1
|
Ohlendorf R, Li N, Phi Van VD, Schwalm M, Ke Y, Dawson M, Jiang Y, Das S, Stallings B, Zheng WT, Jasanoff A. Imaging bioluminescence by detecting localized haemodynamic contrast from photosensitized vasculature. Nat Biomed Eng 2024; 8:775-786. [PMID: 38730257 DOI: 10.1038/s41551-024-01210-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/30/2024] [Indexed: 05/12/2024]
Abstract
Bioluminescent probes are widely used to monitor biomedically relevant processes and cellular targets in living animals. However, the absorption and scattering of visible light by tissue drastically limit the depth and resolution of the detection of luminescence. Here we show that bioluminescent sources can be detected with magnetic resonance imaging by leveraging the light-mediated activation of vascular cells expressing a photosensitive bacterial enzyme that causes the conversion of bioluminescent emission into local changes in haemodynamic contrast. In the brains of rats with photosensitized vasculature, we used magnetic resonance imaging to volumetrically map bioluminescent xenografts and cell populations virally transduced to express luciferase. Detecting bioluminescence-induced haemodynamic signals from photosensitized vasculature will extend the applications of bioluminescent probes.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Max Planck Institute for Biological Cybernetics, Tubingen, Germany
| | - Nan Li
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Advanced Imaging Research Center and Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Valerie Doan Phi Van
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yuting Ke
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Miranda Dawson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ying Jiang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sayani Das
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brenna Stallings
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wen Ting Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Broudic K, Laurent S, Perkov V, Simon C, Garinot M, Truchot N, Latour J, Désert P. Nonclinical safety assessment of an mRNA Covid-19 vaccine candidate following repeated administrations and biodistribution. J Appl Toxicol 2024; 44:371-390. [PMID: 37723625 DOI: 10.1002/jat.4548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023]
Abstract
Messenger RNA (mRNA) vaccines have demonstrated efficacy against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in humans. mRNA technology holds tremendous potential for rapid control and prevention of emergencies due to its flexibility with respect to production, application, and design for an efficacious and safe use in humans. We assessed the toxicity and biodistribution of MRT5500, an mRNA vaccine encoding for the full-length of the SARS-CoV-2 spike protein and delivered by lipid nanoparticles (LNPs) containing a novel ionizable lipid, Lipid-1 in preclinical animal models. In the repeated dose toxicity study, rabbits received three intramuscular (IM) injections of MRT5500 at 3-week interval followed by a 4-week observation period. In an exploratory biodistribution study in mice receiving a single IM injection of an mRNA encoding luciferase encapsulated in an LNP containing Lipid-1, the expression of the luciferase protein was monitored in vivo and ex vivo at several time points. In the regulatory biodistribution study in rabbits receiving a single IM injection of MRT5500, the quantification of the mRNA and the ionizable Lipid-1 were monitored in the same organs and time points as in the exploratory biodistribution study. MRT5500 was safe and well-tolerated with a transient acute phase response/inflammation and an expected vaccine-related immunological response, typical of those observed following a vaccine administration. The biodistribution data demonstrated that the mRNA and Lipid-1 components of the vaccine formulations were mainly detected at the injection site and in the draining lymph nodes. These results support the use of MRT5500 and its deployment into clinical trials.
Collapse
Affiliation(s)
- Karine Broudic
- Research and Development, Sanofi, Marcy l'Etoile, France
| | | | | | - Charlene Simon
- Research and Development, Sanofi, Marcy l'Etoile, France
| | - Marie Garinot
- Research and Development, Sanofi, Marcy l'Etoile, France
| | - Nathalie Truchot
- France Safety Assessment SAS, Charles River Laboratories, Saint-Germain-Nuelles, France
| | - Julie Latour
- Research and Development, Sanofi, Marcy l'Etoile, France
| | - Paul Désert
- Research and Development, Sanofi, Marcy l'Etoile, France
| |
Collapse
|
3
|
Wu J, Kang Y, Luo X, Dai S, Shi Y, Li Z, Tang Z, Chen Z, Zhu R, Yang P, Li Z, Wang H, Chen X, Zhao Z, Ji W, Niu Y. Long-term in vivo chimeric cells tracking in non-human primate. Protein Cell 2024; 15:207-222. [PMID: 37758041 PMCID: PMC10903985 DOI: 10.1093/procel/pwad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Non-human primates (NHPs) are increasingly used in preclinical trials to test the safety and efficacy of biotechnology therapies. Nonetheless, given the ethical issues and costs associated with this model, it would be highly advantageous to use NHP cellular models in clinical studies. However, developing and maintaining the naïve state of primate pluripotent stem cells (PSCs) remains difficult as does in vivo detection of PSCs, thus limiting biotechnology application in the cynomolgus monkey. Here, we report a chemically defined, xeno-free culture system for culturing and deriving monkey PSCs in vitro. The cells display global gene expression and genome-wide hypomethylation patterns distinct from monkey-primed cells. We also found expression of signaling pathways components that may increase the potential for chimera formation. Crucially for biomedical applications, we were also able to integrate bioluminescent reporter genes into monkey PSCs and track them in chimeric embryos in vivo and in vitro. The engineered cells retained embryonic and extra-embryonic developmental potential. Meanwhile, we generated a chimeric monkey carrying bioluminescent cells, which were able to track chimeric cells for more than 2 years in living animals. Our study could have broad utility in primate stem cell engineering and in utilizing chimeric monkey models for clinical studies.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Shaoxing Dai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhenzhen Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ran Zhu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Pengpeng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zifan Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Hong Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Ziyi Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
4
|
Dunuweera AN, Dunuweera SP, Ranganathan K. A Comprehensive Exploration of Bioluminescence Systems, Mechanisms, and Advanced Assays for Versatile Applications. Biochem Res Int 2024; 2024:8273237. [PMID: 38347947 PMCID: PMC10861286 DOI: 10.1155/2024/8273237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 01/21/2024] [Indexed: 02/15/2024] Open
Abstract
Bioluminescence has been a fascinating natural phenomenon of light emission from living creatures. It happens when the enzyme luciferase facilitates the oxidation of luciferin, resulting in the creation of an excited-state species that emits light. Although there are many bioluminescent systems, few have been identified. D-luciferin-dependent systems, coelenterazine-dependent systems, Cypridina luciferin-based systems, tetrapyrrole-based luciferins, bacterial bioluminescent systems, and fungal bioluminescent systems are natural bioluminescent systems. Since different bioluminescence systems, such as various combinations of luciferin-luciferase pair reactions, have different light emission wavelengths, they benefit industrial applications such as drug discovery, protein-protein interactions, in vivo imaging in small animals, and controlling neurons. Due to the expression of luciferase and easy permeation of luciferin into most cells and tissues, bioluminescence assays are applied nowadays with modern technologies in most cell and tissue types. It is a versatile technique in a variety of biomedical research. Furthermore, there are some investigated blue-sky research projects, such as bioluminescent plants and lamps. This review article is mainly based on the theory of diverse bioluminescence systems and their past, present, and future applications.
Collapse
Affiliation(s)
| | | | - K. Ranganathan
- Department of Botany, University of Jaffna, Jaffna 40000, Sri Lanka
| |
Collapse
|
5
|
Falendysz EA, Lopera JG, Rocke TE, Osorio JE. Monkeypox Virus in Animals: Current Knowledge of Viral Transmission and Pathogenesis in Wild Animal Reservoirs and Captive Animal Models. Viruses 2023; 15:v15040905. [PMID: 37112885 PMCID: PMC10142277 DOI: 10.3390/v15040905] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Mpox, formerly called monkeypox, is now the most serious orthopoxvirus (OPXV) infection in humans. This zoonotic disease has been gradually re-emerging in humans with an increasing frequency of cases found in endemic areas, as well as an escalating frequency and size of epidemics outside of endemic areas in Africa. Currently, the largest known mpox epidemic is spreading throughout the world, with over 85,650 cases to date, mostly in Europe and North America. These increased endemic cases and epidemics are likely driven primarily by decreasing global immunity to OPXVs, along with other possible causes. The current unprecedented global outbreak of mpox has demonstrated higher numbers of human cases and greater human-to-human transmission than previously documented, necessitating an urgent need to better understand this disease in humans and animals. Monkeypox virus (MPXV) infections in animals, both naturally occurring and experimental, have provided critical information about the routes of transmission; the viral pathogenicity factors; the methods of control, such as vaccination and antivirals; the disease ecology in reservoir host species; and the conservation impacts on wildlife species. This review briefly described the epidemiology and transmission of MPXV between animals and humans and summarizes past studies on the ecology of MPXV in wild animals and experimental studies in captive animal models, with a focus on how animal infections have informed knowledge concerning various aspects of this pathogen. Knowledge gaps were highlighted in areas where future research, both in captive and free-ranging animals, could inform efforts to understand and control this disease in both humans and animals.
Collapse
|
6
|
Shu G, Zhao H, Zhang X. Persistent luminescent metal-organic framework nanocomposite enables autofluorescence-free dual modal imaging-guided drug delivery. Biomater Sci 2023; 11:1797-1809. [PMID: 36655655 DOI: 10.1039/d2bm01920e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Molecular imaging-guided therapy was essential for realizing precise cancer intervention, while designing an imaging platform to achieve autofluorescence-free imaging for dual modal imaging-guided drug delivery remains a challenge. Near-infrared persistent luminescence nanoparticles (NIR PLNPs) were promising for tumor imaging due to no background interference from the tissue. Herein, a persistent luminescent metal-organic framework (PLNPs@MIL-100(Fe)) is prepared via a layer-by-layer method for dual-modal imaging-guided drug delivery. The PLNPs@MIL-100(Fe) exhibit NIR persistent luminescence emitting and T2-weighted signal, achieving precise in vivo dual-modal imaging of tumor-bearing mice by providing high spatial resolution MR imaging and autofluorescence-free NIR imaging. The porous MIL-100(Fe) shell provides PLNPs@MIL-100(Fe) with up to 87.1% drug loading capacity and acid-triggered drug release for drug delivery. We envision that the proposed PLNPs@MIL-100(Fe) platform would provide an effective approach for precise tumor imaging and versatile drug delivery.
Collapse
Affiliation(s)
- Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Huaixin Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P.R. China.
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
7
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Liu S, Su Y, Lin MZ, Ronald JA. Brightening up Biology: Advances in Luciferase Systems for in Vivo Imaging. ACS Chem Biol 2021; 16:2707-2718. [PMID: 34780699 PMCID: PMC8689642 DOI: 10.1021/acschembio.1c00549] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Bioluminescence imaging
(BLI) using luciferase reporters is an
indispensable method for the noninvasive visualization of cell populations
and biochemical events in living animals. BLI is widely performed
with preclinical rodent models to understand disease processes and
evaluate potential cell- or gene-based therapies. However, in vivo BLI remains constrained by low photon production
and tissue attenuation, limiting the sensitivity of reporting from
small numbers of cells in deep locations and hindering its application
to larger animal models. This Review highlights recent advances in
the development of luciferase systems that improve the sensitivity
of in vivo BLI and discusses the expanding array
of biological applications.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| | - Yichi Su
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - John A. Ronald
- Robarts Research Institute, The University of Western Ontario, London, Ontario N6A3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario N6A3K7, Canada
| |
Collapse
|
9
|
Liu S, Nyström NN, Kelly JJ, Hamilton AM, Fu Y, Ronald JA. Molecular Imaging Reveals a High Degree of Cross-Seeding of Spontaneous Metastases in a Novel Mouse Model of Synchronous Bilateral Breast Cancer. Mol Imaging Biol 2021; 24:104-114. [PMID: 34312806 PMCID: PMC8760205 DOI: 10.1007/s11307-021-01630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/18/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
Purpose Synchronous bilateral breast cancer (SBBC) patients present with cancer in both breasts at the time of diagnosis or within a short time interval. They show higher rates of metastasis and lower overall survival compared to women with unilateral breast cancer. Here we established the first preclinical SBBC model and used molecular imaging to visualize the patterns of metastasis from each primary tumor. Procedures We engineered human breast cancer cells to express either Akaluc or Antares2 for bioluminescence imaging (BLI) and tdTomato or zsGreen for ex vivo fluorescence microscopy. Both cell populations were implanted into contralateral mammary fat pads of mice (n=10), and dual-BLI was performed weekly for up to day 29 (n=3), 38 (n=4), or 42 (n=3). Primary tumors and lungs were fixed, and ex vivo fluorescence microscopy was used to analyze the cellular makeup of micrometastases. Results Signal from both Antares2 and Akaluc was first detected in the lungs on day 28 and was present in 9 of 10 mice at endpoint. Ex vivo fluorescence microscopy of the lungs revealed that for mice sacrificed on day 38, a significant percentage of micrometastases were composed of cancer cells from both primary tumors (mean 37%; range 27 to 45%), while two mice sacrificed on day 42 showed percentages of 51% and 70%. Conclusions A high degree of metastatic cross-seeding of cancer cells derived from bilateral tumors may contribute to faster metastatic growth and intratumoral heterogeneity. We posit that our work will help understand treatment resistance and optimal planning of SBBC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01630-z.
Collapse
Affiliation(s)
- Shirley Liu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - Nivin N Nyström
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John J Kelly
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Amanda M Hamilton
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Yanghao Fu
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | - John A Ronald
- Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
10
|
Moroz MA, Zurita J, Moroz A, Nikolov E, Likar Y, Dobrenkov K, Lee J, Shenker L, Blasberg R, Serganova I, Ponomarev V. Introducing a new reporter gene, membrane-anchored Cypridina luciferase, for multiplex bioluminescence imaging. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:15-22. [PMID: 33851009 PMCID: PMC8020342 DOI: 10.1016/j.omto.2021.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022]
Abstract
Bioluminescence reporter gene imaging is a robust, high-throughput imaging modality that is useful for tracking cells and monitoring biological processes, both in cell culture and in small animals. We introduced and characterized a novel bioluminescence reporter—membrane-anchored Cypridina luciferase (maCLuc)—paired with a unique vargulin substrate. This luciferase-substrate pair has no cross-reactivity with established d-luciferin- or coelenterazine-based luciferase reporters. We compare maCLuc with several established luciferase-based reporter systems (firefly, click beetle, Renilla, and Gaussia luciferases), using both in vitro and in vivo models. We demonstrate the different imaging characteristics of these reporter systems, which allow for multiplexed-luciferase imaging of 3 and 4 separate targets concurrently in the same animal within 24 h. The imaging paradigms described here can be directly applied for simultaneous in vivo monitoring of multiple cell populations, the activity of selected signal transduction pathways, or a combination of both constitutive and inducible reporter imaging.
Collapse
Affiliation(s)
- Maxim A Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Juan Zurita
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna Moroz
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Ekaterina Nikolov
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yury Likar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Konstantin Dobrenkov
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason Lee
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Larissa Shenker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald Blasberg
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Inna Serganova
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
11
|
Multi-Modal Multi-Spectral Intravital Microscopic Imaging of Signaling Dynamics in Real-Time during Tumor-ImmuneInteractions. Cells 2021; 10:cells10030499. [PMID: 33652682 PMCID: PMC7996937 DOI: 10.3390/cells10030499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 11/21/2022] Open
Abstract
Intravital microscopic imaging (IVM) allows for the study of interactions between immune cells and tumor cells in a dynamic, physiologically relevant system in vivo. Current IVM strategies primarily use fluorescence imaging; however, with the advances in bioluminescence imaging and the development of new bioluminescent reporters with expanded emission spectra, the applications for bioluminescence are extending to single cell imaging. Herein, we describe a molecular imaging window chamber platform that uniquely combines both bioluminescent and fluorescent genetically encoded reporters, as well as exogenous reporters, providing a powerful multi-plex strategy to study molecular and cellular processes in real-time in intact living systems at single cell resolution all in one system. We demonstrate that our molecular imaging window chamber platform is capable of imaging signaling dynamics in real-time at cellular resolution during tumor progression. Importantly, we expand the utility of IVM by modifying an off-the-shelf commercial system with the addition of bioluminescence imaging achieved by the addition of a CCD camera and demonstrate high quality imaging within the reaches of any biology laboratory.
Collapse
|
12
|
Zhou Y, Yin K, Dong H, Yang S, Li J, Luo J, Li Y, Yang R. Long-Lasting Bioluminescence Imaging of the Fibroblast Activation Protein by an Amphiphilic Block Copolymer-Based Probe. Anal Chem 2021; 93:3726-3732. [DOI: 10.1021/acs.analchem.0c03638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Keyi Yin
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Hao Dong
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - JunBin Li
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Jinqiu Luo
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Yi Li
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, School of Chemistry and Chemical Engineering, Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, P. R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Ministry of Education, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
13
|
Gammon ST, Liu TW, Piwnica-Worms D. Interrogating Cellular Communication in Cancer with Genetically Encoded Imaging Reporters. Radiol Imaging Cancer 2020; 2:e190053. [PMID: 32803164 PMCID: PMC7398120 DOI: 10.1148/rycan.2020190053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/06/2020] [Accepted: 01/22/2020] [Indexed: 04/14/2023]
Abstract
Cells continuously communicate changes in their microenvironment, both locally and globally, with other cells in the organism. Integration of information arising from signaling networks impart continuous, time-dependent changes of cell function and phenotype. Use of genetically encoded reporters enable researchers to noninvasively monitor time-dependent changes in intercellular and intracellular signaling, which can be interrogated by macroscopic and microscopic optical imaging, nuclear medicine imaging, MRI, and even photoacoustic imaging techniques. Reporters enable noninvasive monitoring of changes in cell-to-cell proximity, transcription, translation, protein folding, protein association, protein degradation, drug action, and second messengers in real time. Because of their positive impact on preclinical research, attempts to improve the sensitivity and specificity of these reporters, and to develop new types and classes of reporters, remain an active area of investigation. A few reporters have migrated to proof-of-principle clinical demonstrations, and recent advances in genome editing technologies may enable the use of reporters in the context of genome-wide analysis and the imaging of complex genomic regulation in vivo that cannot be readily investigated through standard methodologies. The combination of genetically encoded imaging reporters with continuous improvements in other molecular biology techniques may enhance and expedite target discovery and drug development for cancer interventions and treatment. © RSNA, 2020.
Collapse
|
14
|
Usukura J, Hiyama M, Kurata M, Hazama Y, Qiu XP, Winnik FM, Akiyama H, Koga N. Theoretical Study of the Wavelength Selection for the Photocleavage of Coumarin-caged D-luciferin. Photochem Photobiol 2020; 96:805-814. [PMID: 31907932 DOI: 10.1111/php.13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
The equilibrium structures and optical properties of the photolabile caged luciferin, (7-diethylaminocoumarin-4-yl)methyl caged D-luciferin (DEACM-caged D-luciferin), in aqueous solution were investigated via quantum chemical calculations. The probable conformers of DEACM-caged D-luciferin were determined by potential energy curve scans and structural optimizations. We identified 40 possible conformers of DEACM-caged D-luciferin in water by comparing the Gibbs free energy of the optimized structures. Despite the difference in their structures, the conformers were similar in terms of assignments, oscillator strengths and energies of the three low-lying excited states. From the concentrations of the conformers and their oscillator strengths, we obtained a theoretical UV/Vis spectrum of DEACM-caged D-luciferin that has two main bands of shape nearly identical to the experimental UV/Vis spectrum. The absorption bands with maxima ~ 384 and 339 nm were attributed to the electronic excitations of the caged group and the luciferin moiety, respectively, by analysis of the theoretical UV/Vis spectrum. Furthermore, the analysis showed that DEACM-caged D-luciferin is excited in the caged group only by light of wavelength ranging within 400-430 nm, which is in the long-wavelength tail of the 384 nm band. This should be tested to lower damage upon photocleavage.
Collapse
Affiliation(s)
- Junko Usukura
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, Kiryu, Japan
| | - Maki Kurata
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan
| | - Yuji Hazama
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Japan
| | - Xing-Ping Qiu
- Département de Chimie, Université de Montréal, Montréal, Canada
| | - Francoise M Winnik
- Department of Chemistry, University of Helsinki, Helsinki, Finland.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Hidefumi Akiyama
- Institute for Solid Physics, University of Tokyo, Kashiwa, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), Kashiwa, Japan
| | - Nobuaki Koga
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
15
|
Abstract
The spatiotemporal determination of molecular events and cells is important for understanding disease processes, especially in oncology, and thus for the development of novel treatments. Equally important is the knowledge of the biodistribution, localization, and targeted accumulation of novel therapies as well as monitoring of tumor growth and therapeutic response. Optical imaging provides an ideal versatile platform for imaging of all these problems and questions.
Collapse
|
16
|
Dunn-Meynell AA, Dowling P, Marchese M, Rodriguez E, Blumberg B, Choi YB, Gaindh D, Lu W. In vivo Bioluminescence Imaging Used to Monitor Disease Activity and Therapeutic Response in a Mouse Model of Tauopathy. Front Aging Neurosci 2019; 11:252. [PMID: 31572168 PMCID: PMC6751306 DOI: 10.3389/fnagi.2019.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/26/2019] [Indexed: 01/03/2023] Open
Abstract
Many studies of tauopathy use transgenic mice that overexpress the P301S mutant form of tau. Neuronal damage in these mice is associated with astrogliosis and induction of glial fibrillary acidic protein (GFAP) expression. GFAP-luc transgenic mice express firefly luciferase under the GFAP promoter, allowing bioluminescence to be measured non-invasively as a surrogate biomarker for astrogliosis. We bred double transgenic mice possessing both P301S and GFAP-luc cassettes and compared them to control mice bearing only the GFAP-luc transgene. We used serial bioluminescent images to define the onset and the time course of astrogliosis in these mice and this was correlated with the development of clinical deficit. Mice containing both GFAP-luc and P301S transgenes showed increased luminescence indicative of astroglial activation in the brain and spinal cord. Starting at 5 months old, the onset of clinical deterioration in these mice corresponded closely to the initial rise in the luminescent signal. Post mortem analysis showed the elevated luminescence was correlated with hyperphosphorylated tau deposition in the hippocampus of double transgenic mice. We used this method to determine the therapeutic effect of JM4 peptide [a small peptide immunomodulatory agent derived from human erythropoietin (EPO)] on double transgenic mice. JM4 treatment significantly decreased the intensity of luminescence, neurological deficit and hyperphosphorylated tau in mice with both the P301S and GFAP-luc transgenes. These findings indicate that bioluminescence imaging (BLI) is a powerful tool for quantifying GFAP expression in living P301S mice and can be used as a noninvasive biomarker of tau-induced neurodegeneration in preclinical therapeutic trials.
Collapse
Affiliation(s)
- Ambrose A. Dunn-Meynell
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Peter Dowling
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Neurology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
- Department of Neurology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Michelle Marchese
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
| | - Esther Rodriguez
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
| | - Benjamin Blumberg
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
| | - Yun-Beom Choi
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Neurology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Deeya Gaindh
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
- Department of Neurology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Wei Lu
- Neurology Service, VA New Jersey Health Care System, East Orange, NJ, United States
| |
Collapse
|
17
|
Maric T, Mikhaylov G, Khodakivskyi P, Bazhin A, Sinisi R, Bonhoure N, Yevtodiyenko A, Jones A, Muhunthan V, Abdelhady G, Shackelford D, Goun E. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat Methods 2019; 16:526-532. [PMID: 31086341 PMCID: PMC6546603 DOI: 10.1038/s41592-019-0421-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
Glucose is a major source of energy for most living organisms, and its aberrant uptake is linked to many pathological conditions. However, our understanding of disease-associated glucose flux is limited owing to the lack of robust tools. To date, positron-emission tomography imaging remains the gold standard for measuring glucose uptake, and no optical tools exist for non-invasive longitudinal imaging of this important metabolite in in vivo settings. Here, we report the development of a bioluminescent glucose-uptake probe for real-time, non-invasive longitudinal imaging of glucose absorption both in vitro and in vivo. In addition, we demonstrate that the sensitivity of our method is comparable with that of commonly used 18F-FDG-positron-emission-tomography tracers and validate the bioluminescent glucose-uptake probe as a tool for the identification of new glucose transport inhibitors. The new imaging reagent enables a wide range of applications in the fields of metabolism and drug development.
Collapse
Affiliation(s)
- Tamara Maric
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Georgy Mikhaylov
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
- Jožef Stefan Institute, Ljubljana, Slovenia
| | - Pavlo Khodakivskyi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Arkadiy Bazhin
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Riccardo Sinisi
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Nicolas Bonhoure
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Bâtiments G/H, Lausanne, Switzerland
| | - Aleksey Yevtodiyenko
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Anthony Jones
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Vishaka Muhunthan
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gihad Abdelhady
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - David Shackelford
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elena Goun
- Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
18
|
Xia Y, Pang H. Glucuronidation of d-Luciferin In Vitro: Isoform Selectivity and Kinetics Characterization. Eur J Drug Metab Pharmacokinet 2019; 44:549-556. [DOI: 10.1007/s13318-019-00549-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
19
|
McCabe-Lankford E, Peterson M, McCarthy B, Brown AJ, Terry B, Galarza-Paez L, Levi-Polyachenko N. Murine Models of Intraperitoneal Perfusion for Disseminated Colorectal Cancer. J Surg Res 2018; 233:310-322. [PMID: 30502264 DOI: 10.1016/j.jss.2018.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/04/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Reproduction of the perfusion used in therapy (hyperthermic intraperitoneal chemotherapy) procedures preclinically represents a valuable asset for investigating new therapeutic agents that may improve patient outcomes. This article provides technical descriptions of our execution of closed and open "coliseum" abdominal perfusion techniques in a mouse model of peritoneal carcinomatosis of colorectal cancer. MATERIALS AND METHODS BALB/c mice presenting with disseminated colorectal cancer (CT26-luciferin cells) underwent 30-min perfusions mimicking either the closed perfusion or the coliseum perfusion technique. Disease burden was monitored by bioluminescence signaling using an in vivo imaging system. Perfusion circuits consisted of single inflow lines with either a single or dual outflow line. RESULTS Twelve mice presenting with disseminated disease underwent the closed perfusion technique. Surgical complications included perfusate leakage and organ constriction/suction into the outflow line(s). Nine mice underwent the coliseum perfusion technique with surgical debulking, using bipolar cauterization to remove tumors attached to the peritoneum. All mice survived the coliseum perfusion with limited intraoperative complications. CONCLUSIONS Fewer intraoperative complications were experienced with our coliseum perfusion technique than the closed perfusion. The methods described here can be used as a guideline for developing future perfusion murine models for investigating perfusion models useful for delivery of chemotherapy or other tumor-sensitization agents, including selective targeted agents, nanoparticles, and heat.
Collapse
Affiliation(s)
- Eleanor McCabe-Lankford
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Margarita Peterson
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Bryce McCarthy
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - April J Brown
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Brad Terry
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Laura Galarza-Paez
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina
| | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina.
| |
Collapse
|
20
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
21
|
Yu M, Ohmiya Y, Naumov P, Liu YJ. Theoretical Insight into the Emission Properties of the Luciferin and Oxyluciferin of Latia. Photochem Photobiol 2018; 94:540-544. [PMID: 29253310 DOI: 10.1111/php.12876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/27/2017] [Indexed: 11/27/2022]
Abstract
Latia neritoides is a small limpet-like snail that produces a bright green bioluminescence (BL) via a unique light-emitting system. The process, mechanism, and even light emitter of its light emission remain unknown, although this BL has been known for decades. Unlike the other BL systems, neither the luciferin (Luc) nor the oxyluciferin (OxyLuc) of Latia is fluorescent according to the previous experiments. To help to identify its bioluminophore, we studied the geometrical and electronic structures and absorption and fluorescence spectra of Latia Luc and its six analogs as well as its OxyLuc in the gas phase and in water. The calculated results provide clear evidence of the lack of fluorescence in the Luc and OxyLuc of Latia. For the analogs of Latia Luc, the electron-withdrawing or electron-donating ability of the substituted group affects the fluorescence. The results shed new light on the BL mechanism and will likely aid the understanding of Latia BL.
Collapse
Affiliation(s)
- Mohan Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
22
|
Li JB, Chen L, Wang Q, Liu HW, Hu XX, Yuan L, Zhang XB. A Bioluminescent Probe for Imaging Endogenous Peroxynitrite in Living Cells and Mice. Anal Chem 2018; 90:4167-4173. [DOI: 10.1021/acs.analchem.8b00198] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun-Bin Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Qianqian Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. China
| | - Xiao-Xiao Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Hunan University, Changsha 410082, China
| |
Collapse
|
23
|
Katsuta E, Rashid OM, Takabe K. Murine breast cancer mastectomy model that predicts patient outcomes for drug development. J Surg Res 2017; 219:310-318. [PMID: 29078898 DOI: 10.1016/j.jss.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 06/16/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Despite massive expenditures in preclinical studies, many breast cancer agents show efficacy in murine models but fail in human trials. In humans, metastatic disease determines survival, but preclinical murine models only evaluate drug efficacy against the primary tumor. We hypothesized that evaluating efficacy against metastatic breast cancer would more efficiently predict efficacy in a murine model than evaluating the primary tumor alone. This study (1) critically evaluated a murine tumor removal model with metastatic tumor burden quantification for breast cancer preclinical trials and (2) validated the model with an agent that previously passed preclinical trials but failed human trials. MATERIALS AND METHODS Tumorectomy and Halsted (radical) mastectomy procedures after inoculation of 4T1-luc2 cells were compared. The effect of AZD0530, an oral Src inhibitor that passed preclinical trials but failed human trials, was evaluated using an inoculation model with/without Halsted mastectomy. RESULTS Significant amounts of residual disease were confirmed by bioluminescence (P = 0.003) and 100% developed local recurrence after tumorectomy versus 14% (P = 0.005) after Halsted mastectomy. Bioluminescence value at 15 min after luciferin injection highly correlated with peak except for 24 h after injection. AZD0530 significantly suppressed primary tumor burden compared with no treatment (P = 0.002); but not in lung metastases. In a Halsted mastectomy model, AZD0530 had no efficacy against lung metastases or difference in survival. CONCLUSIONS We critically evaluated and established a murine mastectomy model to evaluate metastatic tumors. It provides a new model for preclinical drug development that mimics the human adjuvant setting.
Collapse
Affiliation(s)
- Eriko Katsuta
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York
| | - Omar M Rashid
- Holy Cross Hospital Michael and Dianne Bienes Comprehensive Cancer Center, Fort Lauderdale, Florida; Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida; Department of Surgery, Nova Southeastern University School of Medicine, Fort Lauderdale, Florida
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, New York; Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, New York.
| |
Collapse
|
24
|
Falendysz EA, Lopera JG, Doty JB, Nakazawa Y, Crill C, Lorenzsonn F, Kalemba LN, Ronderos MD, Mejia A, Malekani JM, Karem K, Carroll DS, Osorio JE, Rocke TE. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.). PLoS Negl Trop Dis 2017; 11:e0005809. [PMID: 28827792 PMCID: PMC5578676 DOI: 10.1371/journal.pntd.0005809] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/31/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022] Open
Abstract
Monkeypox (MPX) is a zoonotic disease endemic in Central and West Africa and is caused by Monkeypox virus (MPXV), the most virulent Orthopoxvirus affecting humans since the eradication of Variola virus (VARV). Many aspects of the MPXV transmission cycle, including the natural host of the virus, remain unknown. African rope squirrels (Funisciurus spp.) are considered potential reservoirs of MPXV, as serosurveillance data in Central Africa has confirmed the circulation of the virus in these rodent species [1,2]. In order to understand the tissue tropism and clinical signs associated with infection with MPXV in these species, wild-caught rope squirrels were experimentally infected via intranasal and intradermal exposure with a recombinant MPXV strain from Central Africa engineered to express the luciferase gene. After infection, we monitored viral replication and shedding via in vivo bioluminescent imaging, viral culture and real time PCR. MPXV infection in African rope squirrels caused mortality and moderate to severe morbidity, with clinical signs including pox lesions in the skin, eyes, mouth and nose, dyspnea, and profuse nasal discharge. Both intranasal and intradermal exposures induced high levels of viremia, fast systemic spread, and long periods of viral shedding. Shedding and luminescence peaked at day 6 post infection and was still detectable after 15 days. Interestingly, one sentinel animal, housed in the same room but in a separate cage, also developed severe MPX disease and was euthanized. This study indicates that MPXV causes significant pathology in African rope squirrels and infected rope squirrels shed large quantities of virus, supporting their role as a potential source of MPXV transmission to humans and other animals in endemic MPX regions.
Collapse
Affiliation(s)
- Elizabeth A. Falendysz
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Juan G. Lopera
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeffrey B. Doty
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Yoshinori Nakazawa
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Colleen Crill
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Faye Lorenzsonn
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | | | - Monica D. Ronderos
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Andres Mejia
- Animal Services (Pathology), Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | | | - Kevin Karem
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Darin S. Carroll
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jorge E. Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Tonie E. Rocke
- US Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| |
Collapse
|
25
|
Hai Z, Wu J, Wang L, Xu J, Zhang H, Liang G. Bioluminescence Sensing of γ-Glutamyltranspeptidase Activity In Vitro and In Vivo. Anal Chem 2017; 89:7017-7021. [PMID: 28605900 DOI: 10.1021/acs.analchem.7b00567] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
γ-Glutamyltranspeptidase (GGT) is an important tumor biomarker but using a bioluminescence (BL) probe to real time monitor its activity has not been reported. Herein, we rationally designed two GGT-cleavable BL probes Glu-AmLH2 (1) and Glu-p-aminobenzyloxycarbonyl-AmLH2 (2), and successfully applied them for sensing GGT activity with high sensitivity and excellent selectivity both in vitro and in vivo. The results indicated that, although 2 had lower background BL signal than 1, GGT had higher catalytic efficiency for 1 than 2, and 1 was superior to 2 for sensing GGT activity in living cells and tumors. We envision that our probe 1 could be widely applied for the diagnosis of important GGT-related diseases in animal models in the near future.
Collapse
Affiliation(s)
- Zijuan Hai
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jingjing Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Lin Wang
- School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Jiacheng Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Huafeng Zhang
- School of Life Sciences, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
26
|
Mezzanotte L, van 't Root M, Karatas H, Goun EA, Löwik CWGM. In Vivo Molecular Bioluminescence Imaging: New Tools and Applications. Trends Biotechnol 2017; 35:640-652. [PMID: 28501458 DOI: 10.1016/j.tibtech.2017.03.012] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/07/2017] [Accepted: 03/27/2017] [Indexed: 12/19/2022]
Abstract
in vivo bioluminescence imaging (BLi) is an optical molecular imaging technique used to visualize molecular and cellular processes in health and diseases and to follow the fate of cells with high sensitivity using luciferase-based gene reporters. The high sensitivity of this technique arises from efficient photon production, followed by the reaction between luciferase enzymes and luciferin substrates. Novel discoveries and developments of luciferase reporters, substrates, and gene-editing techniques, and emerging fields of applications, promise a new era of deeper and more sensitive molecular imaging.
Collapse
Affiliation(s)
- Laura Mezzanotte
- Optical Molecular imaging, Department of Radiology, Erasmus MC, Rotterdam, The Netherlands.
| | - Moniek van 't Root
- Optical Molecular imaging, Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Hacer Karatas
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Elena A Goun
- Laboratory of Bioorganic Chemistry and Molecular Imaging, Institute of Chemical Sciences and Engineering (ISIC), Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Clemens W G M Löwik
- Optical Molecular imaging, Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Paczuska J, Świtalska M, Nowak M, Kiełbowicz Z. Effectiveness of CO2laser in an experimental mammary gland adenocarcinoma model. Vet Comp Oncol 2017; 16:47-54. [DOI: 10.1111/vco.12310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 01/04/2017] [Accepted: 03/06/2017] [Indexed: 12/12/2022]
Affiliation(s)
- J. Paczuska
- Department of Surgery, Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - M. Świtalska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy; Wrocław Poland
| | - M. Nowak
- Department of Pathology; Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences; Wrocław Poland
| | - Z. Kiełbowicz
- Department of Surgery, Faculty of Veterinary Medicine; Wrocław University of Environmental and Life Sciences; Wrocław Poland
| |
Collapse
|
28
|
Min CG, Leng Y, Zhu YQ, Yang XK, Huang SJ, Ren AM. Modification of firefly cyclic amino oxyluciferin analogues emitting multicolor light for OLED and near-Infrared biological window light for bioluminescence imaging: A theoretical study. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Bahmani P, Hosseinkhani S. Increase of segmental mobility through insertion of a flexible linker in split point of firefly luciferase. Int J Biol Macromol 2017; 94:762-770. [DOI: 10.1016/j.ijbiomac.2016.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/24/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
30
|
Near-infrared bioluminescent proteins for two-color multimodal imaging. Sci Rep 2016; 6:36588. [PMID: 27833162 PMCID: PMC5105121 DOI: 10.1038/srep36588] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022] Open
Abstract
Bioluminescence imaging became a widely used technique for noninvasive study of biological processes in small animals. Bioluminescent probes with emission in near-infrared (NIR) spectral region confer the advantage of having deep tissue penetration capacity. However, there are a very limited number of currently available luciferases that exhibit NIR bioluminescence. Here, we engineered two novel chimeric probes based on RLuc8 luciferase fused with iRFP670 and iRFP720 NIR fluorescent proteins. Due to an intramolecular bioluminescence resonance energy transfer (BRET) between RLuc8 and iRFPs, the chimeric luciferases exhibit NIR bioluminescence with maxima at 670 nm and 720 nm, respectively. The 50 nm spectral shift between emissions of the two iRFP chimeras enables combined multicolor bioluminescence imaging (BLI) and the respective multicolor fluorescence imaging (FLI) of the iRFPs. We show that for subcutaneously implanted cells, NIR bioluminescence provided a 10-fold increase in sensitivity compared to NIR FLI. In deep tissues, NIR BLI enabled detection of as low as 104 cells. Both BLI and FLI allowed monitoring of tumor growth and metastasis from early to late stages. Multimodal imaging, which combines concurrent BLI and FLI, provides continuous spatiotemporal analysis of metastatic cells in animals, including their localization and quantification.
Collapse
|
31
|
Grinstead KM, Rowe L, Ensor CM, Joel S, Daftarian P, Dikici E, Zingg JM, Daunert S. Red-Shifted Aequorin Variants Incorporating Non-Canonical Amino Acids: Applications in In Vivo Imaging. PLoS One 2016; 11:e0158579. [PMID: 27367859 PMCID: PMC4930207 DOI: 10.1371/journal.pone.0158579] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/17/2016] [Indexed: 11/18/2022] Open
Abstract
The increased importance of in vivo diagnostics has posed new demands for imaging technologies. In that regard, there is a need for imaging molecules capable of expanding the applications of current state-of-the-art imaging in vivo diagnostics. To that end, there is a desire for new reporter molecules capable of providing strong signals, are non-toxic, and can be tailored to diagnose or monitor the progression of a number of diseases. Aequorin is a non-toxic photoprotein that can be used as a sensitive marker for bioluminescence in vivo imaging. The sensitivity of aequorin is due to the fact that bioluminescence is a rare phenomenon in nature and, therefore, it does not suffer from autofluorescence, which contributes to background emission. Emission of bioluminescence in the blue-region of the spectrum by aequorin only occurs when calcium, and its luciferin coelenterazine, are bound to the protein and trigger a biochemical reaction that results in light generation. It is this reaction that endows aequorin with unique characteristics, making it ideally suited for a number of applications in bioanalysis and imaging. Herein we report the site-specific incorporation of non-canonical or non-natural amino acids and several coelenterazine analogues, resulting in a catalog of 72 cysteine-free, aequorin variants which expand the potential applications of these photoproteins by providing several red-shifted mutants better suited to use in vivo. In vivo studies in mouse models using the transparent tissue of the eye confirmed the activity of the aequorin variants incorporating L-4-iodophehylalanine and L-4-methoxyphenylalanine after injection into the eye and topical addition of coelenterazine. The signal also remained localized within the eye. This is the first time that aequorin variants incorporating non-canonical amino acids have shown to be active in vivo and useful as reporters in bioluminescence imaging.
Collapse
Affiliation(s)
- Kristen M. Grinstead
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Laura Rowe
- Department of Chemistry, 1610 Campus Drive East, Valparaiso University, Valparaiso, IN, 46385, United States of America
| | - Charles M. Ensor
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, United States of America
| | - Smita Joel
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Pirouz Daftarian
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, R. Bunn Gautier Bldg., 1011 NW 15th Street, Miller School of Medicine, University of Miami, Miami, FL, 33136, United States of America
| |
Collapse
|
32
|
Ding BW, Naumov P, Liu YJ. Mechanistic insight into marine bioluminescence: photochemistry of the chemiexcited Cypridina (sea firefly) lumophore. J Chem Theory Comput 2016; 11:591-9. [PMID: 26580916 DOI: 10.1021/ct5009203] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cypridina hilgendorfii (sea firefly) is a bioluminescent crustacean whose bioluminescence (BL) reaction is archetypal for a number of marine organisms, notably other bioluminescent crustaceans and coelenterates. Unraveling the mechanism of its BL is paramount for future applications of its strongly emissive lumophore. Cypridina produces light in a three-step reaction: First, the cypridinid luciferin is activated by an enzyme to produce a peroxide intermediate, cypridinid dioxetanone (CDO), which then decomposes to generate excited oxyluciferin (OxyCLnH*). Finally, OxyCLnH* deexcites to its ground state along with emission of bright blue light. Unfortunately, the detailed mechanism of the critical step, the thermolysis of CDO, remains unknown, and it is unclear whether the light emitter is generated from a neutral form (CDOH) or anionic form (CDO(-)) of the CDO precursor. In this work, we investigated the key step in the process by modeling the thermal decompositions of both CDOH and CDO(-). The calculated results indicate that the decomposition of CDO(-) occurs via the gradually reversible charge transfer (CT)-initiated luminescence (GRCTIL) mechanism, whereas CDOH decomposes through an entropic trapping mechanism without an obvious CT process. The thermolysis of CDO(-) is sensitive to solvent effects and is energetically favorable in polar environments compared with the thermolysis of CDOH. The thermolysis of CDO(-) produces the excited oxyluciferin anion (OxyCLn(-)*), which combines with a proton from the environment to form OxyCLnH*, the actual light emitter for the natural system.
Collapse
Affiliation(s)
- Bo-Wen Ding
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Panče Naumov
- New York University Abu Dhabi , P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
33
|
Cheng YY, Liu YJ. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution. Photochem Photobiol 2016; 92:552-60. [PMID: 27165852 DOI: 10.1111/php.12601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/29/2016] [Indexed: 01/03/2023]
Abstract
Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| |
Collapse
|
34
|
Steinhardt RC, O'Neill JM, Rathbun CM, McCutcheon DC, Paley MA, Prescher JA. Design and Synthesis of an Alkynyl Luciferin Analogue for Bioluminescence Imaging. Chemistry 2016; 22:3671-5. [PMID: 26784889 DOI: 10.1002/chem.201503944] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 01/20/2023]
Abstract
Herein, the synthesis and characterization of an alkyne-modified luciferin is reported. This bioluminescent probe was accessed using C-H activation methodology and was found to be stable in solution and capable of light production with firefly luciferase. The luciferin analogue was also cell permeant and emitted more redshifted light than d-luciferin, the native luciferase substrate. Based on these features, the alkynyl luciferin will be useful for a variety of imaging applications.
Collapse
Affiliation(s)
| | - Jessica M O'Neill
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Colin M Rathbun
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - David C McCutcheon
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Miranda A Paley
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Jennifer A Prescher
- Department of Chemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, USA. .,Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
35
|
van Zyl WF, Deane SM, Dicks LMT. Reporter systems for in vivo tracking of lactic acid bacteria in animal model studies. Gut Microbes 2015; 6:291-9. [PMID: 26516656 PMCID: PMC4826117 DOI: 10.1080/19490976.2015.1086058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bioluminescence (BLI) and fluorescence imaging (FI) allow for non-invasive detection of viable microorganisms from within living tissue and are thus ideally suited for in vivo probiotic studies. Highly sensitive optical imaging techniques detect signals from the excitation of fluorescent proteins, or luciferase-catalyzed oxidation reactions. The excellent relation between microbial numbers and photon emission allow for quantification of tagged bacteria in vivo with extreme accuracy. More information is gained over a shorter period compared to traditional pre-clinical animal studies. The review summarizes the latest advances in in vivo bioluminescence and fluorescence imaging and points out the advantages and limitations of different techniques. The practical application of BLI and FI in the tracking of lactic acid bacteria in animal models is addressed.
Collapse
Affiliation(s)
- Winschau F van Zyl
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Shelly M Deane
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology; Stellenbosch University; Matieland, Stellenbosch, South Africa,Correspondence to: Leon M T Dicks;
| |
Collapse
|
36
|
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ya-Jun Liu
- Key Laboratory of Theoretical
and Computational Photochemistry, Ministry of Education, College of
Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
37
|
Song J, Cai Z, White AG, Jin T, Wang X, Kadayakkara D, Anderson CJ, Ambrose Z, Young WB. Visualization and quantification of simian immunodeficiency virus-infected cells using non-invasive molecular imaging. J Gen Virol 2015; 96:3131-3142. [PMID: 26297664 DOI: 10.1099/jgv.0.000245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In vivo imaging can provide real-time information and three-dimensional (3D) non-invasive images of deep tissues and organs, including the brain, whilst allowing longitudinal observation of the same animals, thus eliminating potential variation between subjects. Current in vivo imaging technologies, such as magnetic resonance imaging (MRI), positron emission tomography-computed tomography (PET-CT) and bioluminescence imaging (BLI), can be used to pinpoint the spatial location of target cells, which is urgently needed for revealing human immunodeficiency virus (HIV) dissemination in real-time and HIV-1 reservoirs during suppressive antiretroviral therapy (ART). To demonstrate that in vivo imaging can be used to visualize and quantify simian immunodeficiency virus (SIV)-transduced cells, we genetically engineered SIV to carry different imaging reporters. Based on the expression of the reporter genes, we could visualize and quantify the SIV-transduced cells via vesicular stomatitis virus glycoprotein pseudotyping in a mouse model using BLI, PET-CT or MRI. We also engineered a chimeric EcoSIV for in vivo infection study. Our results demonstrated that BLI is sensitive enough to detect as few as five single cells transduced with virus, whilst PET-CT can provide 3D images of the spatial location of as few as 10 000 SIV-infected cells. We also demonstrated that MRI can provide images with high spatial resolution in a 3D anatomical context to distinguish a small population of SIV-transduced cells. The in vivo imaging platform described here can potentially serve as a powerful tool to visualize lentiviral infection, including when and where viraemia rebounds, and how reservoirs are formed and maintained during latency or suppressive ART.
Collapse
Affiliation(s)
- Jiasheng Song
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhengxin Cai
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G White
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaolei Wang
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Deepak Kadayakkara
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Won-Bin Young
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
38
|
Jones KA, Li DJ, Hui E, Sellmyer MA, Prescher JA. Visualizing cell proximity with genetically encoded bioluminescent reporters. ACS Chem Biol 2015; 10:933-8. [PMID: 25643167 DOI: 10.1021/cb5007773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions underlie diverse physiological processes ranging from immune function to cell migration. Dysregulated cellular crosstalk also potentiates numerous pathologies, including infections and metastases. Despite their ubiquity in organismal biology, cell-cell interactions are difficult to examine in tissues and whole animals without invasive procedures. Here, we report a strategy to noninvasively image cell proximity using engineered bioluminescent probes. These tools comprise "split" fragments of Gaussia luciferase (Gluc) fused to the leucine zipper domains of Fos and Jun. When cells secreting the fragments draw near one another, Fos and Jun drive the assembly of functional, light-emitting Gluc. Photon production thus provides a readout on the distance between two cell types. We used the split fragments to visualize cell-cell interactions over time in vitro and in macroscopic models of cell migration. Further application of these tools in live organisms will refine our understanding of cell contacts relevant to basic biology and disease.
Collapse
Affiliation(s)
| | | | | | - Mark A. Sellmyer
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
39
|
Bürgi S, Seuwen A, Keist R, Vom Berg J, Grandjean J, Rudin M. In vivo imaging of hypoxia-inducible factor regulation in a subcutaneous and orthotopic GL261 glioma tumor model using a reporter gene assay. Mol Imaging 2015; 13. [PMID: 25248521 DOI: 10.2310/7290.2014.00029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intratumoral hypoxia changes the metabolism of gliomas, leading to a more aggressive phenotype with increased resistance to radio- and chemotherapy. Hypoxia triggers a signaling cascade with hypoxia-inducible factor (HIF) as a key regulator. We monitored activation of the HIF pathway longitudinally in murine glioma tumors. GL261 cells, stably transfected with a luciferase reporter driven under the control of a promoter comprising the HIF target gene motive hypoxia response element, were implanted either subcutaneously or orthotopically. In vivo experiments were carried out using bioluminescence imaging. Tumors were subsequently analyzed using immunofluorescence staining for hypoxia, endothelial cells, tumor perfusion, and glucose transporter expression. Transient upregulation of the HIF signaling was observed in both subcutaneous and orthotopic gliomas. Immunofluorescence staining confirmed hypoxic regions in subcutaneous and, to a lesser extent, intracranial tumors. Subcutaneous tumors showed substantial necrosis, which might contribute to the decreased bioluminescence output observed toward the end of the experiment. Orthotopic tumors were less hypoxic than subcutaneous ones and did not develop extensive necrotic areas. Although this may be the result of the overall smaller size of orthotopic tumors, it might also reflect differences in the local environment, such as the better intrinsic vascularization of brain tissue compared to the subcutaneous tissue compartment.
Collapse
|
40
|
Tseng JC, Kung AL. Quantitative bioluminescence imaging of mouse tumor models. Cold Spring Harb Protoc 2015; 2015:pdb.prot078261. [PMID: 25561617 DOI: 10.1101/pdb.prot078261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.
Collapse
Affiliation(s)
- Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
41
|
Hattori M, Ozawa T. Bioluminescent tools for the analysis of G-protein-coupled receptor and arrestin interactions. RSC Adv 2015. [DOI: 10.1039/c4ra14979c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New protein-based bioluminescent probes for monitoring GPCR interaction with β-arrestin are presented.
Collapse
Affiliation(s)
- Mitsuru Hattori
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Takeaki Ozawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- Bunkyo-ku
- Japan
| |
Collapse
|
42
|
Sato K, Hanaoka H, Watanabe R, Nakajima T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther 2014; 14:141-50. [PMID: 25416790 DOI: 10.1158/1535-7163.mct-14-0658] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Near infrared photoimmunotherapy (NIR-PIT) is a new cancer treatment that combines the specificity of intravenously injected antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. Herein, we evaluate the efficacy of NIR-PIT in a mouse model of disseminated peritoneal ovarian cancer. In vitro and in vivo experiments were conducted with a HER2-expressing, luciferase-expressing, ovarian cancer cell line (SKOV-luc). An antibody-photosensitizer conjugate (APC) consisting of trastuzumab and a phthalocyanine dye, IRDye-700DX, was synthesized (tra-IR700) and cells or tumors were exposed to NIR light. In vitro PIT cytotoxicity was assessed with dead staining and luciferase activity in freely growing cells and in a three-dimensional (3D) spheroid model. In vivo NIR-PIT was performed in mice with tumors implanted in the peritoneum and in the flank and these were assessed by tumor volume and/or bioluminescence. In vitro NIR-PIT-induced cytotoxicity was light dose dependent. Repeated light exposures induced complete tumor cell killing in the 3D spheroid model. In vivo the antitumor effects of NIR-PIT were confirmed by significant reductions in both tumor volume and luciferase activity in the flank model (NIR-PIT vs. control in tumor volume changes at day 10, P = 0.0001; NIR-PIT vs. control in luciferase activity at day 4, P = 0.0237), and the peritoneal model (NIR-PIT vs. control in luciferase activity at day 7, P = 0.0037). NIR-PIT provided effective cell killing in this HER2-positive model of disseminated peritoneal ovarian cancer. Thus, NIR-PIT is a promising new therapy for the treatment of disseminated peritoneal tumors.
Collapse
Affiliation(s)
- Kazuhide Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland
| | - Hirofumi Hanaoka
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland
| | - Rira Watanabe
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland
| | - Takahito Nakajima
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland
| | - Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute/NIH, Bethesda, Maryland.
| |
Collapse
|
43
|
Bernthal NM, Taylor BN, Meganck JA, Wang Y, Shahbazian JH, Niska JA, Francis KP, Miller LS. Combined in vivo optical and µCT imaging to monitor infection, inflammation, and bone anatomy in an orthopaedic implant infection in mice. J Vis Exp 2014:e51612. [PMID: 25350287 DOI: 10.3791/51612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Multimodality imaging has emerged as a common technological approach used in both preclinical and clinical research. Advanced techniques that combine in vivo optical and μCT imaging allow the visualization of biological phenomena in an anatomical context. These imaging modalities may be especially useful to study conditions that impact bone. In particular, orthopaedic implant infections are an important problem in clinical orthopaedic surgery. These infections are difficult to treat because bacterial biofilms form on the foreign surgically implanted materials, leading to persistent inflammation, osteomyelitis and eventual osteolysis of the bone surrounding the implant, which ultimately results in implant loosening and failure. Here, a mouse model of an infected orthopaedic prosthetic implant was used that involved the surgical placement of a Kirschner-wire implant into an intramedullary canal in the femur in such a way that the end of the implant extended into the knee joint. In this model, LysEGFP mice, a mouse strain that has EGFP-fluorescent neutrophils, were employed in conjunction with a bioluminescent Staphylococcus aureus strain, which naturally emits light. The bacteria were inoculated into the knee joints of the mice prior to closing the surgical site. In vivo bioluminescent and fluorescent imaging was used to quantify the bacterial burden and neutrophil inflammatory response, respectively. In addition, μCT imaging was performed on the same mice so that the 3D location of the bioluminescent and fluorescent optical signals could be co-registered with the anatomical μCT images. To quantify the changes in the bone over time, the outer bone volume of the distal femurs were measured at specific time points using a semi-automated contour based segmentation process. Taken together, the combination of in vivo bioluminescent/fluorescent imaging with μCT imaging may be especially useful for the noninvasive monitoring of the infection, inflammatory response and anatomical changes in bone over time.
Collapse
Affiliation(s)
- Nicholas M Bernthal
- Orthopaedic Hospital Research Center, Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA)
| | | | | | - Yu Wang
- Department of Dermatology, Johns Hopkins University School of Medicine
| | | | - Jared A Niska
- Orthopaedic Hospital Research Center, Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA)
| | | | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine; Department of Medicine, Division of Infectious Diseases, Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine;
| |
Collapse
|
44
|
Patrick PS, Lyons SK, Rodrigues TB, Brindle KM. Oatp1 enhances bioluminescence by acting as a plasma membrane transporter for D-luciferin. Mol Imaging Biol 2014; 16:626-34. [PMID: 24798747 PMCID: PMC4161938 DOI: 10.1007/s11307-014-0741-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Bioluminescence imaging is a powerful tool for studying gene expression and cell migration in intact living organisms. However, production of bioluminescence by cells transfected to express luciferase can be limited by the rate of plasma membrane transport of its substrate D-luciferin. We sought to identify a plasma membrane transporter for D-luciferin that could be expressed alongside luciferase to increase transmembrane flux of its substrate and thereby increase light output. PROCEDURES Luciferase-expressing cells were transfected with a lentivirus encoding the rat reno-hepatic organic anion transporter protein, Oatp1, which was identified as a potential transporter for D-luciferin. Light output was compared between cells expressing luciferase and those also expressing Oatp1. RESULTS In two cell lines and in mouse xenografts, co-expression of Oatp1 with luciferase increased light output by several fold, following addition of luciferin. CONCLUSIONS The increase in light output thus obtained will allow more sensitive detection of luciferase-expressing cells in vivo.
Collapse
Affiliation(s)
- P. Stephen Patrick
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QW
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Scott K. Lyons
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Tiago B. Rodrigues
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| | - Kevin M. Brindle
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK CB2 1QW
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK CB2 0RE
| |
Collapse
|
45
|
Real-time bioluminescence imaging of mixed mycobacterial infections. PLoS One 2014; 9:e108341. [PMID: 25265287 PMCID: PMC4180448 DOI: 10.1371/journal.pone.0108341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/28/2014] [Indexed: 01/18/2023] Open
Abstract
Molecular analysis of infectious processes in bacteria normally involves construction of isogenic mutants that can then be compared to wild type in an animal model. Pathogenesis and antimicrobial studies are complicated by variability between animals and the need to sacrifice individual animals at specific time points. Live animal imaging allows real-time analysis of infections without the need to sacrifice animals, allowing quantitative data to be collected at multiple time points in all organs simultaneously. However, imaging has not previously allowed simultaneous imaging of both mutant and wild type strains of mycobacteria in the same animal. We address this problem by using both firefly (Photinus pyralis) and click beetle (Pyrophorus plagiophthalamus) red luciferases, which emit distinct bioluminescent spectra, allowing simultaneous imaging of two different mycobacterial strains during infection. We also demonstrate that these same bioluminescence reporters can be used to evaluate therapeutic efficacy in real-time, greatly facilitating our ability to screen novel antibiotics as they are developed. Due to the slow growth rate of mycobacteria, novel imaging technologies are a pressing need, since they can they can impact the rate of development of new therapeutics as well as improving our understanding of virulence mechanisms and the evaluation of novel vaccine candidates.
Collapse
|
46
|
Adams ST, Miller SC. Beyond D-luciferin: expanding the scope of bioluminescence imaging in vivo. Curr Opin Chem Biol 2014; 21:112-20. [PMID: 25078002 DOI: 10.1016/j.cbpa.2014.07.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/28/2014] [Accepted: 07/03/2014] [Indexed: 01/10/2023]
Abstract
The light-emitting chemical reaction catalyzed by the enzyme firefly luciferase is widely used for noninvasive imaging in live mice. However, photon emission from the luciferase is crucially dependent on the chemical properties of its substrate, D-luciferin. In this review, we describe recent work to replace the natural luciferase substrate with synthetic analogs that extend the scope of bioluminescence imaging.
Collapse
Affiliation(s)
- Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
47
|
Michelini E, Cevenini L, Calabretta MM, Calabria D, Roda A. Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery. Anal Bioanal Chem 2014; 406:5531-9. [PMID: 24908412 DOI: 10.1007/s00216-014-7925-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/22/2014] [Accepted: 05/23/2014] [Indexed: 12/21/2022]
Abstract
Bioluminescence-based analytical tools are suitable for high-throughput and high-content screening assays, finding widespread application in several fields related to the drug discovery process. Cell-based bioluminescence assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of drug screening. Reporter gene technology and the bioluminescence resonance energy transfer principle are widely used, and receptor binding studies of new agonists/antagonists for a variety of human receptors expressed in different cell lines can be performed. Moreover, bioluminescence can be used for in vitro and in vivo real-time monitoring of pathophysiological processes within living cells and small animals. New luciferases and substrates have recently arrived on the market, further expanding the spectrum of applications. A new generation of probes are also emerging that promise to revolutionize the preclinical imaging market. This formidable toolbox is demonstrated to facilitate the implementation of the three Rs principle in the early drug discovery process, in compliance with ethical and responsible research to reduce cost and improve the reliability and predictability of results.
Collapse
Affiliation(s)
- Elisa Michelini
- Department of Chemistry "G. Ciamician, University of Bologna, Via Selmi 2, 40126, Bologna, Italy,
| | | | | | | | | |
Collapse
|
48
|
Kuruppu D, Brownell AL, Shah K, Mahmood U, Tanabe KK. Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 2014; 74:4111-21. [PMID: 24876106 DOI: 10.1158/0008-5472.can-13-3472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Viral oncolysis, the destruction of cancer cells by replicating virus, is an experimental cancer therapy that continues to be explored. The treatment paradigm for this therapy involves successive waves of lytic replication in cancer cells. At present, monitoring viral titer at sites of replication requires biopsy. However, repeat serial biopsies are not practically feasible for temporal monitoring of viral replication and tumor response in patients. Molecular imaging provides a noninvasive method to identify intracellular viral gene expression in real time. We imaged viral oncolysis and tumor response to oncolysis sequentially with bioluminescence and positron emission tomography (PET), revealing the kinetics of both processes in tumor xenografts. We demonstrate that virus replication cycles can be identified as successive waves of reporter expression that occur ∼2 days after the initial viral tumor infection peak. These waves correspond to virions that are released following a replication cycle. The viral and cellular kinetics were imaged with Fluc and Rluc bioluminescence reporters plus two 18F-labeled PET reporters FHBG [9-(4-18F-fluoro-3-[hydroxymethyl] butyl) guanine] and FLT (18F-3'-deoxy-3-'fluorothymidine), respectively. Correlative immunohistochemistry on tumor xenograft sections confirmed in vivo results. Our findings show how PET can be used to identify virus replication cycles and for real-time measurements of intratumoral replicating virus levels. This noninvasive imaging approach has potential utility for monitoring viral oncolysis therapy in patients.
Collapse
Affiliation(s)
| | | | - Khalid Shah
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Umar Mahmood
- Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | | |
Collapse
|
49
|
Evans MS, Chaurette JP, Adams ST, Reddy GR, Paley MA, Aronin N, Prescher JA, Miller SC. A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 2014; 11:393-5. [PMID: 24509630 PMCID: PMC4026177 DOI: 10.1038/nmeth.2839] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
Abstract
Firefly luciferase is the most widely used optical reporter for noninvasive bioluminescence imaging (BLI) in rodents. BLI relies on the ability of the injected luciferase substrate D-luciferin to access luciferase-expressing cells and tissues within the animal. Here we show that injection of mice with a synthetic luciferin, CycLuc1, improves BLI with existing luciferase reporters and enables imaging in the brain that could not be achieved with D-luciferin.
Collapse
Affiliation(s)
- Melanie S Evans
- 1] Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA. [2]
| | - Joanna P Chaurette
- 1] Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [3]
| | - Spencer T Adams
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gadarla R Reddy
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Miranda A Paley
- Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Neil Aronin
- 1] Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA. [2] RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer A Prescher
- 1] Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA. [2] Department of Chemistry, University of California, Irvine, Irvine, California, USA
| | - Stephen C Miller
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
50
|
Paley MA, Prescher JA. Bioluminescence: a versatile technique for imaging cellular and molecular features. MEDCHEMCOMM 2014; 5:255-267. [PMID: 27594981 PMCID: PMC5006753 DOI: 10.1039/c3md00288h] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioluminescence is a ubiquitous imaging modality for visualizing biological processes in vivo. This technique employs visible light and interfaces readily with most cell and tissue types, making it a versatile technology for preclinical studies. Here we review basic bioluminescence imaging principles, along with applications of the technology that are relevant to the medicinal chemistry community. These include noninvasive cell tracking experiments, analyses of protein function, and methods to visualize small molecule metabolites. In each section, we also discuss how bioluminescent tools have revealed insights into experimental therapies and aided drug discovery. Last, we highlight the development of new bioluminescent tools that will enable more sensitive and multi-component imaging experiments and, thus, expand our broader understanding of living systems.
Collapse
Affiliation(s)
- Miranda A. Paley
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| |
Collapse
|