1
|
Rai S, Szaruga M, Pitera AP, Bertolotti A. Integrated stress response activator halofuginone protects mice from diabetes-like phenotypes. J Cell Biol 2024; 223:e202405175. [PMID: 39150520 PMCID: PMC11329777 DOI: 10.1083/jcb.202405175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues. We found that daily oral administration of HF increases glucose tolerance whilst reducing weight gain, insulin resistance, and serum insulin in DIO mice. Conversely, the ISR inhibitor GSK2656157, used at low doses to optimize its selectivity, aggravates glucose intolerance in DIO mice. Whilst loss of function mutations in mice and humans have revealed that PERK is the essential ISR kinase that protects from diabetes, our work demonstrates the therapeutic value of increasing ISR signaling by activating the related kinase GCN2 to reduce diabetes phenotypes in a DIO mouse model.
Collapse
Affiliation(s)
- Shashank Rai
- MRC Laboratory of Molecular Biology , Cambridge, UK
| | | | | | | |
Collapse
|
2
|
Chen IC, Chen WL, Chang KH, Lee JW, Lin TH, Lin W, Chen CM, Lee-Chen GJ. Investigating the therapeutic effects of novel compounds targeting inflammatory IL-1β and IL-6 signaling pathways in spinocerebellar ataxia type 3. Eur J Pharmacol 2024; 967:176370. [PMID: 38320719 DOI: 10.1016/j.ejphar.2024.176370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/13/2024]
Abstract
At least seven dominantly inherited spinocerebellar ataxias (SCA) are caused by expansions of polyglutamine (polyQ)-encoding CAG repeat. The misfolded and aggregated polyQ-expanded proteins increase reactive oxygen species (ROS), cellular toxicity, and neuroinflammation in the disease pathogenesis. In this study, we evaluated the anti-inflammatory potentials of coumarin derivatives LM-021, LMDS-1, LMDS-2, and pharmacological chaperone tafamidis using mouse BV-2 microglia and SCA3 ataxin-3 (ATXN3)/Q75-GFP SH-SY5Y cells. The four tested compounds displayed anti-inflammatory activity by suppressing nitric oxide (NO), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α production, and CD68 antigen (CD68) and histocompatibility-2 (MHCII) expression in lipopolysaccharides (LPS)/interferon (IFN)-γ-stimulated BV-2 microglia. In retinoic acid-differentiated ATXN3/Q75-GFP-expressing SH-SY5Y cells inflamed with LPS/IFN-γ-primed BV-2 conditioned medium, treatment with test compounds mitigated the increased caspase 1 activity and lactate dehydrogenase release, reduced ROS and ATXN3/Q75 aggregation, and promoted neurite outgrowth. Examination of IL-1β and IL-6-mediated signaling pathways revealed that LM-021, LMDS-1, LMDS-2, and tafamidis decreased NLR family pyrin domain containing 1 (NLRP1), c-Jun N-terminal kinase/c-Jun proto-oncogene (JNK/JUN), inhibitor of kappa B (IκBα)/P65, mitogen-activated protein kinase 14/signal transducer and activator of transcription 1 (P38/STAT1), and/or Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling. The study results suggest the potential of LM-021, LMDS-1, LMDS-2, and tafamidis in treating SCA3 and probable other polyQ diseases.
Collapse
Affiliation(s)
- I-Cheng Chen
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology, Taipei, 10608, Taiwan; Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Wan-Ling Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Jun-Wei Lee
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan, 33302, Taiwan.
| | - Guey-Jen Lee-Chen
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
3
|
Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Mol Cell 2024; 84:506-521.e11. [PMID: 38159565 PMCID: PMC7615683 DOI: 10.1016/j.molcel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomos Morgan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sigurdur R Thorkelsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
4
|
Szaruga M, Janssen DA, de Miguel C, Hodgson G, Fatalska A, Pitera AP, Andreeva A, Bertolotti A. Activation of the integrated stress response by inhibitors of its kinases. Nat Commun 2023; 14:5535. [PMID: 37684277 PMCID: PMC10491595 DOI: 10.1038/s41467-023-40823-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α to initiate the integrated stress response (ISR) is a vital signalling event. Protein kinases activating the ISR, including PERK and GCN2, have attracted considerable attention for drug development. Here we find that the widely used ATP-competitive inhibitors of PERK, GSK2656157, GSK2606414 and AMG44, inhibit PERK in the nanomolar range, but surprisingly activate the ISR via GCN2 at micromolar concentrations. Similarly, a PKR inhibitor, C16, also activates GCN2. Conversely, GCN2 inhibitor A92 silences its target but induces the ISR via PERK. These findings are pivotal for understanding ISR biology and its therapeutic manipulations because most preclinical studies used these inhibitors at micromolar concentrations. Reconstitution of ISR activation with recombinant proteins demonstrates that PERK and PKR inhibitors directly activate dimeric GCN2, following a Gaussian activation-inhibition curve, with activation driven by allosterically increasing GCN2 affinity for ATP. The tyrosine kinase inhibitors Neratinib and Dovitinib also activate GCN2 by increasing affinity of GCN2 for ATP. Thus, the mechanism uncovered here might be broadly relevant to ATP-competitive inhibitors and perhaps to other kinases.
Collapse
Affiliation(s)
- Maria Szaruga
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dino A Janssen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claudia de Miguel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aleksandra P Pitera
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
5
|
Günther R. [Gene Therapies in Motor Neuron Diseases ALS and SMA]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2023; 91:153-163. [PMID: 36822211 DOI: 10.1055/a-2002-5215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the past, the diagnosis of motor neuron diseases such as amyotrophic lateral sclerosis (ALS) and 5q-associated spinal muscular atrophy (SMA) meant powerlessness in the face of seemingly untreatable diseases with severe motor-functional limitations and sometimes fatal courses. Recent advances in an understanding of the genetic causalities of these diseases, combined with success in the development of targeted gene therapy strategies, spell hope for effective, innovative therapeutic approaches, pioneering the ability to treat neurodegenerative diseases. While gene therapies have been approved for SMA since a few years, gene therapy research in ALS is still in clinical trials with encouraging results. This article provides an overview of the genetic background of ALS and SMA known to date and gene therapy approaches to them with a focus on therapy candidates that are in clinical trials or have already gained market approval.
Collapse
Affiliation(s)
- René Günther
- Klinik und Poliklinik für Neurologie, University Hospital Carl Gustav Carus at Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Paprocka R, Wiese-Szadkowska M, Kosmalski T, Frisch D, Ratajczak M, Modzelewska-Banachiewicz B, Studzińska R. A Review of the Biological Activity of Amidrazone Derivatives. Pharmaceuticals (Basel) 2022; 15:ph15101219. [PMID: 36297331 PMCID: PMC9606871 DOI: 10.3390/ph15101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Amidrazones are widely used in chemical synthesis, industry and agriculture. We compiled some of the most important findings on the biological activities of amidrazones described in the years 2010-2022. The data were obtained using the ScienceDirect, Reaxys and Google Scholar search engines with keywords (amidrazone, carbohydrazonamide, carboximidohydrazide, aminoguanidine) and structure strategies. Compounds with significant biological activities were included in the review. The described structures derived from amidrazones include: amidrazone derivatives; aminoguanidine derivatives; complexes obtained using amidrazones as ligands; and some cyclic compounds obtained from amidrazones and/or containing an amidrazone moiety in their structures. This review includes chapters based on compound activities, including: tuberculostatic, antibacterial, antifungal, antiparasitic, antiviral, anti-inflammatory, cytoprotective, and antitumor compounds, as well as furin and acetylocholinesterase inhibitors. Detailed information on the compounds tested in vivo, along the mechanisms of action and toxicity of the selected amidrazone derivatives, are described. We describe examples of compounds that have a chance of becoming drugs due to promising preclinical or clinical research, as well as old drugs with new therapeutic targets (repositioning) which have the potential to be used in the treatment of other diseases. The described examples prove that amidrazone derivatives are a potential source of new therapeutic substances and deserve further research.
Collapse
Affiliation(s)
- Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
- Correspondence:
| | - Małgorzata Wiese-Szadkowska
- Department of Immunology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowska Str. 9, 85-094 Bydgoszcz, Poland
| | - Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Frisch
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Magdalena Ratajczak
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Bożena Modzelewska-Banachiewicz
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
7
|
Sawarkar R. Transcriptional lockdown during acute proteotoxic stress. Trends Biochem Sci 2022; 47:660-672. [PMID: 35487807 PMCID: PMC9041648 DOI: 10.1016/j.tibs.2022.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/20/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
Cells experiencing proteotoxic stress downregulate the expression of thousands of active genes and upregulate a few stress-response genes. The strategy of downregulating gene expression has conceptual parallels with general lockdown in the global response to the coronavirus disease 2019 (COVID-19) pandemic. The mechanistic details of global transcriptional downregulation of genes, termed stress-induced transcriptional attenuation (SITA), are only beginning to emerge. The reduction in RNA and protein production during stress may spare proteostasis capacity, allowing cells to divert resources to control stress-induced damage. Given the relevance of translational downregulation in a broad variety of diseases, the role of SITA in diseases caused by proteotoxicity should be investigated in future, paving the way for potential novel therapeutics.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Medical Research Council (MRC), University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
9
|
Filbeck S, Cerullo F, Pfeffer S, Joazeiro CAP. Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell 2022; 82:1451-1466. [PMID: 35452614 PMCID: PMC9034055 DOI: 10.1016/j.molcel.2022.03.038] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
Ribosome-associated quality-control (RQC) surveys incomplete nascent polypeptides produced by interrupted translation. Central players in RQC are the human ribosome- and tRNA-binding protein, NEMF, and its orthologs, yeast Rqc2 and bacterial RqcH, which sense large ribosomal subunits obstructed with nascent chains and then promote nascent-chain proteolysis. In canonical eukaryotic RQC, NEMF stabilizes the LTN1/Listerin E3 ligase binding to obstructed ribosomal subunits for nascent-chain ubiquitylation. Furthermore, NEMF orthologs across evolution modify nascent chains by mediating C-terminal, untemplated polypeptide elongation. In eukaryotes, this process exposes ribosome-buried nascent-chain lysines, the ubiquitin acceptor sites, to LTN1. Remarkably, in both bacteria and eukaryotes, C-terminal tails also have an extra-ribosomal function as degrons. Here, we discuss recent findings on RQC mechanisms and briefly review how ribosomal stalling is sensed upstream of RQC, including via ribosome collisions, from an evolutionary perspective. Because RQC defects impair cellular fitness and cause neurodegeneration, this knowledge provides a framework for pathway-related biology and disease studies.
Collapse
Affiliation(s)
- Sebastian Filbeck
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Federico Cerullo
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
| | - Claudio A P Joazeiro
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Florida, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Neurodegenerative Disease-Associated TDP-43 Fragments Are Extracellularly Secreted with CASA Complex Proteins. Cells 2022; 11:cells11030516. [PMID: 35159325 PMCID: PMC8833957 DOI: 10.3390/cells11030516] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Extracellular vesicles (EVs) play a central role in neurodegenerative diseases (NDs) since they may either spread the pathology or contribute to the intracellular protein quality control (PQC) system for the cellular clearance of NDs-associated proteins. Here, we investigated the crosstalk between large (LVs) and small (SVs) EVs and PQC in the disposal of TDP-43 and its FTLD and ALS-associated C-terminal fragments (TDP-35 and TDP-25). By taking advantage of neuronal cells (NSC-34 cells), we demonstrated that both EVs types, but particularly LVs, contained TDP-43, TDP-35 and TDP-25. When the PQC system was inhibited, as it occurs in NDs, we found that TDP-35 and TDP-25 secretion via EVs increased. In line with this observation, we specifically detected TDP-35 in EVs derived from plasma of FTLD patients. Moreover, we demonstrated that both neuronal and plasma-derived EVs transported components of the chaperone-assisted selective autophagy (CASA) complex (HSP70, BAG3 and HSPB8). Neuronal EVs also contained the autophagy-related MAP1LC3B-II protein. Notably, we found that, under PQC inhibition, HSPB8, BAG3 and MAP1LC3B-II secretion paralleled that of TDP-43 species. Taken together, our data highlight the role of EVs, particularly of LVs, in the disposal of disease-associated TDP-43 species, and suggest a possible new role for the CASA complex in NDs.
Collapse
|
11
|
Yamashita H, Komine O, Fujimori-Tonou N, Yamanaka K. Comprehensive expression analysis with cell-type-specific transcriptome in ALS-linked mutant SOD1 mice: Revisiting the active role of glial cells in disease. Front Cell Neurosci 2022; 16:1045647. [PMID: 36687517 PMCID: PMC9846815 DOI: 10.3389/fncel.2022.1045647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Non-cell autonomous mechanisms are involved in the pathogenesis of amyotrophic lateral sclerosis (ALS), an adult neurodegenerative disease characterized by selective motor neuron loss. While the emerging role of glial cells in ALS has been noted, the detailed cell-type-specific role of glial cells has not been clarified. Here, we examined mRNA expression changes using microarrays of the spinal cords of three distinct lines of mutant superoxide dismutase (SOD) 1 transgenic mice, an established ALS model. Our analysis used a transcriptome database of component cell types in the central nervous system (CNS), as well as SOD1 G93A cell-type transcriptomes. More than half of the differentially expressed genes (DEGs) were highly expressed in microglia, and enrichment analysis of DEGs revealed that immunological reactions were profoundly involved and some transcription factors were upregulated. Our analysis focused on DEGs that are highly expressed in each cell type, as well as chemokines, caspases, and heat shock proteins. Disease-associated microglial genes were upregulated, while homeostatic microglial genes were not, and galectin-3 (Mac2), a known activated microglial marker, was predicted to be ectopically expressed in astrocytes in mutant SOD1 mice. In mutant SOD1 mice, we developed a prediction model for the pathophysiology of different cell types related to TREM2, apolipoprotein E, and lipoproteins. Our analysis offers a viable resource to understand not only the molecular pathologies of each CNS constituent cell type, but also the cellular crosstalk between different cell types under both physiological and pathological conditions in model mice for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Hirofumi Yamashita
- Department of Neurology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan.,Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Noriko Fujimori-Tonou
- Support Unit for Bio-Material Analysis, RRD, RIKEN Center for Brain Science, Wako, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Krzyzosiak A, Pitera AP, Bertolotti A. An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. Methods Mol Biol 2022; 2428:3-18. [PMID: 35171470 DOI: 10.1007/978-1-0716-1975-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Collapse
|
13
|
Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases. Open Biol 2021; 11:210205. [PMID: 34847777 PMCID: PMC8633803 DOI: 10.1098/rsob.210205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.
Collapse
Affiliation(s)
- George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
14
|
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. NATURE AGING 2021; 1:760-768. [PMID: 35146440 PMCID: PMC7612338 DOI: 10.1038/s43587-021-00112-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy aging requires the coordination of numerous stress signaling pathways that converge on the protein homeostasis network. The Integrated Stress Response (ISR) is activated by diverse stimuli, leading to phosphorylation of the eukaryotic translation initiation factor elF2 in its α-subunit. Under replete conditions, elF2 orchestrates 5' cap-dependent mRNA translation and is thus responsible for general protein synthesis. elF2α phosphorylation, the key event of the ISR, reduces global mRNA translation while enhancing the expression of a signature set of stress response genes. Despite the critical role of protein quality control in healthy aging and in numerous longevity pathways, the role of the ISR in longevity remains largely unexplored. ISR activity increases with age, suggesting a potential link with the aging process. Although decreased protein biosynthesis, which occurs during ISR activation, have been linked to lifespan extension, recent data show that lifespan is limited by the ISR as its inhibition extends survival in nematodes and enhances cognitive function in aged mice. Here we survey how aging affects the ISR, the role of the ISR in modulating aging, and pharmacological interventions to tune the ISR. Finally, we will explore the ISR as a plausible target for clinical interventions in aging and age-related disease.
Collapse
Affiliation(s)
| | | | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Sannino S, Yates ME, Schurdak ME, Oesterreich S, Lee AV, Wipf P, Brodsky JL. Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. eLife 2021; 10:64977. [PMID: 34180400 PMCID: PMC8275131 DOI: 10.7554/elife.64977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones, such as Hsp70, prevent proteotoxicity and maintain homeostasis. This is perhaps most evident in cancer cells, which overexpress Hsp70 and thrive even when harboring high levels of misfolded proteins. To define the response to proteotoxic challenges, we examined adaptive responses in breast cancer cells in the presence of an Hsp70 inhibitor. We discovered that the cells bin into distinct classes based on inhibitor sensitivity. Strikingly, the most resistant cells have higher autophagy levels, and autophagy was maximally activated only in resistant cells upon Hsp70 inhibition. In turn, resistance to compromised Hsp70 function required the integrated stress response transducer, GCN2, which is commonly associated with amino acid starvation. In contrast, sensitive cells succumbed to Hsp70 inhibition by activating PERK. These data reveal an unexpected route through which breast cancer cells adapt to proteotoxic insults and position GCN2 and autophagy as complementary mechanisms to ensure survival when proteostasis is compromised.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Megan E Yates
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mark E Schurdak
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States.,University of Pittsburgh Drug Discovery Institute, Pittsburgh, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
16
|
Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 2021; 239:113510. [PMID: 34181930 DOI: 10.1016/j.physbeh.2021.113510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinzhe Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
17
|
Thrun A, Garzia A, Kigoshi-Tansho Y, Patil PR, Umbaugh CS, Dallinger T, Liu J, Kreger S, Patrizi A, Cox GA, Tuschl T, Joazeiro CAP. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell 2021; 81:2112-2122.e7. [PMID: 33909987 DOI: 10.1016/j.molcel.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Pratik R Patil
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Charles S Umbaugh
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Teresa Dallinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Jia Liu
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sylvia Kreger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group Leader at the German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
18
|
Suzuki Y. Chaperone therapy for molecular pathology in lysosomal diseases. Brain Dev 2021; 43:45-54. [PMID: 32736903 DOI: 10.1016/j.braindev.2020.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/10/2020] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
In lysosomal diseases, enzyme deficiency is caused by misfolding of mutant enzyme protein with abnormal steric structure that is expressed by gene mutation. Chaperone therapy is a new molecular therapeutic approach primarily for lysosomal diseases. The misfolded mutant enzyme is digested rapidly or aggregated to induce endoplasmic reticulum stress. As a result, the catalytic activity is lost. The following sequence of events results in chaperone therapy to achieve correction of molecular pathology. An orally administered low molecular competitive inhibitor (chaperone) is absorbed into the bloodstream and reaches the target cells and tissues. The mutant enzyme is stabilized by the chaperone and subjected to normal enzyme proteinfolding (proteostasis). The first chaperone drug was developed for Fabry disease and is currently available in medical practice. At present three types of chaperones are available: competitive chaperone with enzyme inhibitory bioactivity (exogenous), non-competitive (or allosteric) chaperone without inhibitory bioactivity (exogenous), and molecular chaperone (heat shock protein; endogenous). The third endogenous chaperone would be directed to overexpression or activated by an exogenous low-molecular inducer. This new molecular therapeutic approach, utilizing the three types of chaperone, is expected to apply to a variety of diseases, genetic or non-genetic, and neurological or non-neurological, in addition to lysosomal diseases.
Collapse
|
19
|
Gittings LM, Sattler R. Recent advances in understanding amyotrophic lateral sclerosis and emerging therapies. Fac Rev 2020; 9:12. [PMID: 33659944 PMCID: PMC7886072 DOI: 10.12703/b/9-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by degeneration of both upper and lower motor neurons and subsequent progressive loss of muscle function. Within the last decade, significant progress has been made in the understanding of the etiology and pathobiology of the disease; however, treatment options remain limited and only two drugs, which exert a modest effect on survival, are approved for ALS treatment in the US. Therefore, the search for effective ALS therapies continues, and over 60 clinical trials are in progress for patients with ALS and other therapeutics are at the pre-clinical stage of development. Recent advances in understanding the genetics, pathology, and molecular mechanisms of ALS have led to the identification of novel targets and strategies that are being used in emerging ALS therapeutic interventions. Here, we review the current status and mechanisms of action of a selection of emerging ALS therapies in pre-clinical or early clinical development, including gene therapy, immunotherapy, and strategies that target neuroinflammation, phase separation, and protein clearance.
Collapse
Affiliation(s)
- Lauren M Gittings
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
20
|
Ruiz A, Zuazo J, Ortiz-Sanz C, Luchena C, Matute C, Alberdi E. Sephin1 Protects Neurons against Excitotoxicity Independently of the Integrated Stress Response. Int J Mol Sci 2020; 21:E6088. [PMID: 32846985 PMCID: PMC7504470 DOI: 10.3390/ijms21176088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sephin1 is a derivative of guanabenz that inhibits the dephosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α) and therefore may enhance the integrated stress response (ISR), an adaptive mechanism against different cellular stresses, such as accumulation of misfolded proteins. Unlike guanabenz, Sephin1 provides neuroprotection without adverse effects on the α2-adrenergic system and therefore it is considered a promising pharmacological therapeutic tool. Here, we have studied the effects of Sephin1 on N-methyl-D-aspartic acid (NMDA) receptor signaling which may modulate the ISR and contribute to excitotoxic neuronal loss in several neurodegenerative conditions. Time-course analysis of peIF2α levels after NMDA receptor overactivation showed a delayed dephosphorylation that occurred in the absence of activating transcription factor 4 (ATF4) and therefore independently of the ISR, in contrast to that observed during endoplasmic reticulum (ER) stress induced by tunicamycin and thapsigargin. Similar to guanabenz, Sephin1 completely blocked NMDA-induced neuronal death and was ineffective against AMPA-induced excitotoxicity, whereas it did not protect from experimental ER stress. Interestingly, both guanabenz and Sephin1 partially but significantly reduced NMDA-induced cytosolic Ca2+ increase, leading to a complete inhibition of subsequent calpain activation. We conclude that Sephin1 and guanabenz share common strong anti-excitotoxic properties with therapeutic potential unrelated to the ISR.
Collapse
Affiliation(s)
- Asier Ruiz
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain; (J.Z.); (C.O.-S.); (C.L.); (C.M.); (E.A.)
| | | | | | | | | | | |
Collapse
|