35420982 PMCID: PMC9064300 DOI: 10.7554/elife.70664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Cadherins contribute to the organization of nearly all tissues, but the functions of several evolutionarily conserved cadherins, including those of calsyntenins, remain enigmatic. Puzzlingly, two distinct, non-overlapping functions for calsyntenins were proposed: As postsynaptic neurexin ligands in synapse formation, or as presynaptic kinesin adaptors in vesicular transport. Here, we show that, surprisingly, acute CRISPR-mediated deletion of calsyntenin-3 in mouse cerebellum in vivo causes a large decrease in inhibitory synapse, but a robust increase in excitatory parallel-fiber synapses in Purkinje cells. As a result, inhibitory synaptic transmission was suppressed, whereas parallel-fiber synaptic transmission was enhanced in Purkinje cells by the calsyntenin-3 deletion. No changes in the dendritic architecture of Purkinje cells or in climbing-fiber synapses were detected. Sparse selective deletion of calsyntenin-3 only in Purkinje cells recapitulated the synaptic phenotype, indicating that calsyntenin-3 acts by a cell-autonomous postsynaptic mechanism in cerebellum. Thus, by inhibiting formation of excitatory parallel-fiber synapses and promoting formation of inhibitory synapses in the same neuron, calsyntenin-3 functions as a postsynaptic adhesion molecule that regulates the excitatory/inhibitory balance in Purkinje cells.
Collapse
Affiliation(s)
- Zhihui Liu
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Man Jiang
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Alessandra Sclip
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and TechnologyDaeguRepublic of Korea
| | - Roger Shen Zhang
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford UniversityStanfordUnited States
- Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
30
|
Hamel R, Lepage JF, Bernier PM. Anterograde interference emerges along a gradient as a function of task similarity: A behavioural study. Eur J Neurosci 2021; 55:49-66. [PMID: 34894023 PMCID: PMC9299670 DOI: 10.1111/ejn.15561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/28/2022]
Abstract
Anterograde interference emerges when two opposite (B → A) or identical tasks (A → A) are learned in close temporal succession, suggesting that interference cannot be fully accounted for by competing memories. Informed by neurobiological evidence, this work tested the hypothesis that interference depends upon the degree of overlap between the neural networks involved in the learning of two tasks. In a fully within‐subject and counterbalanced design, participants (n = 24) took part in two learning sessions where the putative overlap between learning‐specific neural networks was behaviourally manipulated across four conditions by modifying reach direction and the effector used during gradual visuomotor adaptation. The results showed that anterograde interference emerged regardless of memory competition—that is, to a similar extent in the B → A and A → A conditions—and along a gradient as a function of the tasks' similarity. Specifically, learning under similar reaching conditions generated more anterograde interference than learning under dissimilar reaching conditions, suggesting that putatively overlapping neural networks are required to generate interference. Overall, these results indicate that competing memories are not the sole contributor to anterograde interference and suggest that overlapping neural networks between two learning sessions are required to trigger interference. One discussed possibility is that initial learning modifies the properties of its neural networks to constrain further plasticity induction and learning capabilities, therefore causing anterograde interference in a network‐dependent manner. One implication is that learning‐specific neural networks must be maximally dissociated to minimize the interfering influences of previous learning on subsequent learning.
Collapse
Affiliation(s)
- Raphaël Hamel
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada.,Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Pierre-Michel Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
31
|
Camargo WL, Kushmerick C, Pinto E, Souza N, Cavalcante W, Souza-Neto FP, Guatimosim S, Prado M, Guatimosim C, Naves LA. Homeostatic plasticity induced by increased acetylcholine release at the mouse neuromuscular junction. Neurobiol Aging 2021; 110:13-26. [PMID: 34844076 DOI: 10.1016/j.neurobiolaging.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023]
Abstract
At the neuromuscular junction (NMJ), changes to the size of the postsynaptic potential induce homeostatic compensation. At the Drosophila NMJ, increased glutamate release causes a compensatory decrease in quantal content, but it is unknown if this mechanism operates at the cholinergic mammalian NMJ. We addressed this question by recording endplate potentials (EPP) and muscle contraction in 3-month and 24-month ChAT-ChR2-EYFP mice that overexpress vesicular acetylcholine transporter and release more acetylcholine per vesicle. At 3 months, the quantal content of EPPs from ChAT-ChR2-EYFP mice were not different from WT controls, however tetanic depression was greater, and quantal size during high-frequency stimulation and the size of the readily releasable pool (RRP) were decreased. At 24 months of age, quantal content was reduced in ChAT-ChR2-EYFP mice, which normalized synaptic depression despite smaller RRP. The effect of pancuronium on indirect evoked muscle twitch was not different between groups. These results indicate that an increase in the amount of acetylcholine per vesicle induces two distinct age-dependent homeostatic mechanisms compensating excessive acetylcholine release.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mam Prado
- Robarts Research Institute and Department of Physiology and Pharmacology and Anatomy & Cell Biology, University of Western Ontario, London, ON, Canada
| | | | - L A Naves
- Departments of Physiology and biophysics
| |
Collapse
|
32
|
Albarran E, Raissi A, Jáidar O, Shatz CJ, Ding JB. Enhancing motor learning by increasing the stability of newly formed dendritic spines in the motor cortex. Neuron 2021; 109:3298-3311.e4. [PMID: 34437845 DOI: 10.1016/j.neuron.2021.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Dendritic spine dynamics are thought to be substrates for motor learning and memory, and altered spine dynamics often lead to impaired performance. Here, we describe an exception to this rule by studying mice lacking paired immunoglobulin receptor B (PirB-/-). Pyramidal neuron dendrites in PirB-/- mice have increased spine formation rates and density. Surprisingly, PirB-/- mice learn a skilled reaching task faster than wild-type (WT) littermates. Furthermore, stabilization of learning-induced spines is elevated in PirB-/- mice. Mechanistically, single-spine uncaging experiments suggest that PirB is required for NMDA receptor (NMDAR)-dependent spine shrinkage. The degree of survival of newly formed spines correlates with performance, suggesting that increased spine stability is advantageous for learning. Acute inhibition of PirB function in M1 of adult WT mice increases the survival of learning-induced spines and enhances motor learning. These results demonstrate that there are limits on motor learning that can be lifted by manipulating PirB, even in adulthood.
Collapse
Affiliation(s)
- Eddy Albarran
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Aram Raissi
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Omar Jáidar
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Carla J Shatz
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Zhang Y, Zeng Z. A Multi-functional Memristive Pavlov Associative Memory Circuit Based on Neural Mechanisms. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2021; 15:978-993. [PMID: 34460383 DOI: 10.1109/tbcas.2021.3108354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pavlov conditioning is a typical associative memory, which involves associative learning between the gustatory and auditory cortex, known as Pavlov associative memory. Inspired by neural mechanisms and biological phenomena of Pavlov associative memory, this paper proposes a multi-functional memristive Pavlov associative memory circuit. In addition to learning and forgetting, whose rates change with the number of associative learning times, the circuit also achieves other innovative functions. First, consolidation learning, which refers to the continued learning process after acquiring associative memory, changes the rates of learning and forgetting. Secondly, the natural forgetting rate tends to zero when the associative memory has been acquired several times, which means the formation of long-term memory. Thirdly, the generalization and differentiation of associative memory caused by similar stimuli are realized through a simplified memristive feedforward neural network. Besides, this circuit implements the associative learning function of interval stimuli through a simpler structure, which refers to "the longer the stimuli interval, the slower the learning rate". The above functions are realized by the time interval module, variable rates module, and generalization and differentiation module. It has been shown that the proposed circuit has good robustness, and can reduce the influence of parasitic capacitance, memristive conductance drift, and input noise on circuit functions. Through further research, this circuit is expected to be used in robot platforms to realize human-like perception and associative cognitive functions.
Collapse
|
34
|
Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P. Vitamin A and Retinoic Acid in Cognition and Cognitive Disease. Annu Rev Nutr 2021; 40:247-272. [PMID: 32966186 DOI: 10.1146/annurev-nutr-122319-034227] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The history of vitamin A goes back over one hundred years, but our realization of its importance for the brain and cognition is much more recent. The brain is more efficient than other target tissues at converting vitamin A to retinoic acid (RA), which activates retinoic acid receptors (RARs). RARs regulate transcription, but their function in the cytoplasm to control nongenomic actions is also crucial. Controlled synthesis of RA is essential for regulating synaptic plasticity in regions of the brain involved in learning and memory, such as the hippocampus. Vitamin A deficiency results in a deterioration of these functions, and failure of RA signaling is perhaps associated with normal cognitive decline with age as well as with Alzheimer's disease. Further, several psychiatric and developmental disorders that disrupt cognition are also linked with vitamin A and point to their possible treatment with vitamin A or RA.
Collapse
Affiliation(s)
| | - Azita Kouchmeshky
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom;
| | - Peter McCaffery
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, United Kingdom;
| |
Collapse
|
35
|
Bello-Medina PC, González-Franco DA, Vargas-Rodríguez I, Díaz-Cintra S. Oxidative stress, the immune response, synaptic plasticity, and cognition in transgenic models of Alzheimer disease. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:682-690. [PMID: 34509401 DOI: 10.1016/j.nrleng.2019.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/27/2019] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION Worldwide, approximately 50 million people have dementia, with Alzheimer disease (AD) being the most common type, accounting for 60%-70% of cases. Given its high incidence, it is imperative to design studies to expand our knowledge about its onset and development, and to develop early diagnosis strategies and/or possible treatments. One methodological strategy is the use of transgenic mouse models for the study of the factors involved in AD aetiology, which include oxidative stress and the immune response. DEVELOPMENT We searched the PubMed, Scopus, and Google Scholar databases for original articles and reviews published between 2013 and 2019. In this review, we address 2 factors that have been studied independently, oxidative stress and the immune response, in transgenic models of AD, and discuss the relationship between these factors and their impact on the loss of synaptic and structural plasticity, resulting in cognitive impairment. CONCLUSION This review describes possible mechanisms by which oxidative stress and the immune response participate in the molecular, cellular, and behavioural effects of AD, observing a close relationship between these factors, which lead to cognitive impairment.
Collapse
Affiliation(s)
- P C Bello-Medina
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - D A González-Franco
- Facultad de Psicología, Universidad Latina de México, Celaya, Guanajuato, Mexico
| | - I Vargas-Rodríguez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico.
| |
Collapse
|
36
|
Fong MF, Duffy KR, Leet MP, Candler CT, Bear MF. Correction of amblyopia in cats and mice after the critical period. eLife 2021; 10:e70023. [PMID: 34464258 PMCID: PMC8456712 DOI: 10.7554/elife.70023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
Monocular deprivation early in development causes amblyopia, a severe visual impairment. Prognosis is poor if therapy is initiated after an early critical period. However, clinical observations have shown that recovery from amblyopia can occur later in life when the non-deprived (fellow) eye is removed. The traditional interpretation of this finding is that vision is improved simply by the elimination of interocular suppression in primary visual cortex, revealing responses to previously subthreshold input. However, an alternative explanation is that silencing activity in the fellow eye establishes conditions in visual cortex that enable the weak connections from the amblyopic eye to gain strength, in which case the recovery would persist even if vision is restored in the fellow eye. Consistent with this idea, we show here in cats and mice that temporary inactivation of the fellow eye is sufficient to promote a full and enduring recovery from amblyopia at ages when conventional treatments fail. Thus, connections serving the amblyopic eye are capable of substantial plasticity beyond the critical period, and this potential is unleashed by reversibly silencing the fellow eye.
Collapse
Affiliation(s)
- Ming-fai Fong
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Madison P Leet
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Christian T Candler
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Mark F Bear
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
37
|
Differential Retinoic Acid Signaling in the Hippocampus of Aged Rats with and without Memory Impairment. eNeuro 2021; 8:ENEURO.0120-21.2021. [PMID: 34417282 PMCID: PMC8442538 DOI: 10.1523/eneuro.0120-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Retinoic acid (RA), a metabolite of vitamin A, has many physiological functions, and mounting evidence points to important roles in cognition. In vitro experiments indicate that RA is involved in homeostatic synaptic scaling in the hippocampus, which supports overall network stability during learning. It has been previously determined that disrupted RA signaling in the hippocampus causes deterioration of memory, that RA signaling declines with age in brain, and that application of RA reverses this decline. Here, we explore whether RA signaling is altered in an animal model of neurocognitive aging. We used a Morris water maze protocol to study cognitive decline in aged rats, which assesses hippocampus-dependent spatial memory and reveals substantial interindividual differences in aged animals. Aged unimpaired (AU) rats perform on par with young (Y), while aged impaired (AI) animals exhibit spatial memory deficits. We show that the major substrate for RA, retinol binding protein 4 (RBP4), is decreased in AU rats, and retinol cell surface receptor declines with chronological age. Other affected components of RA signaling include selective increases in AI animals in hippocampal synthesis (RALDH1) and catabolism of RA (CYP26B1), RA receptor α, the RA regulated ionotropic glutamate receptor (GluR1), as well as fragile X mental retardation protein (FMRP). The results support the conclusion that, surprisingly, increased RA signaling in the aged hippocampus is associated with poor cognitive outcome.
Collapse
|
38
|
Vives-Boix V, Ruiz-Fernández D. Diabetic retinopathy detection through convolutional neural networks with synaptic metaplasticity. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 206:106094. [PMID: 34010801 DOI: 10.1016/j.cmpb.2021.106094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Diabetic retinopathy is a type of diabetes that causes vascular changes that can lead to blindness. The ravages of this disease cannot be reversed, so early detection is essential. This work presents an automated method for early detection of this disease using fundus colored images. METHODS A bio-inspired approach is proposed on synaptic metaplasticity in convolutional neural networks. This biological phenomenon is known to directly interfere in both learning and memory by reinforcing less common occurrences during the learning process. Synaptic metaplasticity has been included in the backpropagation stage of a convolution operation for every convolutional layer. RESULTS The proposed method has been evaluated by using a public small diabetic retinopathy dataset from Kaggle with four award-winning convolutional neural network architectures. Results show that convolutional neural network architectures including synaptic metaplasticity improve both learning rate and accuracy. Furthermore, obtained results outperform other methods in current literature, even using smaller datasets for training. Best results have been obtained for the InceptionV3 architecture with synaptic metaplasticity with a 95.56% accuracy, 94.24% F1-score, 98.9% precision and 90% recall, using 3662 images for training. CONCLUSIONS Convolutional neural networks with synaptic metaplasticity are suitable for early detection of diabetic retinopathy due to their fast convergence rate, training simplicity and high performance.
Collapse
Affiliation(s)
- Víctor Vives-Boix
- Department of Computer Science and Technology, University of Alicante, Ctra. San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain.
| | - Daniel Ruiz-Fernández
- Department of Computer Science and Technology, University of Alicante, Ctra. San Vicente del Raspeig s/n, 03690, San Vicente del Raspeig, Spain.
| |
Collapse
|
39
|
Fourneau J, Canu MH, Dupont E. Sensorimotor Perturbation Induces Late and Transient Molecular Synaptic Proteins Activation and Expression Changes. J Mol Neurosci 2021; 71:2534-2545. [PMID: 33835400 DOI: 10.1007/s12031-021-01839-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/31/2021] [Indexed: 11/28/2022]
Abstract
Plasticity of the cerebral cortex following a modification of the sensorimotor experience takes place in several steps that can last from few hours to several months. Among the mechanisms involved in the dynamic modulation of the cerebral cortex in adults, it is commonly proposed that short-term plasticity reflects changes in synaptic connections. Here, we were interested in the time-course of synaptic plasticity taking place in the somatosensory primary cortex all along a 14-day period of sensorimotor perturbation (SMP), as well as during a recovery phase up to 24 h. Activation and expression level of pre- (synapsin 1, synaptophysin, synaptotagmin 1) and postsynaptic (AMPA and NMDA receptors) proteins, postsynaptic density scaffold proteins (PSD-95 and Shank2), and cytoskeletal proteins (neurofilaments-L and M, β3-tubulin, synaptopodin, N-cadherin) were determined in cortical tissue enriched in synaptic proteins. During the SMP period, most changes were observed as soon as D7 in the presynaptic compartment and were followed, at D14, by changes in the postsynaptic compartment. These changes persisted at least until 24 h of recovery. Proteins involved in synapse structure (scaffolding, adhesion, cytoskeletal) were mildly affected and almost exclusively at D14. We concluded that experience-dependent reorganization of somatotopic cortical maps is accompanied by changes in synaptic transmission with a very close time-course.
Collapse
Affiliation(s)
- Julie Fourneau
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France
| | - Marie-Hélène Canu
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France.
| | - Erwan Dupont
- URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Univ. Lille, Univ Artois, Univ Littoral Côte D'Opale, ULR7369, 59000, Lille, France
| |
Collapse
|
40
|
Bissen D, Kracht MK, Foss F, Hofmann J, Acker-Palmer A. EphrinB2 and GRIP1 stabilize mushroom spines during denervation-induced homeostatic plasticity. Cell Rep 2021; 34:108923. [PMID: 33789115 PMCID: PMC8028307 DOI: 10.1016/j.celrep.2021.108923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/20/2020] [Accepted: 03/09/2021] [Indexed: 12/03/2022] Open
Abstract
Despite decades of work, much remains elusive about molecular events at the interplay between physiological and structural changes underlying neuronal plasticity. Here, we combined repetitive live imaging and expansion microscopy in organotypic brain slice cultures to quantitatively characterize the dynamic changes of the intracellular versus surface pools of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) across the different dendritic spine types and the shaft during hippocampal homeostatic plasticity. Mechanistically, we identify ephrinB2 and glutamate receptor interacting protein (GRIP) 1 as mediating AMPAR relocation to the mushroom spine surface following lesion-induced denervation. Moreover, stimulation with the ephrinB2 specific receptor EphB4 not only prevents the lesion-induced disappearance of mushroom spines but is also sufficient to shift AMPARs to the surface and rescue spine recovery in a GRIP1 dominant-negative background. Thus, our results unravel a crucial role for ephrinB2 during homeostatic plasticity and identify a potential pharmacological target to improve dendritic spine plasticity upon injury.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Maximilian Ken Kracht
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jan Hofmann
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany; Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
41
|
Pléau C, Peret A, Pearlstein E, Scalfati T, Vigier A, Marti G, Michel FJ, Marissal T, Crépel V. Dentate Granule Cells Recruited in the Home Environment Display Distinctive Properties. Front Cell Neurosci 2021; 14:609123. [PMID: 33519383 PMCID: PMC7843370 DOI: 10.3389/fncel.2020.609123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
The dentate granule cells (DGCs) play a crucial role in learning and memory. Many studies have described the role and physiological properties of these sparsely active neurons using different behavioral contexts. However, the morpho-functional features of DGCs recruited in mice maintained in their home cage (without training), considered as a baseline condition, have not yet been established. Using fosGFP transgenic mice, we observed ex vivo that DGCs recruited in animals maintained in the home cage condition are mature neurons that display a longer dendritic tree and lower excitability compared with non-activated cells. The higher GABAA receptor-mediated shunting inhibition contributes to the lower excitability of DGCs activated in the home environment by shifting the input resistance towards lower values. Remarkably, that shunting inhibition is neither observed in non-activated DGCs nor in DGCs activated during training in virtual reality. In short, our results suggest that strong shunting inhibition and reduced excitability could constitute a distinctive neural signature of mature DGCs recruited in the context of the home environment.
Collapse
Affiliation(s)
- Claire Pléau
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Angélique Peret
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | - Thomas Scalfati
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Alexandre Vigier
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | | | | | - Thomas Marissal
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| | - Valérie Crépel
- INMED, INSERM UMR1249, Aix-Marseille University, Marseille, France
| |
Collapse
|
42
|
Perez-Catalan NA, Doe CQ, Ackerman SD. The role of astrocyte-mediated plasticity in neural circuit development and function. Neural Dev 2021; 16:1. [PMID: 33413602 PMCID: PMC7789420 DOI: 10.1186/s13064-020-00151-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/26/2020] [Indexed: 02/03/2023] Open
Abstract
Neuronal networks are capable of undergoing rapid structural and functional changes called plasticity, which are essential for shaping circuit function during nervous system development. These changes range from short-term modifications on the order of milliseconds, to long-term rearrangement of neural architecture that could last for the lifetime of the organism. Neural plasticity is most prominent during development, yet also plays a critical role during memory formation, behavior, and disease. Therefore, it is essential to define and characterize the mechanisms underlying the onset, duration, and form of plasticity. Astrocytes, the most numerous glial cell type in the human nervous system, are integral elements of synapses and are components of a glial network that can coordinate neural activity at a circuit-wide level. Moreover, their arrival to the CNS during late embryogenesis correlates to the onset of sensory-evoked activity, making them an interesting target for circuit plasticity studies. Technological advancements in the last decade have uncovered astrocytes as prominent regulators of circuit assembly and function. Here, we provide a brief historical perspective on our understanding of astrocytes in the nervous system, and review the latest advances on the role of astroglia in regulating circuit plasticity and function during nervous system development and homeostasis.
Collapse
Affiliation(s)
- Nelson A Perez-Catalan
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
- Kennedy Center, Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA
| | - Sarah D Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
43
|
Astrocyte-secreted IL-33 mediates homeostatic synaptic plasticity in the adult hippocampus. Proc Natl Acad Sci U S A 2020; 118:2020810118. [PMID: 33443211 PMCID: PMC7817131 DOI: 10.1073/pnas.2020810118] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Synaptic plasticity in the hippocampus is important for learning and memory formation. In particular, homeostatic synaptic plasticity enables neurons to restore their activity levels in response to chronic neuronal activity changes. While astrocytes modulate synaptic functions via the secretion of factors, the underlying molecular mechanisms remain unclear. Here, we show that suppression of hippocampal neuronal activity increases cytokine IL-33 release from astrocytes in the CA1 region. Activation of IL-33 and its neuronal ST2 receptor complex promotes functional excitatory synapse formation. Moreover, IL-33/ST2 signaling is important for the neuronal activity blockade-induced increase of CA1 excitatory synapses in vivo and spatial memory formation. This study suggests that astrocyte-secreted IL-33 acts as a negative feedback control signal to regulate hippocampal homeostatic synaptic plasticity. Hippocampal synaptic plasticity is important for learning and memory formation. Homeostatic synaptic plasticity is a specific form of synaptic plasticity that is induced upon prolonged changes in neuronal activity to maintain network homeostasis. While astrocytes are important regulators of synaptic transmission and plasticity, it is largely unclear how they interact with neurons to regulate synaptic plasticity at the circuit level. Here, we show that neuronal activity blockade selectively increases the expression and secretion of IL-33 (interleukin-33) by astrocytes in the hippocampal cornu ammonis 1 (CA1) subregion. This IL-33 stimulates an increase in excitatory synapses and neurotransmission through the activation of neuronal IL-33 receptor complex and synaptic recruitment of the scaffold protein PSD-95. We found that acute administration of tetrodotoxin in hippocampal slices or inhibition of hippocampal CA1 excitatory neurons by optogenetic manipulation increases IL-33 expression in CA1 astrocytes. Furthermore, IL-33 administration in vivo promotes the formation of functional excitatory synapses in hippocampal CA1 neurons, whereas conditional knockout of IL-33 in CA1 astrocytes decreases the number of excitatory synapses therein. Importantly, blockade of IL-33 and its receptor signaling in vivo by intracerebroventricular administration of its decoy receptor inhibits homeostatic synaptic plasticity in CA1 pyramidal neurons and impairs spatial memory formation in mice. These results collectively reveal an important role of astrocytic IL-33 in mediating the negative-feedback signaling mechanism in homeostatic synaptic plasticity, providing insights into how astrocytes maintain hippocampal network homeostasis.
Collapse
|
44
|
Wang JKT. Uniting homeostatic plasticity and exosome biology: A revision of the conceptual framework for drug discovery in neurodegenerative diseases? ADVANCES IN PHARMACOLOGY 2020; 90:277-306. [PMID: 33706937 DOI: 10.1016/bs.apha.2020.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Neurodegenerative diseases (NDDs) are in need of new drug discovery approaches. Our previous systematic analyses of Huntington's Disease (HD) literature for protein-protein interactors (PPIs) and modifiers of mutant Huntingtin-driven phenotypes revealed enrichment for PPIs of genes required for homeostatic synaptic plasticity (HSP) and exosome (EV) function and exosomal proteins, which in turn highly overlapped each other and with PPIs of genes associated with other NDDs. We proposed that HSP and EVs are linked to each other and are also involved in NDD pathophysiology. Recent studies showed that HSP is indeed altered in HD and AD, and that presynaptic homeostatic plasticity in motoneurons compensates for ALS pathology. Eliminating it causes earlier degeneration and death. If this holds true in other NDDs, drug discovery in animal models should then include elucidation of homeostatic compensation that either masks phenotypes of physiologically expressed mutant genes or are overridden by their overexpression. In this new conceptual framework, enhancing such underlying homeostatic compensation forms the basis for novel therapeutic strategies to slow progression of NDDs. Moreover, if EVs are linked to HSP, then their ability to penetrate the brain, target cell types, deliver miRNA and other molecules can be leveraged to develop attractive drug modalities. Testing this new framework is posed as four questions on model development and mechanistic studies progressing from higher throughput platforms to mouse models. Similar approaches may apply to other CNS disorders including schizophrenia, autism, Rett and Fragile X syndromes due to potential links of their susceptibility genes to HSP and EVs.
Collapse
|
45
|
Thomson AC, Sack AT. How to Design Optimal Accelerated rTMS Protocols Capable of Promoting Therapeutically Beneficial Metaplasticity. Front Neurol 2020; 11:599918. [PMID: 33224103 PMCID: PMC7674552 DOI: 10.3389/fneur.2020.599918] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alix C Thomson
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht, Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht, Netherlands.,Centre for Integrative Neuroscience, Faculty of Psychology and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
46
|
Zhang CQ, Catron MA, Ding L, Hanna CM, Gallagher MJ, Macdonald RL, Zhou C. Impaired State-Dependent Potentiation of GABAergic Synaptic Currents Triggers Seizures in a Genetic Generalized Epilepsy Model. Cereb Cortex 2020; 31:768-784. [PMID: 32930324 DOI: 10.1093/cercor/bhaa256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 11/14/2022] Open
Abstract
Epileptic activity in genetic generalized epilepsy (GGE) patients preferentially appears during sleep and its mechanism remains unknown. Here, we found that sleep-like slow-wave oscillations (0.5 Hz SWOs) potentiated excitatory and inhibitory synaptic currents in layer V cortical pyramidal neurons from wild-type (wt) mouse brain slices. In contrast, SWOs potentiated excitatory, but not inhibitory, currents in cortical neurons from a heterozygous (het) knock-in (KI) Gabrg2+Q/390X model of Dravet epilepsy syndrome. This created an imbalance between evoked excitatory and inhibitory currents to effectively prompt neuronal action potential firings. Similarly, physiologically similar up-/down-state induction (present during slow-wave sleep) in cortical neurons also potentiated excitatory synaptic currents within brain slices from wt and het KI mice. Moreover, this state-dependent potentiation of excitatory synaptic currents entailed some signaling pathways of homeostatic synaptic plasticity. Consequently, in het KI mice, in vivo SWO induction (using optogenetic methods) triggered generalized epileptic spike-wave discharges (SWDs), being accompanied by sudden immobility, facial myoclonus, and vibrissa twitching. In contrast, in wt littermates, SWO induction did not cause epileptic SWDs and motor behaviors. To our knowledge, this is the first mechanism to explain why epileptic SWDs preferentially happen during non rapid eye-movement sleep and quiet-wakefulness in human GGE patients.
Collapse
Affiliation(s)
- Chun-Qing Zhang
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mackenzie A Catron
- Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Li Ding
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Caitlyn M Hanna
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Martin J Gallagher
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity. PLoS Comput Biol 2020; 16:e1008118. [PMID: 32764742 PMCID: PMC7439813 DOI: 10.1371/journal.pcbi.1008118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/19/2020] [Accepted: 07/01/2020] [Indexed: 01/23/2023] Open
Abstract
Hebbian plasticity, a mechanism believed to be the substrate of learning and memory, detects and further enhances correlated neural activity. Because this constitutes an unstable positive feedback loop, it requires additional homeostatic control. Computational work suggests that in recurrent networks, the homeostatic mechanisms observed in experiments are too slow to compensate instabilities arising from Hebbian plasticity and need to be complemented by rapid compensatory processes. We suggest presynaptic inhibition as a candidate that rapidly provides stability by compensating recurrent excitation induced by Hebbian changes. Presynaptic inhibition is mediated by presynaptic GABA receptors that effectively and reversibly attenuate transmitter release. Activation of these receptors can be triggered by excess network activity, hence providing a stabilising negative feedback loop that weakens recurrent interactions on sub-second timescales. We study the stabilising effect of presynaptic inhibition in recurrent networks, in which presynaptic inhibition is implemented as a multiplicative reduction of recurrent synaptic weights in response to increasing inhibitory activity. We show that networks with presynaptic inhibition display a gradual increase of firing rates with growing excitatory weights, in contrast to traditional excitatory-inhibitory networks. This alleviates the positive feedback loop between Hebbian plasticity and network activity and thereby allows homeostasis to act on timescales similar to those observed in experiments. Our results generalise to spiking networks with a biophysically more detailed implementation of the presynaptic inhibition mechanism. In conclusion, presynaptic inhibition provides a powerful compensatory mechanism that rapidly reduces effective recurrent interactions and thereby stabilises Hebbian learning. Synapses between neurons change during learning and memory formation, a process termed synaptic plasticity. Established models of plasticity rely on strengthening synapses of co-active neurons. In recurrent networks, mutually connected neurons tend to be co-active. The emerging positive feedback loop is believed to be counteracted by homeostatic mechanisms that aim to keep neural activity at a given set point. However, theoretical work indicates that experimentally observed forms of homeostasis are too slow to maintain stable network activity. In this article, we suggest that presynaptic inhibition can alleviate this problem. Presynaptic inhibition is an inhibitory mechanism that weakens synapses rather than suppressing neural activity. Using mathematical analyses and computer simulations, we show that presynaptic inhibition can compensate the strengthening of recurrent connections and thus stabilises neural networks subject to synaptic plasticity, even if homeostasis acts on biologically plausible timescales.
Collapse
|
48
|
Mayordomo-Cava J, Iborra-Lázaro G, Djebari S, Temprano-Carazo S, Sánchez-Rodríguez I, Jeremic D, Gruart A, Delgado-García JM, Jiménez-Díaz L, Navarro-López JD. Impairments of Synaptic Plasticity Induction Threshold and Network Oscillatory Activity in the Hippocampus Underlie Memory Deficits in a Non-Transgenic Mouse Model of Amyloidosis. BIOLOGY 2020; 9:biology9070175. [PMID: 32698467 PMCID: PMC7407959 DOI: 10.3390/biology9070175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022]
Abstract
In early Alzheimer disease (AD) models synaptic failures and upstreaming aberrant patterns of network synchronous activity result in hippocampal-dependent memory deficits. In such initial stage, soluble forms of Amyloid-β (Aβ) peptides have been shown to play a causal role. Among different Aβ species, Aβ25-35 has been identified as the biologically active fragment, as induces major neuropathological signs related to early AD stages. Consequently, it has been extensively used to acutely explore the pathophysiological events related with neuronal dysfunction induced by soluble Aβ forms. However, the synaptic mechanisms underlying its toxic effects on hippocampal-dependent memory remain unresolved. Here, in an in vivo model of amyloidosis generated by intracerebroventricular injections of Aβ25-35 we studied the synaptic dysfunction mechanisms underlying hippocampal cognitive deficits. At the synaptic level, long-term potentiation (LTP) of synaptic excitation and inhibition was induced in CA1 region by high frequency simulation (HFS) applied to Schaffer collaterals. Aβ25-35 was found to alter metaplastic mechanisms of plasticity, facilitating long-term depression (LTD) of both types of LTP. In addition, aberrant synchronization of hippocampal network activity was found while at the behavioral level, deficits in hippocampal-dependent habituation and recognition memories emerged. Together, our results provide a substrate for synaptic disruption mechanism underlying hippocampal cognitive deficits present in Aβ25-35 amyloidosis model.
Collapse
Affiliation(s)
- Jennifer Mayordomo-Cava
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Guillermo Iborra-Lázaro
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Souhail Djebari
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Sara Temprano-Carazo
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Irene Sánchez-Rodríguez
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Danko Jeremic
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
| | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, 41013 Seville, Spain; (A.G.); (J.M.D.-G.)
| | | | - Lydia Jiménez-Díaz
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
- Correspondence: (L.J.-D.); (J.D.N.-L.)
| | - Juan D. Navarro-López
- Neurophysiology and Behavioral Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.M.-C.); (G.I.-L.); (S.D.); (S.T.-C.); (I.S.-R.); (D.J.)
- Correspondence: (L.J.-D.); (J.D.N.-L.)
| |
Collapse
|
49
|
Lignani G, Baldelli P, Marra V. Homeostatic Plasticity in Epilepsy. Front Cell Neurosci 2020; 14:197. [PMID: 32676011 PMCID: PMC7333442 DOI: 10.3389/fncel.2020.00197] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 11/26/2022] Open
Abstract
In the healthy brain, neuronal excitability and synaptic strength are homeostatically regulated to keep neuronal network activity within physiological boundaries. Epilepsy is characterized by episodes of highly synchronized firing across in widespread neuronal populations, due to a failure in regulation of network activity. Here we consider epilepsy as a failure of homeostatic plasticity or as a maladaptive response to perturbations in the activity. How homeostatic compensation is involved in epileptogenic processes or in the chronic phase of epilepsy, is still debated. Although several theories have been proposed, there is relatively little experimental evidence to evaluate them. In this perspective, we will discuss recent results that shed light on the potential role of homeostatic plasticity in epilepsy. First, we will present some recent insights on how homeostatic compensations are probably active before and during epileptogenesis and how their actions are temporally regulated and closely dependent on the progression of pathology. Then, we will consider the dual role of transcriptional regulation during epileptogenesis, and finally, we will underline the importance of homeostatic plasticity in the context of therapeutic interventions for epilepsy. While classic pharmacological interventions may be counteracted by the epileptic brain to maintain its potentially dysfunctional set point, novel therapeutic approaches may provide the neuronal network with the tools necessary to restore its physiological balance.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
50
|
Yang X. Characterizing spine issues: If offers novel therapeutics to Angelman syndrome. Dev Neurobiol 2020; 80:200-209. [PMID: 32378784 DOI: 10.1002/dneu.22757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe mental retardation, microcephaly, speech impairment, frequent epilepsy, EEG abnormalities, ataxic movements, tongue protrusion, bursts of laughter, sleep abruptions, and hyperactivity. AS results from loss of function of the imprinted UBE3A (ubiquitin-protein ligase E3A) gene on chromosome 15q11-q13, including a mutation on the maternal allele of Ube3a, a large deletion of the maternally inherited chromosomal region 15q11-13, paternal uniparental disomy of chromosome 15q11-13, or an imprinting defect. The Ube3a maternal deleted mouse model recaptured the major phenotypes of AS patients include seizure, learning and memory impairments, sleep disturbance, and motor problems. Owing to the activity-dependent structural and functional plasticity, dendritic spines are believed as the basic subcellular compartment for learning and memory and the sites where LTP and LTD are induced. Defects of spine formation and dynamics are common among several neurodevelopmental disorders and neuropsychiatric disorders including AS and reflect the underlying synaptopathology, which drives clinically relevant behavioral deficits. This review will summarize the impaired spine density, morphology, and synaptic plasticity in AS and propose that future explorations on spine dynamics and synaptic plasticity may help develop novel interventions and therapy for neurodevelopmental disorders like AS.
Collapse
Affiliation(s)
- Xin Yang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|