1
|
Escobar A, Kim S, Primack AS, Duret G, Juliano CE, Robinson JT. Terminal differentiation precedes functional circuit integration in the peduncle neurons in regenerating Hydra vulgaris. Neural Dev 2024; 19:18. [PMID: 39367491 PMCID: PMC11452936 DOI: 10.1186/s13064-024-00194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
Understanding how neural circuits are regenerated following injury is a fundamental question in neuroscience. Hydra is a powerful model for studying this process because it has a simple neural circuit structure, significant and reproducible regenerative abilities, and established methods for creating transgenics with cell-type-specific expression. While Hydra is a long-standing model for regeneration and development, little is known about how neural activity and behavior is restored following significant injury. In this study, we ask if regenerating neurons terminally differentiate prior to reforming functional neural circuits, or if neural circuits regenerate first and then guide the constituent naive cells toward their terminal fate. To address this question, we developed a dual-expression transgenic Hydra line that expresses a cell-type-specific red fluorescent protein (tdTomato) in ec5 peduncle neurons, and a calcium indicator (GCaMP7s) in all neurons. With this transgenic line, we can simultaneously record neural activity and track the reappearance of the terminally-differentiated ec5 neurons. Using SCAPE (Swept Confocally Aligned Planar Excitation) microscopy, we monitored both calcium activity and expression of tdTomato-positive neurons in 3D with single-cell resolution during regeneration of Hydra's aboral end. The synchronized neural activity associated with a regenerated neural circuit was observed approximately 4 to 8 hours after expression of tdTomato in ec5 neurons. These data suggest that regenerating ec5 neurons undergo terminal differentiation prior to re-establishing their functional role in the nervous system. The combination of dynamic imaging of neural activity and gene expression during regeneration make Hydra a powerful model system for understanding the key molecular and functional processes involved in neural regeneration following injury.
Collapse
Affiliation(s)
- Alondra Escobar
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Soonyoung Kim
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Abby S Primack
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Guillaume Duret
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
| | - Jacob T Robinson
- Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA.
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Amin H, Nolte SS, Swain B, von Philipsborn AC. GABAergic signaling shapes multiple aspects of Drosophila courtship motor behavior. iScience 2023; 26:108069. [PMID: 37860694 PMCID: PMC10583093 DOI: 10.1016/j.isci.2023.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023] Open
Abstract
Inhibitory neurons are essential for orchestrating and structuring behavior. We use one of the best studied behaviors in Drosophila, male courtship, to analyze how inhibitory, GABAergic neurons shape the different steps of this multifaceted motor sequence. RNAi-mediated knockdown of the GABA-producing enzyme GAD1 and the ionotropic receptor Rdl in sex specific, fruitless expressing neurons in the ventral nerve cord causes uncoordinated and futile copulation attempts, defects in wing extension choice and severe alterations of courtship song. Altered song of GABA depleted males fails to stimulate female receptivity, but rescue of song patterning alone is not sufficient to rescue male mating success. Knockdown of GAD1 and Rdl in male brain circuits abolishes courtship conditioning. We characterize the around 220 neurons coexpressing GAD1 and Fruitless in the Drosophila male nervous system and propose inhibitory circuit motifs underlying key features of courtship behavior based on the observed phenotypes.
Collapse
Affiliation(s)
- Hoger Amin
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Stella S. Nolte
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Bijayalaxmi Swain
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
| | - Anne C. von Philipsborn
- Department of Molecular Biology and Genetics and Department of Biomedicine, Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, 8000 Aarhus, Denmark
- Department of Neuroscience and Movement Science, Medicine Section, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Kosevich IA. Ultrastructural and immunocytochemical evidence of a colonial nervous system in hydroids. Front Neural Circuits 2023; 17:1235915. [PMID: 37746552 PMCID: PMC10512838 DOI: 10.3389/fncir.2023.1235915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Background As the sister group to all Bilateria, representatives of the phylum Cnidaria (sea anemones, corals, jellyfishes, and hydroids) possess a recognizable and well-developed nervous system and have attracted considerable attention over the years from neurobiologists and evo-devo researchers. Despite a long history of nervous system investigation in Cnidaria, most studies have been performed on unitary organisms. However, the majority of cnidarians are colonial (modular) organisms with unique and specific features of development and function. Nevertheless, data on the nervous system in colonial cnidarians are scarce. Within hydrozoans (Hydrozoa and Cnidaria), a structurally "simple" nervous system has been described for Hydra and zooids of several colonial species. A more complex organization of the nervous system, closely related to the animals' motile mode of life, has been shown for the medusa stage and a few siphonophores. Direct evidence of a colonial nervous system interconnecting zooids of a hydrozoan colony has been obtained only for two species, while it has been stated that in other studied species, the coenosarc lacks nerves. Methods In the present study, the presence of a nervous system in the coenosarc of three species of colonial hydroids - the athecate Clava multicornis, and thecate Dynamena pumila and Obelia longissima - was studied based on immunocytochemical and ultrastructural investigations. Results Confocal scanning laser microscopy revealed a loose system composed of delicate, mostly bipolar, neurons visualized using a combination of anti-tyrosinated and anti-acetylated a-tubulin antibodies, as well as anti-RF-amide antibodies. Only ganglion nerve cells were observed. The neurites were found in the growing stolon tips close to the tip apex. Ultrastructural data confirmed the presence of neurons in the coenosarc epidermis of all the studied species. In the coenosarc, the neurons and their processes were found to settle on the mesoglea, and the muscle processes were found to overlay the nerve cells. Some of the neurites were found to run within the mesoglea. Discussion Based on the findings, the possible role of the colonial nervous system in sessile hydroids is discussed.
Collapse
Affiliation(s)
- Igor A. Kosevich
- Department of Invertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Gahan JM, Cartwright P, Nicotra ML, Schnitzler CE, Steinmetz PRH, Juliano CE. Cnidofest 2022: hot topics in cnidarian research. EvoDevo 2023; 14:13. [PMID: 37620964 PMCID: PMC10463417 DOI: 10.1186/s13227-023-00217-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.
Collapse
Affiliation(s)
- James M Gahan
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Michael Sars Centre, University of Bergen, Thormøhlensgt. 55, 5008, Bergen, Norway
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Matthew L Nicotra
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Christine E Schnitzler
- Whitney Laboratory for Marine Bioscience and Department of Biology, University of Florida, St. Augustine, FL, 32080, USA
| | | | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
5
|
Bove CB, Ingersoll MV, Davies SW. Help Me, Symbionts, You're My Only Hope: Approaches to Accelerate our Understanding of Coral Holobiont Interactions. Integr Comp Biol 2022; 62:1756-1769. [PMID: 36099871 DOI: 10.1093/icb/icac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/24/2022] [Accepted: 09/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont-the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome-that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian-Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.
Collapse
Affiliation(s)
- Colleen B Bove
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Sarah W Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Paganos P, Ullrich-Lüter E, Caccavale F, Zakrzewski A, Voronov D, Fournon-Berodia I, Cocurullo M, Lüter C, Arnone MI. A New Model Organism to Investigate Extraocular Photoreception: Opsin and Retinal Gene Expression in the Sea Urchin Paracentrotus lividus. Cells 2022; 11:2636. [PMID: 36078045 PMCID: PMC9454927 DOI: 10.3390/cells11172636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Molecular research on the evolution of extraocular photoreception has drawn attention to photosensitive animals lacking proper eye organs. Outside of vertebrates, little is known about this type of sensory system in any other deuterostome. In this study, we investigate such an extraocular photoreceptor cell (PRC) system in developmental stages of the sea urchin Paracentrotus lividus. We provide a general overview of the cell type families present at the mature rudiment stage using single-cell transcriptomics, while emphasizing the PRCs complexity. We show that three neuronal and one muscle-like PRC type families express retinal genes prior to metamorphosis. Two of the three neuronal PRC type families express a rhabdomeric opsin as well as an echinoderm-specific opsin (echinopsin), and their genetic wiring includes sea urchin orthologs of key retinal genes such as hlf, pp2ab56e, barh, otx, ac/sc, brn3, six1/2, pax6, six3, neuroD, irxA, isl and ato. Using qPCR, in situ hybridization, and immunohistochemical analysis, we found that the expressed retinal gene composition becomes more complex from mature rudiment to juvenile stage. The majority of retinal genes are expressed dominantly in the animals' podia, and in addition to the genes already expressed in the mature rudiment, the juvenile podia express a ciliary opsin, another echinopsin, and two Go-opsins. The expression of a core of vertebrate retinal gene orthologs indicates that sea urchins have an evolutionarily conserved gene regulatory toolkit that controls photoreceptor specification and function, and that their podia are photosensory organs.
Collapse
Affiliation(s)
- Periklis Paganos
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Esther Ullrich-Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Anne Zakrzewski
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Danila Voronov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Inés Fournon-Berodia
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Maria Cocurullo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Carsten Lüter
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany
| | - Maria Ina Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| |
Collapse
|
7
|
Gahan JM, Leclère L, Hernandez-Valladares M, Rentzsch F. A developmental role for the chromatin-regulating CoREST complex in the cnidarian Nematostella vectensis. BMC Biol 2022; 20:184. [PMID: 35999597 PMCID: PMC9400249 DOI: 10.1186/s12915-022-01385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromatin-modifying proteins are key players in the regulation of development and cell differentiation in animals. Most chromatin modifiers, however, predate the evolution of animal multicellularity, and how they gained new functions and became integrated into the regulatory networks underlying development is unclear. One way this may occur is the evolution of new scaffolding proteins that integrate multiple chromatin regulators into larger complexes that facilitate coordinated deposition or removal of different chromatin modifications. We test this hypothesis by analyzing the evolution of the CoREST-Lsd1-HDAC complex. RESULTS Using phylogenetic analyses, we show that a bona fide CoREST homolog is found only in choanoflagellates and animals. We then use the sea anemone Nematostella vectensis as a model for early branching metazoans and identify a conserved CoREST complex by immunoprecipitation and mass spectrometry of an endogenously tagged Lsd1 allele. In addition to CoREST, Lsd1 and HDAC1/2 this complex contains homologs of HMG20A/B and PHF21A, two subunits that have previously only been identified in mammalian CoREST complexes. NvCoREST expression overlaps fully with that of NvLsd1 throughout development, with higher levels in differentiated neural cells. NvCoREST mutants, generated using CRISPR-Cas9, fail to develop beyond the primary polyp stage, thereby revealing essential roles during development and for the differentiation of cnidocytes that phenocopy NvLsd1 mutants. We also show that this requirement is cell autonomous using a cell-type-specific rescue approach. CONCLUSIONS The identification of a Nematostella CoREST-Lsd1-HDAC1/2 complex, its similarity in composition with the vertebrate complex, and the near-identical expression patterns and mutant phenotypes of NvCoREST and NvLsd1 suggest that the complex was present before the last common cnidarian-bilaterian ancestor and thus represents an ancient component of the animal developmental toolkit.
Collapse
Affiliation(s)
- James M Gahan
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| | - Lucas Leclère
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-Sur-Mer (LBDV), 06230, Villefranche-sur-Mer, France
| | - Maria Hernandez-Valladares
- Department of Physical Chemistry, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
- Proteomics Facility of the University of Bergen (PROBE), University of Bergen, 5020, Bergen, Norway
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
- Department for Biological Sciences, University of Bergen, Thormøhlensgate 53, 5006, Bergen, Norway.
| |
Collapse
|
8
|
Abstract
Neurons are the fundamental building blocks of nervous systems. It appears intuitive that the human brain is made up of hundreds, if not thousands different types of neurons. Conversely, the seemingly diffuse nerve net of Cnidaria is often assumed to be simple. However, evidence that the Cnidaria nervous system is indeed simple is sparse. Recent technical advances make it possible to assess the diversity and function of neurons with unprecedented resolution. Transgenic animals expressing genetically encoded Calcium sensors allow direct physiological assessments of neural responses within the nerve net and provide insight into the spatial organization of the nervous system. Moreover, response and activity patterns allow the characterization of cell types on a functional level. Molecular and genetic identities on the other hand can be assessed combining single-cell transcriptomic analysis with correlations of gene expression in defined neurons. Here I review recent advances on these two experimental strategies focusing on Hydra, Nematostella, and Clytia.
Collapse
Affiliation(s)
- Simon G Sprecher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
10
|
Erofeeva TV, Grigorenko AP, Gusev FE, Kosevich IA, Rogaev EI. Studying of Molecular Regulation of Developmental Processes of Lower Metazoans Exemplified by Cnidaria Using High-Throughput Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:269-293. [PMID: 35526848 DOI: 10.1134/s0006297922030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
A unique set of features and characteristics of species of the Cnidaria phylum is the one reason that makes them a model for a various studies. The plasticity of a life cycle and the processes of cell differentiation and development of an integral multicellular organism associated with it are of a specific scientific interest. A new stage of development of molecular genetic methods, including methods for high-throughput genome, transcriptome, and epigenome sequencing, both at the level of the whole organism and at the level of individual cells, makes it possible to obtain a detailed picture of the development of these animals. This review examines some modern approaches and advances in the reconstruction of the processes of ontogenesis of cnidarians by studying the regulatory signal transduction pathways and their interactions.
Collapse
Affiliation(s)
- Taisia V Erofeeva
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia P Grigorenko
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia.
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Fedor E Gusev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Igor A Kosevich
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Evgeny I Rogaev
- Department Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Krasnodar Region, 354349, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
- Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Psychiatry, UMass Chan Medical School, Shrewsbury, MA 01545, USA
| |
Collapse
|
11
|
Plessier F, Schmutz S, Novault S, Marlow H. Single-Cell Transcriptomic Analysis in the Regenerating Cnidarian Nematostella vectensis. Methods Mol Biol 2022; 2450:565-581. [PMID: 35359329 PMCID: PMC9761532 DOI: 10.1007/978-1-0716-2172-1_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cnidarians have historically served as excellent laboratory models for regenerative development given their capacity to regrow large portions of the adult organism. This capacity is notably absent or poorly developed in the powerful genetic laboratory models Drosophila, C. elegans, and mouse. Increasingly, development of genetic and genomic resources and the application of next-generation sequencing-based techniques in cnidarian systems has further expanded the potential of cnidarian regenerative models. Here, we present a workflow for the characterization of the regenerative response in the sea anemone Nematostella vectensis utilizing fluorescence-activated cell sorting and a plate-based single-cell RNA-sequencing pipeline. This approach can characterize the transcriptional response during regeneration in distinct populations of cells, thus providing a quantitative view of a whole organism process at cellular resolution.
Collapse
Affiliation(s)
- Flora Plessier
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA
- École Doctorale "Complexité du Vivant" ED515, Sorbonne Université, Paris, France
- Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Tournière O, Dolan D, Richards GS, Sunagar K, Columbus-Shenkar YY, Moran Y, Rentzsch F. NvPOU4/Brain3 Functions as a Terminal Selector Gene in the Nervous System of the Cnidarian Nematostella vectensis. Cell Rep 2021; 30:4473-4489.e5. [PMID: 32234481 DOI: 10.1016/j.celrep.2020.03.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Terminal selectors are transcription factors that control the morphological, physiological, and molecular features that characterize distinct cell types. Here, we show that, in the sea anemone Nematostella vectensis, NvPOU4 is expressed in post-mitotic cells that give rise to a diverse set of neural cell types, including cnidocytes and NvElav1-expressing neurons. Morphological analyses of NvPOU4 mutants crossed to transgenic reporter lines show that the loss of NvPOU4 does not affect the initial specification of neural cells. Transcriptomes derived from the mutants and from different neural cell populations reveal that NvPOU4 is required for the execution of the terminal differentiation program of these neural cells. These findings suggest that POU4 genes have ancient functions as terminal selectors for morphologically and functionally disparate types of neurons and they provide experimental support for the relevance of terminal selectors for understanding the evolution of cell types.
Collapse
Affiliation(s)
- Océane Tournière
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - David Dolan
- Computational Biology Unit, Department for Informatics, University of Bergen, 5006 Bergen, Norway
| | - Gemma Sian Richards
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway
| | - Kartik Sunagar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel; Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behaviour, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, 5006 Bergen, Norway; Department for Biological Sciences, University of Bergen, 5006 Bergen, Norway.
| |
Collapse
|
13
|
Stone MC, Kothe GO, Rolls MM, Jegla T. Cytoskeletal and synaptic polarity of LWamide-like+ ganglion neurons in the sea anemone Nematostella vectensis. J Exp Biol 2020; 223:jeb233197. [PMID: 32968001 PMCID: PMC7673360 DOI: 10.1242/jeb.233197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022]
Abstract
The centralized nervous systems of bilaterian animals rely on directional signaling facilitated by polarized neurons with specialized axons and dendrites. It is not known whether axo-dendritic polarity is exclusive to bilaterians or was already present in early metazoans. We therefore examined neurite polarity in the starlet sea anemone Nematostella vectensis (Cnidaria). Cnidarians form a sister clade to bilaterians and share many neuronal building blocks characteristic of bilaterians, including channels, receptors and synaptic proteins, but their nervous systems comprise a comparatively simple net distributed throughout the body. We developed a tool kit of fluorescent polarity markers for live imaging analysis of polarity in an identified neuron type, large ganglion cells of the body column nerve net that express the LWamide-like neuropeptide. Microtubule polarity differs in bilaterian axons and dendrites, and this in part underlies polarized distribution of cargo to the two types of processes. However, in LWamide-like+ neurons, all neurites had axon-like microtubule polarity suggesting that they may have similar contents. Indeed, presynaptic and postsynaptic markers trafficked to all neurites and accumulated at varicosities where neurites from different neurons often crossed, suggesting the presence of bidirectional synaptic contacts. Furthermore, we could not identify a diffusion barrier in the plasma membrane of any of the neurites like the axon initial segment barrier that separates the axonal and somatodendritic compartments in bilaterian neurons. We conclude that at least one type of neuron in Nematostella vectensis lacks the axo-dendritic polarity characteristic of bilaterian neurons.
Collapse
Affiliation(s)
- Michelle C Stone
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O Kothe
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Timothy Jegla
- Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Ectopic activation of GABA B receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat Ecol Evol 2020; 5:111-121. [PMID: 33168995 DOI: 10.1038/s41559-020-01338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
The metabotropic gamma-aminobutyric acid B receptor (GABABR) is a G protein-coupled receptor that mediates neuronal inhibition by the neurotransmitter GABA. While GABABR-mediated signalling has been suggested to play central roles in neuronal differentiation and proliferation across evolution, it has mostly been studied in the mammalian brain. Here, we demonstrate that ectopic activation of GABABR signalling affects neurogenic functions in the sea anemone Nematostella vectensis. We identified four putative Nematostella GABABR homologues presenting conserved three-dimensional extracellular domains and residues needed for binding GABA and the GABABR agonist baclofen. Moreover, sustained activation of GABABR signalling reversibly arrests the critical metamorphosis transition from planktonic larva to sessile polyp life stage. To understand the processes that underlie the developmental arrest, we combined transcriptomic and spatial analyses of control and baclofen-treated larvae. Our findings reveal that the cnidarian neurogenic programme is arrested following the addition of baclofen to developing larvae. Specifically, neuron development and neurite extension were inhibited, resulting in an underdeveloped and less organized nervous system and downregulation of proneural factors including NvSoxB(2), NvNeuroD1 and NvElav1. Our results thus point to an evolutionarily conserved function of GABABR in neurogenesis regulation and shed light on early cnidarian development.
Collapse
|
15
|
Reynolds DA, Yoo MJ, Dixson DL, Ross C. Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 2020; 15:e0228414. [PMID: 32032360 PMCID: PMC7006924 DOI: 10.1371/journal.pone.0228414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/14/2020] [Indexed: 01/27/2023] Open
Abstract
As reef-building corals are increasingly being exposed to persistent threats that operate on both regional and global scales, there is a pressing need to better understand the complex processes that diminish coral populations. This study investigated the impacts of the Florida red tide dinoflagellate Karenia brevis and associated brevetoxins on selected facets of coral biology using Porites astreoides as a model system. When provided with choice assays, P. astreoides larvae were shown to actively avoid seawater containing red tide (5×105 cells L-1–7.6×106 cells L-1) or purified brevetoxins (0.018 μg mL-1 brevetoxin-2 and 0.0018 μg mL-1 brevetoxin-3). However, forced exposure to similar treatments induced time-dependent physiological and behavioral changes that were captured by PAM fluorometry and settlement and survival assays, respectively. Adult fragments of P. astreoides exposed to red tide or associated brevetoxins displayed signs of proteomic alterations that were characterized by the use of an iTRAQ-based quantitative proteomic analysis. The novel use of this technique with P. astreoides demonstrated that protein regulation was highly contingent upon biological versus chemical treatment (i.e. live K. brevis vs. solely brevetoxin exposure) and that several broad pathways associated with cell stress were affected including redox homeostasis, protein folding, energy metabolism and reactive oxygen species production. The results herein provide new insight into the ecology, behavior and sublethal stress of reef-building corals in response to K. brevis exposure and underscore the importance of recognizing the potential of red tide to act as a regional stressor to these important foundation species.
Collapse
Affiliation(s)
- David A. Reynolds
- Department of Biology, University of North Florida, Jacksonville, Florida, United States of America
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, New York, United States of America
| | - Danielle L. Dixson
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, United States of America
| | - Cliff Ross
- Department of Biology, University of North Florida, Jacksonville, Florida, United States of America
- * E-mail:
| |
Collapse
|
16
|
Abstract
The freshwater polyp Hydra provides a potent model system for investigating the conditions that promote wound healing, reactivation of a developmental process and, ultimately, regeneration of an amputated body part. Hydra polyps can also be dissociated to the single cell level and can regenerate a complete body axis from aggregates, behaving as natural organoids. In recent years, the ability to exploit Hydra has been expanded with the advent of new live-imaging approaches, genetic manipulations that include stable transgenesis, gene silencing and genome editing, and the accumulation of high-throughput omics data. In this Primer, we provide an overview of Hydra as a model system for studying regeneration, highlighting recent results that question the classical self-enhancement and long-range inhibition model supposed to drive Hydra regeneration. We underscore the need for integrative explanations incorporating biochemical as well as mechanical signalling.
Collapse
Affiliation(s)
- Matthias C Vogg
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Brigitte Galliot
- Department of Genetics and Evolution, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Charisios D Tsiairis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
17
|
Transgenesis in Hydra to characterize gene function and visualize cell behavior. Nat Protoc 2019; 14:2069-2090. [DOI: 10.1038/s41596-019-0173-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
|