1
|
Namikawa K, Pose-Méndez S, Köster RW. Genetic modeling of degenerative diseases and mechanisms of neuronal regeneration in the zebrafish cerebellum. Cell Mol Life Sci 2024; 82:26. [PMID: 39725709 DOI: 10.1007/s00018-024-05538-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 12/01/2024] [Indexed: 12/28/2024]
Abstract
The cerebellum is a highly conserved brain compartment of vertebrates. Genetic diseases of the human cerebellum often lead to degeneration of the principal neuron, the Purkinje cell, resulting in locomotive deficits and socio-emotional impairments. Due to its relatively simple but highly conserved neuroanatomy and circuitry, these human diseases can be modeled well in vertebrates amenable for genetic manipulation. In the recent years, cerebellar research in zebrafish has contributed to understanding cerebellum development and function, since zebrafish larvae are not only molecularly tractable, but also accessible for high resolution in vivo imaging due to the transparency of the larvae and the ease of access to the zebrafish cerebellar cortex for microscopy approaches. Therefore, zebrafish is increasingly used for genetic modeling of human cerebellar neurodegenerative diseases and in particular of different types of Spinocerebellar Ataxias (SCAs). These models are well suited to address the underlying pathogenic mechanisms by means of in vivo cell biological studies. Furthermore, accompanying circuitry characterizations, physiological studies and behavioral analysis allow for unraveling molecular, structural and functional relationships. Moreover, unlike in mammals, zebrafish possess an astonishing ability to regenerate neuronal populations and their functional circuitry in the central nervous system including the cerebellum. Understanding the cellular and molecular processes of these regenerative processes could well serve to counteract acute and chronic loss of neurons in humans. Based on the high evolutionary conservation of the cerebellum these regeneration studies in zebrafish promise to open therapeutic avenues for counteracting cerebellar neuronal degeneration. The current review aims to provide an overview over currently existing genetic models of human cerebellar neurodegenerative diseases in zebrafish as well as neuroregeneration studies using the zebrafish cerebellum. Due to this solid foundation in cerebellar disease modeling and neuronal regeneration analysis, the zebrafish promises to become a popular model organism for both unraveling pathogenic mechanisms of human cerebellar diseases and providing entry points for therapeutic neuronal regeneration approaches.
Collapse
Affiliation(s)
- Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
2
|
Sidky AM, Melo ARV, Kay TT, Raposo M, Lima M, Monckton DG. Age-dependent somatic expansion of the ATXN3 CAG repeat in the blood and buccal swab DNA of individuals with spinocerebellar ataxia type 3/Machado-Joseph disease. Hum Genet 2024; 143:1363-1378. [PMID: 39375222 PMCID: PMC11522074 DOI: 10.1007/s00439-024-02698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/12/2024] [Indexed: 10/09/2024]
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is caused by the expansion of a genetically unstable polyglutamine-encoding CAG repeat in ATXN3. Longer alleles are generally associated with earlier onset and frequent intergenerational expansions mediate the anticipation observed in this disorder. Somatic expansion of the repeat has also been implicated in disease onset and slowing the rate of somatic expansion has been proposed as a therapeutic strategy. Here, we utilised high-throughput ultra-deep MiSeq amplicon sequencing to precisely define the number and sequence of the ATXN3 repeat, the genotype of an adjacent single nucleotide variant and quantify somatic expansion in blood and buccal swab DNA of a cohort of individuals with SCA3 from the Azores islands (Portugal). We revealed systematic mis-sizing of the ATXN3 repeat and high levels of inaccuracy of the traditional fragment length analysis that have important implications for attempts to identify modifiers of clinical and molecular phenotypes. Quantification of somatic expansion in blood DNA and multivariate regression revealed the expected effects of age at sampling and CAG repeat length, although the effect of repeat length was surprisingly modest with much stronger associations with age. We also observed an association of the downstream rs12895357 single nucleotide variant with the rate of somatic expansion, and a higher level of somatic expansion in buccal swab DNA compared to blood. These data suggest that the ATXN3 locus in SCA3 patients in blood or buccal swab DNA might serve as a good biomarker for clinical trials testing suppressors of somatic expansion with peripheral exposure.
Collapse
Affiliation(s)
- Ahmed M Sidky
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt
- Department of Neurology, University of Chicago, Chicago, IL, 60637, USA
- Present address: Surgery Brain Research Institute, J219, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Ana Rosa Vieira Melo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Teresa T Kay
- Serviço de Genética Clínica, Hospital de D. Estefânia, Lisboa, Portugal
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular, Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, 4200-135, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, 9500-321, Portugal
- Unidade Multidisciplinar de Investigação Biomédica, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Darren G Monckton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
3
|
Pan F, Xu P, Roland C, Sagui C, Weninger K. Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases. Biomolecules 2024; 14:1278. [PMID: 39456210 PMCID: PMC11505666 DOI: 10.3390/biom14101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts.
Collapse
Affiliation(s)
- Feng Pan
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Pengning Xu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher Roland
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Celeste Sagui
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA; (F.P.); (C.R.)
| |
Collapse
|
4
|
Mier P, Andrade-Navarro MA. Predicting the involvement of polyQ- and polyA in protein-protein interactions by their amino acid context. Heliyon 2024; 10:e37861. [PMID: 39323775 PMCID: PMC11422028 DOI: 10.1016/j.heliyon.2024.e37861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Homorepeats, specifically polyglutamine (polyQ) and polyalanine (polyA), are often implicated in protein-protein interactions (PPIs). So far, a method to predict the participation of homorepeats in protein interactions is lacking. We propose a machine learning approach to identify PPI-involved polyQ and polyA regions within the human proteome based on known interacting regions. Using the dataset of human homorepeats, we identified 157 polyQ and 745 polyA regions potentially involved in PPIs. Machine learning models, trained on amino acid context and homorepeat length, demonstrated high precision (0.90-0.98) but variable recall (0.42-0.85). Random forest outperformed other models (AUC polyQ = 0.686, AUC polyA = 0.732) using the positions surrounding the homorepeat -10 to +10. Integrating paralog information marginally improved predictions but was excluded for model simplicity. Further optimization revealed that for polyQ, using amino acid surrounding positions from -6 to +6 increased AUC to 0.715. For polyA, no improvement was found. Incorporating coiled coil overlap information enhanced polyA predictions (AUC = 0.745) but not polyQ. Finally, we applied these models to predict PPI involvement across all polyQ and polyA regions, identifying potential interactions. Case studies illustrated the method's predictive capacity, highlighting known interacting regions with high scores and elucidating potential false negatives.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| |
Collapse
|
5
|
Lee PY, Gotla S, Matysiak S. Inhibition of Aβ 16-22 Aggregation by [TEA] +[Ms] - Follows Weakening of the Hydrophobic Core and Sequestration of Peptides in Ionic Liquid Nanodomains. J Phys Chem B 2024; 128:9143-9150. [PMID: 39283804 DOI: 10.1021/acs.jpcb.4c05135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
We developed a coarse-grained model for the protic ionic liquid, triethylammonium mesylate ([TEA]+[Ms]-), to characterize its inhibitory effects on amyloid aggregation using the K16LVFFAE22 fragment of the amyloid-β (Aβ16-22) as a model amyloidogenic peptide. In agreement with previous experiments, coarse-grained molecular dynamics simulations showed that increasing concentrations of [TEA]+[Ms]- in aqueous media led to increasingly small Aβ16-22 aggregates with low beta-sheet contents. The cause of [TEA]+[Ms]-'s inhibition of peptide aggregation was found to be a result of two interrelated effects. At a local scale, the enrichment of interactions between [TEA]+ cations and hydrophobic phenylalanine side chains weakened the hydrophobic cores of amyloid aggregates, resulting in poorly ordered structures. At a global level, peptides tended to localize at the interfaces of IL-rich nanostructures with water. At high IL concentrations, when the IL-water interface was large or fragmented, Aβ16-22 peptides were dispersed in the simulation cell, sometimes sequestered at unaggregated monomeric states. Together, these phenomena underlie [TEA]+[Ms]-'s inhibition of amyloid aggregation. This work addresses the critical lack of knowledge on the mechanisms of protein-ionic liquid interactions and may have broader implications for industrial applications.
Collapse
Affiliation(s)
- Pei-Yin Lee
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Suhas Gotla
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Silvina Matysiak
- Chemical Physics Program, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Boulos A, Maroun D, Ciechanover A, Ziv NE. Peripheral sequestration of huntingtin delays neuronal death and depends on N-terminal ubiquitination. Commun Biol 2024; 7:1014. [PMID: 39155290 PMCID: PMC11330980 DOI: 10.1038/s42003-024-06733-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Huntington's disease (HD) is caused by a glutamine repeat expansion in the protein huntingtin. Mutated huntingtin (mHtt) forms aggregates whose impacts on neuronal survival are still debated. Using weeks-long, continual imaging of cortical neurons, we find that mHtt is gradually sequestrated into peripheral, mainly axonal aggregates, concomitant with dramatic reductions in cytosolic mHtt levels and enhanced neuronal survival. in-situ pulse-chase imaging reveals that aggregates continually gain and lose mHtt, in line with these acting as mHtt sinks at equilibrium with cytosolic pools. Mutating two N-terminal lysines found to be ubiquitinated in HD animal models suppresses peripheral aggregate formation and reductions in cytosolic mHtt, promotes nuclear aggregate formation, stabilizes aggregates and leads to pervasive neuronal death. These findings demonstrate the capacity of aggregates formed at peripheral locations to sequester away cytosolic, presumably toxic mHtt forms and support a crucial role for N-terminal ubiquitination in promoting these processes and delaying neuronal death.
Collapse
Affiliation(s)
- Ayub Boulos
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
- Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Charlestown, MA, USA
| | - Dunia Maroun
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel
| | - Aaron Ciechanover
- Rappaport Faculty of Medicine and Rappaport Technion Integrated Cancer Center (RTICC), Technion-Israel Institute of Technology, Haifa, Israel
| | - Noam E Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Fishbach Building, Technion City, Haifa, Israel.
| |
Collapse
|
7
|
Tanimoto S, Okumura H. Why Is Arginine the Only Amino Acid That Inhibits Polyglutamine Monomers from Taking on Toxic Conformations? ACS Chem Neurosci 2024; 15:2925-2935. [PMID: 39009034 PMCID: PMC11311134 DOI: 10.1021/acschemneuro.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Polyglutamine (polyQ) diseases are devastating neurodegenerative disorders characterized by abnormal expansion of glutamine repeats within specific proteins. The aggregation of polyQ proteins is a critical pathological hallmark of these diseases. Arginine was identified as a promising inhibitory compound because it prevents polyQ-protein monomers from forming intra- and intermolecular β-sheet structures and hinders polyQ proteins from aggregating to form oligomers. Such an aggregation inhibitory effect was not observed in other amino acids. However, the underlying molecular mechanism of the aggregation inhibition and the factors that differentiate arginine from other amino acids, in terms of the inhibition of the polyQ-protein aggregation, remain poorly understood. Here, we performed replica-permutation molecular dynamics simulations to elucidate the molecular mechanism by which arginine inhibits the formation of the intramolecular β-sheet structure of a polyQ monomer. We found that the intramolecular β-sheet structure with more than four β-bridges of the polyQ monomer with arginine is more unstable than without any ligand and with lysine. We also found that arginine has 1.6-2.1 times more contact with polyQ than lysine. In addition, we revealed that arginine forms more hydrogen bonds with the main chain of the polyQ monomer than lysine. More hydrogen bonds formed between arginine and polyQ inhibit polyQ from forming the long intramolecular β-sheet structure. It is known that intramolecular β-sheet structure enhances intermolecular β-sheet structure between proteins. These effects are thought to be the reason for the inhibition of polyQ aggregation. This study provides insights into the molecular events underlying arginine's inhibition of polyQ-protein aggregation.
Collapse
Affiliation(s)
- Shoichi Tanimoto
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
| | - Hisashi Okumura
- Exploratory
Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki 444-8787, Aichi, Japan
- National
Institutes of Natural Sciences, Institute
for Molecular Science, Okazaki 444-8787, Aichi, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki 444-8787, Aichi, Japan
| |
Collapse
|
8
|
Tandon S, Sarkar S. Glutamine stimulates the S6K/4E-BP branch of insulin signalling pathway to mitigate human poly(Q) disorders in Drosophila disease models. Nutr Neurosci 2024; 27:783-794. [PMID: 37658796 DOI: 10.1080/1028415x.2023.2253028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
OBJECTIVE AND METHODS Since, the S6K/4E-BP sub-pathway can be stimulated by various amino acids; we extended our investigation to examine if oral feeding of amino acids delivers rescue against human poly(Q) toxicity in Drosophila. We utilised Drosophila models of two different poly(Q) disorders to test our hypothesis. Glutamine was fed to the test flies orally mixed in the food. Control and treated flies were then tested for different parameters, such as formation of poly(Q) aggregates and neurodegeneration, to evaluate glutamine's proficiency in mitigating poly(Q) neurotoxicity. RESULTS Our study, for the first time, reports that glutamine feeding stimulates the growth promoting S6K/4E-BP branch of insulin signalling pathway and restricts pathogenesis of poly(Q) disorders in Drosophila disease models. We noted that glutamine treatment restricts the formation of neurotoxic poly(Q) aggregates and minimises neuronal deaths. Further, glutamine treatment re-establishes the chromatin architecture by improving the histone acetylation which is otherwise compromised in poly(Q) expressing neuronal cells. DISCUSSION Since, the insulin signalling pathway as well as mechanism of action of glutamine are fairly conserved between human and Drosophila, our finding strongly suggests that glutamine holds immense potential to be developed as an intervention therapy against the incurable human poly(Q) disorders.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
9
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Amiri B, Yazdani Tabrizi M, Naziri M, Moradi F, Arzaghi M, Archin I, Behaein F, Bagheri Pour A, Ghannadikhosh P, Imanparvar S, Akhtari Kohneshahri A, Sanaye Abbasi A, Zerangian N, Alijanzadeh D, Ghayyem H, Azizinezhad A, Ahmadpour Youshanlui M, Poudineh M. Neuroprotective effects of flavonoids: endoplasmic reticulum as the target. Front Neurosci 2024; 18:1348151. [PMID: 38957188 PMCID: PMC11218733 DOI: 10.3389/fnins.2024.1348151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/28/2024] [Indexed: 07/04/2024] Open
Abstract
The incidence of neurological disorders, particularly age-related neurodegenerative pathologies, exhibits an alarming upward trend, while current pharmacological interventions seldom achieve curative outcomes. Despite their diverse clinical presentations, neurological diseases often share a common pathological thread: the aberrant accumulation of misfolded proteins within the endoplasmic reticulum (ER). This phenomenon, known as ER stress, arises when the cell's intrinsic quality control mechanisms fail to cope with the protein-folding burden. Consequently, misfolded proteins accumulate in the ER lumen, triggering a cascade of cellular stress responses. Recognizing this challenge, researchers have intensified their efforts over the past two decades to explore natural compounds that could potentially slow or even reverse these devastating pathologies. Flavonoids constitute a vast and heterogeneous class of plant polyphenols, with over 10,000 identified from diverse natural sources such as wines, vegetables, medicinal plants, and organic products. Flavonoids are generally divided into six different subclasses: anthocyanidins, flavanones, flavones, flavonols, isoflavones, and flavonols. The diverse family of flavonoids, featuring a common phenolic ring backbone adorned with varying hydroxyl groups and additional modifications, exerts its antioxidant activity by inhibiting the formation of ROS, as evidenced by research. Also, studies suggest that polyphenols such as flavonoids can regulate ER stress through apoptosis and autophagy. By understanding these mechanisms, we can unlock the potential of flavonoids as novel therapeutic agents for neurodegenerative disorders. Therefore, this review critically examines the literature exploring the modulatory effects of flavonoids on various steps of the ER stress in neurological disorders.
Collapse
Affiliation(s)
- Bita Amiri
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Yazdani Tabrizi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdyieh Naziri
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Moradi
- Student Research Committee, School of Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Arzaghi
- Department of Physical Education and Sports Science-Nutrition, Branch Islamic Azad University, Tehran, Iran
| | - Iman Archin
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Parna Ghannadikhosh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Imanparvar
- School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ata Akhtari Kohneshahri
- Student Research Committee, Faculty of Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Ali Sanaye Abbasi
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nasibeh Zerangian
- PhD Student in Health Education and Health Promotion, Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dorsa Alijanzadeh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hani Ghayyem
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Azizinezhad
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | | | - Mohadeseh Poudineh
- Student Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Vohra A, Keefe P, Puthanveetil P. Altered Metabolic Signaling and Potential Therapies in Polyglutamine Diseases. Metabolites 2024; 14:320. [PMID: 38921455 PMCID: PMC11205831 DOI: 10.3390/metabo14060320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Polyglutamine diseases comprise a cluster of genetic disorders involving neurodegeneration and movement disabilities. In polyglutamine diseases, the target proteins become aberrated due to polyglutamine repeat formation. These aberrant proteins form the root cause of associated complications. The metabolic regulation during polyglutamine diseases is not well studied and needs more attention. We have brought to light the significance of regulating glutamine metabolism during polyglutamine diseases, which could help in decreasing the neuronal damage associated with excess glutamate and nucleotide generation. Most polyglutamine diseases are accompanied by symptoms that occur due to excess glutamate and nucleotide accumulation. Along with a dysregulated glutamine metabolism, the Nicotinamide adenine dinucleotide (NAD+) levels drop down, and, under these conditions, NAD+ supplementation is the only achievable strategy. NAD+ is a major co-factor in the glutamine metabolic pathway, and it helps in maintaining neuronal homeostasis. Thus, strategies to decrease excess glutamate and nucleotide generation, as well as channelizing glutamine toward the generation of ATP and the maintenance of NAD+ homeostasis, could aid in neuronal health. Along with understanding the metabolic dysregulation that occurs during polyglutamine diseases, we have also focused on potential therapeutic strategies that could provide direct benefits or could restore metabolic homeostasis. Our review will shed light into unique metabolic causes and into ideal therapeutic strategies for treating complications associated with polyglutamine diseases.
Collapse
Affiliation(s)
- Alisha Vohra
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Patrick Keefe
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (A.V.); (P.K.)
| | - Prasanth Puthanveetil
- College of Graduate Studies, Department of Pharmacology, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
12
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
13
|
van der Wel PC. Solid-state nuclear magnetic resonance in the structural study of polyglutamine aggregation. Biochem Soc Trans 2024; 52:719-731. [PMID: 38563485 PMCID: PMC11088915 DOI: 10.1042/bst20230731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
The aggregation of proteins into amyloid-like fibrils is seen in many neurodegenerative diseases. Recent years have seen much progress in our understanding of these misfolded protein inclusions, thanks to advances in techniques such as solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryo-EM). However, multiple repeat-expansion-related disorders have presented special challenges to structural elucidation. This review discusses the special role of ssNMR analysis in the study of protein aggregates associated with CAG repeat expansion disorders. In these diseases, the misfolding and aggregation affect mutant proteins with expanded polyglutamine segments. The most common disorder, Huntington's disease (HD), is connected to the mutation of the huntingtin protein. Since the discovery of the genetic causes for HD in the 1990s, steady progress in our understanding of the role of protein aggregation has depended on the integrative and interdisciplinary use of multiple types of structural techniques. The heterogeneous and dynamic features of polyQ protein fibrils, and in particular those formed by huntingtin N-terminal fragments, have made these aggregates into challenging targets for structural analysis. ssNMR has offered unique insights into many aspects of these amyloid-like aggregates. These include the atomic-level structure of the polyglutamine core, but also measurements of dynamics and solvent accessibility of the non-core flanking domains of these fibrils' fuzzy coats. The obtained structural insights shed new light on pathogenic mechanisms behind this and other protein misfolding diseases.
Collapse
|
14
|
Liu YJ, Wang JY, Zhang XL, Jiang LL, Hu HY. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J 2024; 291:1795-1812. [PMID: 38308810 DOI: 10.1111/febs.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Sena LS, Furtado GV, Pedroso JL, Barsottini O, Cornejo-Olivas M, Nóbrega PR, Braga Neto P, Soares DMB, Vargas FR, Godeiro C, Medeiros PFVD, Camejo C, Toralles MBP, Fagundes NJR, Jardim LB, Saraiva-Pereira ML. Spinocerebellar ataxia type 2 has multiple ancestral origins. Parkinsonism Relat Disord 2024; 120:105985. [PMID: 38181536 DOI: 10.1016/j.parkreldis.2023.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Spinocerebellar ataxia type 2 (SCA2) is a dominant neurodegenerative disorder due to expansions of a CAG repeat tract (CAGexp) at the ATXN2 gene. Previous studies found only one ancestral haplotype worldwide, with a C allele at rs695871. This homogeneity was unexpected, given the severe anticipations related to SCA2. We aimed to describe informative ancestral haplotypes found in South American SCA2 families. METHODS Seventy-seven SCA2 index cases were recruited from Brazil, Peru, and Uruguay; 263 normal chromosomes were used as controls. The SNPs rs9300319, rs3809274, rs695871, rs1236900 and rs593226, and the STRs D12S1329, D12S1333, D12S1672 and D12S1332, were used to reconstruct haplotypes. RESULTS Eleven ancestral haplotypes were found in SCA2 families. The most frequent ones were A-G-C-C-C (46.7 % of families), G-C-C-C-C (24.6 %) and A-C-C-C-C (10.3 %) and their mean (sd) CAGexp were 41.68 (3.55), 40.42 (4.11) and 45.67 (9.70) (p = 0.055), respectively. In contrast, the mean (sd) CAG lengths at normal alleles grouped per haplotypes G-C-G-A-T, A-G-C-C-C and G-C-C-C-C were 22.97 (3.93), 23.85 (3.59), and 30.81 (4.27) (p < 0.001), respectively. The other SCA2 haplotypes were rare: among them, a G-C-G-A-T lineage was found, evidencing a G allele in rs695871. CONCLUSION We identified several distinct ancestral haplotypes in SCA2 families, including an unexpected lineage with a G allele at rs695871, a variation never found in hundreds of SCA2 patients studied worldwide. SCA2 has multiple origins in South America, and more studies should be done in other regions of the world.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil.
| | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil
| | - José Luiz Pedroso
- Universidade Federal do Estado de São Paulo, Rua Pedro de Toledo 650, 04039-031, São Paulo, Brazil
| | - Orlando Barsottini
- Universidade Federal do Estado de São Paulo, Rua Pedro de Toledo 650, 04039-031, São Paulo, Brazil
| | - Mario Cornejo-Olivas
- Neurogenetics Working Group, Universidad Cientifica del Sur, 19 Panamericana S Avenue, 15067, Lima, 15067, Peru; Neurogenetics Research Center, Instituto Nacional de Ciencias Neurológicas, 1271 Ancas St, 15003, Lima, Peru
| | - Paulo Ribeiro Nóbrega
- Setor de Neurologia, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Rua Professor Costa Mendes, 1608, 60430-140, Fortaleza, CE, Brazil; Centro Universitário Christus, Rua Alexandre Baraúna 949, 60430-160, Fortaleza, CE, Brazil
| | - Pedro Braga Neto
- Setor de Neurologia, Departamento de Medicina Clínica, Faculdade de Medicina, Universidade Federal do Ceará, Rua Professor Costa Mendes, 1608, 60430-140, Fortaleza, CE, Brazil; Curso de Medicina, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Avenida Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - Danyela Martins Bezerra Soares
- Curso de Medicina, Centro de Ciências da Saúde, Universidade Estadual do Ceará, Avenida Dr. Silas Munguba, 1700, 60714-903, Fortaleza, CE, Brazil
| | - Fernando Regla Vargas
- Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rua Frei Caneca 94, 20211-010, Rio de Janeiro, Brazil; Laboratório de Epidemiologia de Malformações Congênitas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, 21040-900, Rio de Janeiro, Brazil
| | - Clecio Godeiro
- Departamento de Medicina Integrada, Hospital Universitário Onofre Lopes, Avenida Nilo Peçanha, 59012-300, Natal, Brazil
| | - Paula Frassinetti Vasconcelos de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Rua Carlos Chagas S/n, 58107-670, Campina Grande, Brazil
| | - Claudia Camejo
- Facultad de Medicina. Universidad de La República, Avenida General Flores 3461, 11700, Montevideo, Uruguay
| | | | - Nelson Jurandi Rosa Fagundes
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Departamento de Genética, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90.035-903, Brazil; Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2400, 90035-002, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, Brazil; Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90035-903, Porto Alegre, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2340, 90.035-903, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, 90035-003, Porto Alegre, Brazil
| |
Collapse
|
16
|
Pérot JB, Brouillet E, Flament J. The contribution of preclinical magnetic resonance imaging and spectroscopy to Huntington's disease. Front Aging Neurosci 2024; 16:1306312. [PMID: 38414634 PMCID: PMC10896846 DOI: 10.3389/fnagi.2024.1306312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024] Open
Abstract
Huntington's disease is an inherited disorder characterized by psychiatric, cognitive, and motor symptoms due to degeneration of medium spiny neurons in the striatum. A prodromal phase precedes the onset, lasting decades. Current biomarkers include clinical score and striatal atrophy using Magnetic Resonance Imaging (MRI). These markers lack sensitivity for subtle cellular changes during the prodromal phase. MRI and MR spectroscopy offer different contrasts for assessing metabolic, microstructural, functional, or vascular alterations in the disease. They have been used in patients and mouse models. Mouse models can be of great interest to study a specific mechanism of the degenerative process, allow better understanding of the pathogenesis from the prodromal to the symptomatic phase, and to evaluate therapeutic efficacy. Mouse models can be divided into three different constructions: transgenic mice expressing exon-1 of human huntingtin (HTT), mice with an artificial chromosome expressing full-length human HTT, and knock-in mouse models with CAG expansion inserted in the murine htt gene. Several studies have used MRI/S to characterized these models. However, the multiplicity of modalities and mouse models available complicates the understanding of this rich corpus. The present review aims at giving an overview of results obtained using MRI/S for each mouse model of HD, to provide a useful resource for the conception of neuroimaging studies using mouse models of HD. Finally, despite difficulties in translating preclinical protocols to clinical applications, many biomarkers identified in preclinical models have already been evaluated in patients. This review also aims to cover this aspect to demonstrate the importance of MRI/S for studying HD.
Collapse
Affiliation(s)
- Jean-Baptiste Pérot
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Paris, France
| | - Emmanuel Brouillet
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Flament
- Laboratoire des Maladies Neurodégénératives, Molecular Imaging Research Center, Commissariat à l’Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
17
|
Aartsma-Rus A, Collin RWJ, Elgersma Y, Lauffer MC, van Roon-Mom W. Joining forces to develop individualized antisense oligonucleotides for patients with brain or eye diseases: the example of the Dutch Center for RNA Therapeutics. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241273465. [PMID: 39328974 PMCID: PMC11425740 DOI: 10.1177/26330040241273465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/15/2024] [Indexed: 09/28/2024]
Abstract
Antisense oligonucleotides (ASOs) offer versatile tools to modify the processing and expression levels of gene transcripts. As such, they have a high therapeutic potential for rare genetic diseases, where applicability of each ASO ranges from thousands of patients worldwide to single individuals based on the prevalence of the causative pathogenic variant. It was shown that development of individualized ASOs was feasible within an academic setting, starting with Milasen for the treatment of a patient with CLN7 Batten's disease in the USA. Inspired by this, the Dutch Center for RNA Therapeutics (DCRT) was established by three academic medical centers in the Netherlands with a track record in ASO development for progressive, genetic neurodegenerative, neurodevelopmental, and retinal disorders. The goal of the DCRT is to bundle expertise and address national ethical, regulatory, and financial issues related to ASO treatment, and ultimately to develop individualized ASOs for eligible patients with genetic diseases affecting the central nervous system in an academic, not-for-profit setting. In this perspective, we describe the establishment of the DCRT in 2020 and the achievements so far, with a specific focus on lessons learned: the need for processes and procedures, the need for global collaboration, the need to raise awareness, and the fact that N-of-1 is N-of-a-few.
Collapse
Affiliation(s)
- Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutic, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob W J Collin
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ype Elgersma
- Dutch Center for RNA Therapeutics, Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Rajagopal S, Donaldson J, Flower M, Hensman Moss DJ, Tabrizi SJ. Genetic modifiers of repeat expansion disorders. Emerg Top Life Sci 2023; 7:325-337. [PMID: 37861103 PMCID: PMC10754329 DOI: 10.1042/etls20230015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Repeat expansion disorders (REDs) are monogenic diseases caused by a sequence of repetitive DNA expanding above a pathogenic threshold. A common feature of the REDs is a strong genotype-phenotype correlation in which a major determinant of age at onset (AAO) and disease progression is the length of the inherited repeat tract. Over a disease-gene carrier's life, the length of the repeat can expand in somatic cells, through the process of somatic expansion which is hypothesised to drive disease progression. Despite being monogenic, individual REDs are phenotypically variable, and exploring what genetic modifying factors drive this phenotypic variability has illuminated key pathogenic mechanisms that are common to this group of diseases. Disease phenotypes are affected by the cognate gene in which the expansion is found, the location of the repeat sequence in coding or non-coding regions and by the presence of repeat sequence interruptions. Human genetic data, mouse models and in vitro models have implicated the disease-modifying effect of DNA repair pathways via the mechanisms of somatic mutation of the repeat tract. As such, developing an understanding of these pathways in the context of expanded repeats could lead to future disease-modifying therapies for REDs.
Collapse
Affiliation(s)
- Sangeerthana Rajagopal
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Jasmine Donaldson
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Michael Flower
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| | - Davina J Hensman Moss
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
- St George's University of London, London SW17 0RE, U.K
| | - Sarah J Tabrizi
- UCL Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, U.K
- UK Dementia Research Institute, University College London, London WCC1N 3BG, U.K
| |
Collapse
|
19
|
Farkas A, Zsindely N, Nagy G, Kovács L, Deák P, Bodai L. The ubiquitin thioesterase YOD1 ameliorates mutant Huntingtin induced pathology in Drosophila. Sci Rep 2023; 13:21951. [PMID: 38081944 PMCID: PMC10713573 DOI: 10.1038/s41598-023-49241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant gain-of-function mutation in the huntingtin gene, resulting in an elongated polyglutamine repeat in the mutant Huntingtin (mHtt) that mediates aberrant protein interactions. Previous studies implicated the ubiquitin-proteasome system in HD, suggesting that restoring cellular proteostasis might be a key element in suppressing pathology. We applied genetic interaction tests in a Drosophila model to ask whether modulating the levels of deubiquitinase enzymes affect HD pathology. By testing 32 deubiquitinase genes we found that overexpression of Yod1 ameliorated all analyzed phenotypes, including neurodegeneration, motor activity, viability, and longevity. Yod1 did not have a similar effect in amyloid beta overexpressing flies, suggesting that the observed effects might be specific to mHtt. Yod1 overexpression did not alter the number of mHtt aggregates but moderately increased the ratio of larger aggregates. Transcriptome analysis showed that Yod1 suppressed the transcriptional effects of mHtt and restored the expression of genes involved in neuronal plasticity, vesicular transport, antimicrobial defense, and protein synthesis, modifications, and clearance. Furthermore, Yod1 overexpression in HD flies leads to the upregulation of genes involved in transcriptional regulation and synaptic transmission, which might be part of a response mechanism to mHtt-induced stress.
Collapse
Affiliation(s)
- Anita Farkas
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Gábor Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - Levente Kovács
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
- Divison of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, 91125, USA
| | - Péter Deák
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| |
Collapse
|
20
|
Wei C, Chen Z, Tan D, Jiang H, Zhong N, Xiong H. Reply to: "THAP11 CAG Expansion Beyond Chinese-Ancestry Cohorts: An Examination of 1000 Genomes and UK Biobank". Mov Disord 2023; 38:2322-2323. [PMID: 38113318 DOI: 10.1002/mds.29639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, P.R. China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, P.R. China
- National Clinical Research Center for Geriatric Diseases, Central South University, Changsha, P.R. China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, P.R. China
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, P.R. China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, P.R. China
| |
Collapse
|
21
|
Sena LS, Lemes RB, Furtado GV, Saraiva-Pereira ML, Jardim LB. A model for the dynamics of expanded CAG repeat alleles: ATXN2 and ATXN3 as prototypes. Front Genet 2023; 14:1296614. [PMID: 38034492 PMCID: PMC10682950 DOI: 10.3389/fgene.2023.1296614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background: Spinocerebellar ataxia types 2 (SCA2) and 3 (SCA3/MJD) are diseases due to dominant unstable expansions of CAG repeats (CAGexp). Age of onset of symptoms (AO) correlates with the CAGexp length. Repeat instability leads to increases in the expanded repeats, to important AO anticipations and to the eventual extinction of lineages. Because of that, compensatory forces are expected to act on the maintenance of expanded alleles, but they are poorly understood. Objectives: we described the CAGexp dynamics, adapting a classical equation and aiming to estimate for how many generations will the descendants of a de novo expansion last. Methods: A mathematical model was adapted to encompass anticipation, fitness, and allelic segregation; and empirical data fed the model. The arbitrated ancestral mutations included in the model had the lowest CAGexp and the highest AO described in the literature. One thousand generations were simulated until the alleles were eliminated, fixed, or 650 generations had passed. Results: All SCA2 lineages were eliminated in a median of 10 generations. In SCA3/MJD lineages, 593 were eliminated in a median of 29 generations. The other ones were eliminated due to anticipation after the 650th generation or remained indefinitely with CAG repeats transitioning between expanded and unexpanded ranges. Discussion: the model predicted outcomes compatible with empirical data - the very old ancestral SCA3/MJD haplotype, and the de novo SCA2 expansions -, which previously seemed to be contradictory. This model accommodates these data into understandable dynamics and might be useful for other CAGexp disorders.
Collapse
Affiliation(s)
- Lucas Schenatto Sena
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Gabriel Vasata Furtado
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centros de Pesquisa Clínica e Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Departamento de Medicina Interna, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Yang S, Wijegunawardana D, Sheth U, Veire AM, Salgado JMS, Agrawal M, Zhou J, Pereira JD, Gendron TF, Guo JU. Aberrant splicing exonizes C9ORF72 repeat expansion in ALS/FTD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566896. [PMID: 38014069 PMCID: PMC10680656 DOI: 10.1101/2023.11.13.566896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A nucleotide repeat expansion (NRE) in the first annotated intron of the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). While C9 NRE-containing RNAs can be translated into several toxic dipeptide repeat proteins, how an intronic NRE can assess the translation machinery in the cytoplasm remains unclear. By capturing and sequencing NRE-containing RNAs from patient-derived cells, we found that C9 NRE was exonized by the usage of downstream 5' splice sites and exported from the nucleus in a variety of spliced mRNA isoforms. C9ORF72 aberrant splicing was substantially elevated in both C9 NRE+ motor neurons and human brain tissues. Furthermore, NREs above the pathological threshold were sufficient to activate cryptic splice sites in reporter mRNAs. In summary, our results revealed a crucial and potentially widespread role of repeat-induced aberrant splicing in the biogenesis, localization, and translation of NRE-containing RNAs.
Collapse
Affiliation(s)
- Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Denethi Wijegunawardana
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Udit Sheth
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Austin M. Veire
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Juliana M. S. Salgado
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Manasi Agrawal
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jeffrey Zhou
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - João D. Pereira
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tania F. Gendron
- Neurobiology of Disease Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences; Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Junjie U. Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
23
|
Teive HAG, Coutinho L, Cardoso FEC, Tsuji S. Spinal and bulbar muscular atrophy: Kennedy's disease and its first description by Hiroshi Kawahara in 1897. Rev Neurol (Paris) 2023; 180:S0035-3787(23)01071-8. [PMID: 39492284 DOI: 10.1016/j.neurol.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 11/05/2024]
Affiliation(s)
- H A G Teive
- Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil; Postgraduate Program in Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil
| | - L Coutinho
- Postgraduate Program in Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil.
| | - F E C Cardoso
- Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S Tsuji
- Department of Neurology, The University of Tokyo Hospital, Tokyo, Japan; Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| |
Collapse
|
24
|
Sarasamma S, Karim A, Orengo JP. Zebrafish Models of Rare Neurological Diseases like Spinocerebellar Ataxias (SCAs): Advantages and Limitations. BIOLOGY 2023; 12:1322. [PMID: 37887032 PMCID: PMC10604122 DOI: 10.3390/biology12101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of rare familial neurodegenerative disorders that share the key feature of cerebellar ataxia. Clinical heterogeneity, diverse gene mutations and complex neuropathology pose significant challenges for developing effective disease-modifying therapies in SCAs. Without a deep understanding of the molecular mechanisms involved for each SCA, we cannot succeed in developing targeted therapies. Animal models are our best tool to address these issues and several have been generated to study the pathological conditions of SCAs. Among them, zebrafish (Danio rerio) models are emerging as a powerful tool for in vivo study of SCAs, as well as rapid drug screens. In this review, we will summarize recent progress in using zebrafish to study the pathology of SCAs. We will discuss recent advancements on how zebrafish models can further clarify underlying genetic, neuroanatomical, and behavioral pathogenic mechanisms of disease. We highlight their usefulness in rapid drug discovery and large screens. Finally, we will discuss the advantages and limitations of this in vivo model to develop tailored therapeutic strategies for SCA.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
| | - Anwarul Karim
- School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - James P. Orengo
- Departments of Neurology and Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
25
|
Weber JJ, Costa MDC, Scaglione KM, Todi SV, Nguyen HP. Editorial: The role of posttranslational modifications in polyglutamine diseases. Front Mol Neurosci 2023; 16:1271226. [PMID: 37654791 PMCID: PMC10466034 DOI: 10.3389/fnmol.2023.1271226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Gromova A, Cha B, Robinson EM, Strickland LM, Nguyen N, ElMallah MK, Cortes CJ, La Spada AR. X-linked SBMA model mice display relevant non-neurological phenotypes and their expression of mutant androgen receptor protein in motor neurons is not required for neuromuscular disease. Acta Neuropathol Commun 2023; 11:90. [PMID: 37269008 PMCID: PMC10239133 DOI: 10.1186/s40478-023-01582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023] Open
Abstract
X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.
Collapse
Affiliation(s)
- Anastasia Gromova
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Byeonggu Cha
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Erica M Robinson
- Department of Neurology, Duke University, Durham, NC, 27710, USA
| | - Laura M Strickland
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Nhat Nguyen
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Mai K ElMallah
- Division of Pulmonary Medicine, Department of Pediatrics, Duke University, Durham, NC, 27710, USA
| | - Constanza J Cortes
- School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, and Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, 92697, USA.
- UCI Institute for Neurotherapeutics, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
27
|
Burgunder JM. Mechanisms underlying phenotypic variation in neurogenetic disorders. Nat Rev Neurol 2023:10.1038/s41582-023-00811-4. [PMID: 37202496 DOI: 10.1038/s41582-023-00811-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Neurological diseases associated with pathogenic variants in a specific gene, or even with a specific pathogenic variant, can show profound phenotypic variation with regard to symptom presentation, age at onset and disease course. Highlighting examples from a range of neurogenetic disorders, this Review explores emerging mechanisms that are involved in this variability, including environmental, genetic and epigenetic factors that influence the expressivity and penetrance of pathogenic variants. Environmental factors, some of which can potentially be modified to prevent disease, include trauma, stress and metabolic changes. Dynamic patterns of pathogenic variants might explain some of the phenotypic variations, for example, in the case of disorders caused by DNA repeat expansions such as Huntington disease (HD). An important role for modifier genes has also been identified in some neurogenetic disorders, including HD, spinocerebellar ataxia and X-linked dystonia-parkinsonism. In other disorders, such as spastic paraplegia, the basis for most of the phenotypic variability remains unclear. Epigenetic factors have been implicated in disorders such as SGCE-related myoclonus-dystonia and HD. Knowledge of the mechanisms underlying phenotypic variation is already starting to influence management strategies and clinical trials for neurogenetic disorders.
Collapse
|
28
|
Hisaoka S, Osawa J, Kobashi R, Ishida A, Kameshita I, Sueyoshi N. Subcellular distribution of bone morphogenetic protein 2-inducible kinase (BMP2K): Regulation by liquid-liquid phase separation and nucleocytoplasmic shuttling. Biochem Biophys Res Commun 2023; 649:16-24. [PMID: 36739695 DOI: 10.1016/j.bbrc.2023.01.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Bone morphogenetic protein 2 (BMP2)-inducible kinase (BMP2K) is induced by the cytokine BMP2, which is also implicated in the production of bone differentiation. In addition to regulating bone differentiation, BMP2K is implicated in a variety of cancers. Therefore, understanding the variables that determine where in the cell this kinase functions may help in understanding malignancies linked to BMP2K. However, the mechanisms regulating the subcellular localization of BMP2K are mainly unknown. By liquid-liquid phase separation (LLPS), BMP2K forms droplets in the cytoplasm, but how the droplets are regulated remains unclear. The reason why BMP2K localizes to the cytoplasm irrespective of having a nuclear localization signal (NLS) is also unknown. Here we show the element that controls BMP2K's LLPS and cytoplasmic localization. A glutamine-rich area is necessary for BMP2K phase separation, and droplet formation is controlled by hyperosmolarity. Cytoplasmic localization of BMP2K is managed by inhibition of NLS function through phosphorylation of Ser-1010 and by a newly found cytoplasmic localization region that antagonizes the NLS. These results will provide an important biochemical foundation for the advancement of BMP2K-related cell biology, structural biology, and pathophysiology.
Collapse
Affiliation(s)
- Shiho Hisaoka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Jin Osawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Riku Kobashi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan.
| |
Collapse
|
29
|
Piwecka M, Fiszer A, Rolle K, Olejniczak M. RNA regulation in brain function and disease 2022 (NeuroRNA): A conference report. Front Mol Neurosci 2023; 16:1133209. [PMID: 36993784 PMCID: PMC10040806 DOI: 10.3389/fnmol.2023.1133209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/06/2023] [Indexed: 03/18/2023] Open
Abstract
Recent research integrates novel technologies and methods from the interface of RNA biology and neuroscience. This advancing integration of both fields creates new opportunities in neuroscience to deepen the understanding of gene expression programs and their regulation that underlies the cellular heterogeneity and physiology of the central nervous system. Currently, transcriptional heterogeneity can be studied in individual neural cell types in health and disease. Furthermore, there is an increasing interest in RNA technologies and their application in neurology. These aspects were discussed at an online conference that was shortly named NeuroRNA.
Collapse
Affiliation(s)
- Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | | | | |
Collapse
|
30
|
Nowak B, Kozlowska E, Pawlik W, Fiszer A. Atrophin-1 Function and Dysfunction in Dentatorubral-Pallidoluysian Atrophy. Mov Disord 2023; 38:526-536. [PMID: 36809552 DOI: 10.1002/mds.29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, incurable genetic disease that belongs to the group of polyglutamine (polyQ) diseases. DRPLA is the most common in the Japanese population; however, its global prevalence is also increasing due to better clinical recognition. It is characterized by cerebellar ataxia, myoclonus, epilepsy, dementia, and chorea. DRPLA is caused by dynamic mutation of CAG repeat expansion in ATN1 gene encoding the atrophin-1 protein. In the cascade of molecular disturbances, the pathological form of atrophin-1 is the initial factor, which has not been precisely characterized so far. Reports indicate that DRPLA is associated with disrupted protein-protein interactions (in which an expanded polyQ tract plays a crucial role), as well as gene expression deregulation. There is a great need to design efficient therapy that would address the underlying neurodegenerative process and thus prevent or alleviate DRPLA symptoms. An in-depth understanding of the normal atrophin-1 function and mutant atrophin-1 dysfunction is crucial for this purpose. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Bartosz Nowak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Weronika Pawlik
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
31
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Background: The evolutionary rate of disordered proteins varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of intrinsically disordered regions (IDRs) across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards low complexity regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, low complexity proteins across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of low complexity, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
32
|
Kouros CE, Makri V, Ouzounis CA, Chasapi A. Disease association and comparative genomics of compositional bias in human proteins. F1000Res 2023; 12:198. [PMID: 37082000 PMCID: PMC10111144 DOI: 10.12688/f1000research.129929.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 04/25/2023] Open
Abstract
Background: The evolutionary rate of disordered protein regions varies greatly due to the lack of structural constraints. So far, few studies have investigated the presence/absence patterns of compositional bias, indicative of disorder, across phylogenies in conjunction with human disease. In this study, we report a genome-wide analysis of compositional bias association with disease in human proteins and their taxonomic distribution. Methods: The human genome protein set provided by the Ensembl database was annotated and analysed with respect to both disease associations and the detection of compositional bias. The Uniprot Reference Proteome dataset, containing 11297 proteomes was used as target dataset for the comparative genomics of a well-defined subset of the Human Genome, including 100 characteristic, compositionally biased proteins, some linked to disease. Results: Cross-evaluation of compositional bias and disease-association in the human genome reveals a significant bias towards biased regions in disease-associated genes, with charged, hydrophilic amino acids appearing as over-represented. The phylogenetic profiling of 17 disease-associated, proteins with compositional bias across 11297 proteomes captures characteristic taxonomic distribution patterns. Conclusions: This is the first time that a combined genome-wide analysis of compositional bias, disease-association and taxonomic distribution of human proteins is reported, covering structural, functional, and evolutionary properties. The reported framework can form the basis for large-scale, follow-up projects, encompassing the entire human genome and all known gene-disease associations.
Collapse
Affiliation(s)
- Christos E. Kouros
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasiliki Makri
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos A. Ouzounis
- BCCB-AIIA, School of Informatics, Aristotle University of Thessaloniki, Thessaloniki, Greece
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| | - Anastasia Chasapi
- BCPL, Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas (CERTH), Thessaloniki, Greece
| |
Collapse
|
33
|
Cas9-mediated replacement of expanded CAG repeats in a pig model of Huntington's disease. Nat Biomed Eng 2023; 7:629-646. [PMID: 36797418 DOI: 10.1038/s41551-023-01007-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/20/2023] [Indexed: 02/18/2023]
Abstract
The monogenic nature of Huntington's disease (HD) and other neurodegenerative diseases caused by the expansion of glutamine-encoding CAG repeats makes them particularly amenable to gene therapy. Here we show the feasibility of replacing expanded CAG repeats in the mutant HTT allele with a normal CAG repeat in genetically engineered pigs mimicking the selective neurodegeneration seen in patients with HD. A single intracranial or intravenous injection of adeno-associated virus encoding for Cas9, a single-guide RNA targeting the HTT gene, and donor DNA containing the normal CAG repeat led to the depletion of mutant HTT in the animals and to substantial reductions in the dysregulated expression and neurotoxicity of mutant HTT and in neurological symptoms. Our findings support the further translational development of virally delivered Cas9-based gene therapies for the treatment of genetic neurodegenerative diseases.
Collapse
|
34
|
Joachimiak P, Ciesiołka A, Kozłowska E, Świtoński PM, Figura G, Ciołak A, Adamek G, Surdyka M, Kalinowska-Pośka Ż, Figiel M, Caron NS, Hayden MR, Fiszer A. Allele-specific quantitation of ATXN3 and HTT transcripts in polyQ disease models. BMC Biol 2023; 21:17. [PMID: 36726088 PMCID: PMC9893648 DOI: 10.1186/s12915-023-01515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The majority of genes in the human genome is present in two copies but the expression levels of both alleles is not equal. Allelic imbalance is an aspect of gene expression relevant not only in the context of genetic variation, but also to understand the pathophysiology of genes implicated in genetic disorders, in particular, dominant genetic diseases where patients possess one normal and one mutant allele. Polyglutamine (polyQ) diseases are caused by the expansion of CAG trinucleotide tracts within specific genes. Spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD) patients harbor one normal and one mutant allele that differ in the length of CAG tracts. However, assessing the expression level of individual alleles is challenging due to the presence of abundant CAG repeats in the human transcriptome, which make difficult the design of allele-specific methods, as well as of therapeutic strategies to selectively engage CAG sequences in mutant transcripts. RESULTS To precisely quantify expression in an allele-specific manner, we used SNP variants that are linked to either normal or CAG expanded alleles of the ataxin-3 (ATXN3) and huntingtin (HTT) genes in selected patient-derived cell lines. We applied a SNP-based quantitative droplet digital PCR (ddPCR) protocol for precise determination of the levels of transcripts in cellular and mouse models. For HD, we showed that the process of cell differentiation can affect the ratio between endogenous alleles of HTT mRNA. Additionally, we reported changes in the absolute number of the ATXN3 and HTT transcripts per cell during neuronal differentiation. We also implemented our assay to reliably monitor, in an allele-specific manner, the silencing efficiency of mRNA-targeting therapeutic approaches for HD. Finally, using the humanized Hu128/21 HD mouse model, we showed that the ratio of normal and mutant HTT transgene expression in brain slightly changes with the age of mice. CONCLUSIONS Using allele-specific ddPCR assays, we observed differences in allele expression levels in the context of SCA3 and HD. Our allele-selective approach is a reliable and quantitative method to analyze low abundant transcripts and is performed with high accuracy and reproducibility. Therefore, the use of this approach can significantly improve understanding of allele-related mechanisms, e.g., related with mRNA processing that may be affected in polyQ diseases.
Collapse
Affiliation(s)
- Paweł Joachimiak
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiołka
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Emilia Kozłowska
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Paweł M. Świtoński
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Grzegorz Figura
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agata Ciołak
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Grażyna Adamek
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Magdalena Surdyka
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Żaneta Kalinowska-Pośka
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Figiel
- grid.413454.30000 0001 1958 0162Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Nicholas S. Caron
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Michael R. Hayden
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - Agnieszka Fiszer
- grid.413454.30000 0001 1958 0162Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
35
|
Cvetanovic M, Gray M. Contribution of Glial Cells to Polyglutamine Diseases: Observations from Patients and Mouse Models. Neurotherapeutics 2023; 20:48-66. [PMID: 37020152 PMCID: PMC10119372 DOI: 10.1007/s13311-023-01357-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 04/07/2023] Open
Abstract
Neurodegenerative diseases are broadly characterized neuropathologically by the degeneration of vulnerable neuronal cell types in a specific brain region. The degeneration of specific cell types has informed on the various phenotypes/clinical presentations in someone suffering from these diseases. Prominent neurodegeneration of specific neurons is seen in polyglutamine expansion diseases including Huntington's disease (HD) and spinocerebellar ataxias (SCA). The clinical manifestations observed in these diseases could be as varied as the abnormalities in motor function observed in those who have Huntington's disease (HD) as demonstrated by a chorea with substantial degeneration of striatal medium spiny neurons (MSNs) or those with various forms of spinocerebellar ataxia (SCA) with an ataxic motor presentation primarily due to degeneration of cerebellar Purkinje cells. Due to the very significant nature of the degeneration of MSNs in HD and Purkinje cells in SCAs, much of the research has centered around understanding the cell autonomous mechanisms dysregulated in these neuronal cell types. However, an increasing number of studies have revealed that dysfunction in non-neuronal glial cell types contributes to the pathogenesis of these diseases. Here we explore these non-neuronal glial cell types with a focus on how each may contribute to the pathogenesis of HD and SCA and the tools used to evaluate glial cells in the context of these diseases. Understanding the regulation of supportive and harmful phenotypes of glia in disease could lead to development of novel glia-focused neurotherapeutics.
Collapse
Affiliation(s)
- Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, USA
| | - Michelle Gray
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
Shukla S, Lazarchuk P, Pavlova MN, Sidorova JM. Genome-wide survey of D/E repeats in human proteins uncovers their instability and aids in identifying their role in the chromatin regulator ATAD2. iScience 2022; 25:105464. [PMCID: PMC9672403 DOI: 10.1016/j.isci.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
D/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions. D/E repeat-containing proteins preferentially function in chromatin metabolism and are the more likely to be nuclear and interact with core histones, the longer their repeats are. One of the longest D/E repeats of unknown function is in ATAD2, a bromodomain family ATPase frequently overexpressed in tumors. We demonstrate that D/E repeat deletion in ATAD2 suppresses its binding to nascent and mature chromatin and to the constitutive pericentromeric heterochromatin, where ATAD2 represses satellite transcription. Many human proteins contain runs of aspartic/glutamic acid residues (D/E repeats) D/E repeats show increased incidence of in-frame insertions/deletions in tumors Nuclear and histone-interacting proteins often have long D/E repeats D/E repeat of the oncogene ATAD2 controls its binding to pericentric chromatin
Collapse
Affiliation(s)
- Shalabh Shukla
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
- Corresponding author
| |
Collapse
|
37
|
Incebacak Eltemur RD, Nguyen HP, Weber JJ. Calpain-mediated proteolysis as driver and modulator of polyglutamine toxicity. Front Mol Neurosci 2022; 15:1020104. [PMID: 36385755 PMCID: PMC9648470 DOI: 10.3389/fnmol.2022.1020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 09/22/2023] Open
Abstract
Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Chen ZS, Yan M, Pei W, Yan B, Huang C, Chan HYE. Lignin-carbohydrate complexes suppress SCA3 neurodegeneration via upregulating proteasomal activities. Int J Biol Macromol 2022; 218:690-705. [PMID: 35872311 DOI: 10.1016/j.ijbiomac.2022.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mingqi Yan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
39
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
40
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
41
|
Karwacka M, Olejniczak M. Advances in Modeling Polyglutamine Diseases Using Genome Editing Tools. Cells 2022; 11:cells11030517. [PMID: 35159326 PMCID: PMC8834129 DOI: 10.3390/cells11030517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine (polyQ) diseases, including Huntington’s disease, are a group of late-onset progressive neurological disorders caused by CAG repeat expansions. Although recently, many studies have investigated the pathological features and development of polyQ diseases, many questions remain unanswered. The advancement of new gene-editing technologies, especially the CRISPR-Cas9 technique, has undeniable value for the generation of relevant polyQ models, which substantially support the research process. Here, we review how these tools have been used to correct disease-causing mutations or create isogenic cell lines with different numbers of CAG repeats. We characterize various cellular models such as HEK 293 cells, patient-derived fibroblasts, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and animal models generated with the use of genome-editing technology.
Collapse
|
42
|
With or without You: Co-Chaperones Mediate Health and Disease by Modifying Chaperone Function and Protein Triage. Cells 2021; 10:cells10113121. [PMID: 34831344 PMCID: PMC8619055 DOI: 10.3390/cells10113121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Heat shock proteins (HSPs) are a family of molecular chaperones that regulate essential protein refolding and triage decisions to maintain protein homeostasis. Numerous co-chaperone proteins directly interact and modify the function of HSPs, and these interactions impact the outcome of protein triage, impacting everything from structural proteins to cell signaling mediators. The chaperone/co-chaperone machinery protects against various stressors to ensure cellular function in the face of stress. However, coding mutations, expression changes, and post-translational modifications of the chaperone/co-chaperone machinery can alter the cellular stress response. Importantly, these dysfunctions appear to contribute to numerous human diseases. Therapeutic targeting of chaperones is an attractive but challenging approach due to the vast functions of HSPs, likely contributing to the off-target effects of these therapies. Current efforts focus on targeting co-chaperones to develop precise treatments for numerous diseases caused by defects in protein quality control. This review focuses on the recent developments regarding selected HSP70/HSP90 co-chaperones, with a concentration on cardioprotection, neuroprotection, cancer, and autoimmune diseases. We also discuss therapeutic approaches that highlight both the utility and challenges of targeting co-chaperones.
Collapse
|